
DistiIBERT Augmented with Mixture of Local and

Global Experts

Stanford CS224N Default Final Project, Robust QA

Joshua Tanner, Philipp Reineke
Department of Medicine, Department of Management Science and Engineering

Stanford University
{jvtanner, preineke}@stanford.edu

Abstract

Few-shot systems are valuable because they enable precise predictions using small
amounts of expensive training data, making them particularly cost-efficient. In
this paper, we explore a technique to improve the few-shot question answering
capabilities of a pre-trained language model. We adjust a pre-trained DistiLBERT
model such that it leverages datasets with large amounts of training data to achieve
higher question-answering performance on datasets with very small amounts of
available training data using a novel inner- and outer-layer of Mixture of Experts
approach.

1 Introduction

The entrance of BERT (Bidirectional Encoder Representations form Transformers) (Vaswani, 2017)

[1] onto the NLP stage caused a stir among the Machine Learning community after posting record
numbers for a variety of language tasks, including Question Answering. The secret to BERT’s
success was largely attributable to its bidirectional training of a transformer made possible by a
masked language model. This was in contrast to the typical approaches of the day which included
sequence movement in either left-to-right or a combination of both left-to-right and right-to-left
training methods.

However, BERT and more recent models continue to rely on a massive number of parameters,
numbering in the hundreds of millions or more. This makes them costly to train and unrealistic
foundations for transfer learning applications for on-device computations. In this paper, we utilize
DistiIBERT (Sanh, 2019) [2], a lighter and faster version of BERT which has shown to retain

nearly all of BERT’s language understanding abilities. Our goal is to successfully implement a
novel Mixture of Experts (MoE) approach first introduced by Jacobs and colleagues (1991) [3]

to dramatically raise DistiIBERT’s transfer learning capabilities within question answering in the
context of dissimilar and scarce portions of training data.

The MoE approach saw first light thirty years ago and has since been broadly adopted in dozens of
applications ranging from predicting rank data (Gormley & Murphy, 2010) [4] and time series data
(Fruhwirth-Schnatter et al., 2012) [5] to longitudinal data (Tang & Qu, 2015) [6] and non-normal

data (Villani et al, 2009) [7]. Many different flavors of MoE have been tried, tested, and found

useful. But the core principle behind each design is to subject the model parameters to a function
incorporating concomitant covariates.

Stanford CS224N Natural Language Processing with Deep Learning

2 Related Work

Perhaps the most significant application of MoE in recent years has been the contribution made
by members of Google Brain (Shazeer et al., 2017) [8] who implemented a sparsely-gated 137
billion-parameter MoE layer between LSTM layers to achieve state-of-the-art performance at a lower
cost. This landmark paper was the first to implement conditional computation in deep networks
successfully.

Prior work focused on fleshing out various aspects of the MoE framework, such as hierarchical
structure (Yao et al., 2009) [9], infinite number of experts (Rasmussen & Ghahramani, 2002) [10],

and adding experts in a sequential manner (Aljundi et al., 2016) [11]. Eigen and colleagues (2013)
[12] introduced the idea of using many MoE’s with separate gating networks, which proved a far
more powerful approach than other variations since this approach allowed for the engagement of the
neural network with multiple sub-problems which are often present in machine learning applications.

While Eigen and colleagues stacked two groups of MoE’s, our approach will instead be to incorporate
several "inner" MoE’s within "outer" MoE structures. This approach leverages both the insight of
independently trained experts and specialization of experts which are guided to particularly salient
aspects of our training data.

3 Approach

Prediction

Outer expert 1 Outer expert 2 Outer expert 3 - Inner-layer

Answer Answer Answer

— Outer-layer

Gating Gating Gating
Network Network Network

Inner Inner Inner Inner Inner Inner Inner
expert QA expert QA expert QA expert QA expert QA expert QA expert QA
head 1-1 head 1-2 head ... head 2-1 head 2-2 head 3-1 head 3-2

DistiIBERT DistilIBERT DistiIBERT

Explicit assignment

Text Input
Figure 1: Model structure illustration.

Our approach consists of the implementation of MoE on two separate levels:

Outer-layer: Central to our approach is the realization that our prediction tasks consists of
predictions from multiple separate out-of-domain (OOD) datasets. However, for each of these
OOD datasets we have separate training and validation sets and, crucially, we know which data
originated from which dataset. This allows us to train a separate, specialized model for data
prediction from each OOD dataset. Thus, for the outer-layer of our model we employ the philosophy
of the MoE method without relying on a gating network because we can manually assign data to
experts based on its database of origin. By eliminating the gating component on the outermost
level, we can obtain 100% assignment accuracy with 0 noise and reduce the number of total
parameters that need to be trained. In summary, our outer-layer implementation is grounded in a re-
peatable process for combining expert models in contexts where the data origin of OOD data is known.

This approach has several benefits. First, it allows us to account for the scarcity of OOD data and
train models without the confounding influence of other OOD datasets, resulting in minimal noise.
Second, it allows us to train our inner-layer models in parallel on separate machines, resulting in
dramatically increased training speed, a benefit of parallelization. Third, splitting our inner-layers
across different machines means that each machine requires less memory since we do not have to
store multiple large models in RAM. Finally, we gain additional flexibility since we can evaluate
model performance of single experts separately, using different model architectures that yield optimal
performance for their respective OOD dataset.

Inner-layer: For our inner-layer experts we leverage the MoE method to optimize transfer
learning from our in-domain (IND) data to predict OOD observations. First, we instantiated a
pre-trained ’distilbert-base-uncased’ DistilIBERT as a question answering model. This model
contains a randomly initialized question-answering head layer which requires further finetuning to
translate DistiIBERT output tensors to predictions in a question-answering format. We removed
this question-answering head layer and replaced it with a MoE layer consisting of 4 to 5 experts
(depending on the OOD dataset) and a gating network. Each of our experts is a Multilayer
Perceptron (MLP) with a hidden layer size of 64 and an output size of 2. However, we removed
the final softmax activation function common in MLPs to make the experts useful as disparate
question-answering heads. Rather than outputting probability distributions, these heads output
two numeric values indicating the start- and stop-characters which "highlight" where the answer
can be found found within the input text. Our gating network is an MLP with hidden size 64 and
output size "number of expert" which drops the sequence length tensor dimension but contains
a softmax activation layer. In the layer’s forward function, we weight each expert’s output by
the probability distribution obtained from the gate, effectively deciding which of the experts we
will listen to in making predictions from data considering the nature of the particular input observation.

We implement a new loss function to 1) decouple each network’s weight updates from one another
and 2) place each network’s performance in the context of the others:

E= —log S~ pee3 lider ll” (1)

Ostensibly, this means that each of our experts focuses on a different component / different
components of the training data. This allows our model to predict observations from the small OOD
dataset that have components similar to those that appear in the large IND data using experts with
greater exposure to our large IND data. These observations will therefore lead to predictions with
a higher degree of precision. Conversely, observations that have components which are different
from those of our IND observations but similar to those of OOD observations can be predicted using
experts that are more strongly trained on the scarce OOD training data. These predictions may be
less precise due to lower data availability, but are at least not biased by dissimilar IND data training
observations.

Our sequential approach of implementing a DistiIBERT model with an internal MoE-layer has
several distinct benefits over alternatives. First, our method adds a minimal number of additional

layers to the model. Therefore, it is faster and more memory-efficient than a model with several

DistiIBERT experts linked within a MoE architecture would be. Second, since the MoE gate
distributes back-propagation of gradients across experts, each expert is effectively only trained on a
share of the available training data. Therefore, we need to keep each expert moderately complex so
as to not over-fit on the OOD data. Our design’s MLP experts achieve this whereas a full DistiIBERT
model expert would likely overfit the OOD data. Third, while backprop is divided amongst the
question-answering heads, there is no other aspect of the DistiIBERT model that divides its learning.
All backpropagated gradients flow through the entire DistiIBERT model. This allows our DistiI1BERT
model to be finetuned on all data, not just the data the gate allocates to a specific expert. By
engineering our model this way, we allow all experts to benefit from transfer learning from other
experts via the upstream DistiIBERT model.

In short, our approach uses MoE both as a design principle (in the outer-layer) and as a modelling
method (in the inner-layer), yielding several performance and prediction benefits. Our model strongly
outperforms our baseline on the validation set as a result.

4 Experiments

4.1 Data

In-domain datasets:

¢ SQuAD (SQ) - paragraphs from Wikipedia. Around 150k Questions and answers are
crowd-sourced using Amazon Mechanical Turk. About half of the 150k questions cannot
be answered using the provided paragraphs. The answers to the other questions are in the
form of snippets of text taken directly from the source paragraph (Rajpurkar et al., 2016) [13].

¢ Natural Questions (NA) - data set derived from questions posed to Google in which
Wikipedia pages from the top 5 results constitute the input. The output consists of a
long-form, short-form, or ’null’ if no answer can be derived explicitly from the Wikipedia
text (Kwiatkowski et al., 2019) [14].

¢ NewsQA (NE) - a machine comprehension data set of 100k human-generated Q&A pairs

from 10k CNN news articles. Answers are spans of text from the corresponding input
context (Trischler et al., 2016) [15].

Out-of-domain datasets:

¢ RACE (RA) - 100k reading comprehension questions and answers from 28k passages
asked to Chinese teenagers. Significant portion of reasoning is involved in answering these
questions, resulting in massive model vs. human performance difference in recent models
(43% vs. 95%, respectively) (Lai et al., 2017) [16].

¢ Relation Extraction (RE) - dataset of 30 million question answer pairs from Wikidata and
WikiReading which were curated as part of a relationship extraction project (Levy et al.,
2017) [17].

¢ DuoRC (DU) - 186k Q&A pairs based on 7680 movie plots. Each question is drawn from
either the IMBd or Wikipedia description of the movie with the corresponding answer drawn
from the whichever description the question did not come from. This means that the answer
is almost certainly not a simple extraction from the input text (Saha et al., 2018) [18].

For training our models, we do not use the complete datasets listed above but subsets thereof that
are further split into train, validation, and test sets. See Appendix 1 for a table listing the number of
"answers" in each of the single data-subsets.

number

5

e€

RA RE DU

ase

4.2 Evaluation method

We use Exact Match (binary score that is 1 if system output and ground truth match exactly, and 0
otherwise) and F1 scores (the harmonic mean of precision and recall of single words in the system
output vs. ground truth) to evaluate our results.

4.3 Experimental details, results, and results discussion

First we trained our baseline, a single DistiLBERT model, to predict all OOD validation sets at once.
In separate models we conducted additional finetuning to improve model performance. We used
model 4, the model with the greatest overall predictive performance, as a baseline. Then we tested
whether replacing QA heads with an MoE layer would yield performance improvements, which it did
(see model 5), even without further finetuning.

0 yer
(heads)

oO

oO RE

oO
oO RE

RA RE DU Yes (6) 5000 RA RE DU

0 ons cate

Green indicates in-domain datasets. Orange indicates out-of-domain datasets. All EM and F1 values for validation
set.

number

Then, we optimized our inner-layer framework. To contextualize the performance of the single
experts of the outer-layer, we create a second baseline consisting of the predictive performance of the
baseline model applied to each OOD dataset separately.

step step
oE layer

data (heads) param data

oO

oO

oO
e ction or . or on set.

Using four inner-layer expert QA heads (one per training dataset) for each inner-layer model improves
on this new baseline for two out of three of our datasets. To maintain a standard of comparability
with our baseline models, we preserved most configurations such as the learning rate (0.00003).

Loss graphs show that the training loss decrease continuously. However, validation scores displayed
periodic fluctuations. To account for this, we reduced the evaluation interval which dictates checkpoint
save intervals.

Lastly, we experimented with the number of experts of the inner-layer models and found that five
experts (one expert per training dataset + 1) for the inner-layer models yields maximum performance
in terms of EM for the RE and DU datasets.

We ran further experiments to test whether additional performance improvements could be achieved.
Particularly, we tested whether freezing the DistiIBERT model in our inner-layer experts by dis-
connecting it from the torch graph and just training the QA head MoE layer alone would yield
similar training results at a faster rate. While these models did indeed train much faster than the
models that back-propagated losses throughout the entire DistiIBERT model (5h10m-6h53m vs.
the 12h49-15h18m in models 6 to 11), their performance did not outperform the baseline. We also
attempted to further finetune MoE inner-layer models, which generated no changes in predictive
performance.

34.55 | 50.72

EM Fl EM
time number oE layer

data (heads)

es
es . 37.17
es

es
es S
es S : .

e 3: Mo e ction ormance training times for expert Mo

EM and FI! values for validation sets. Highest scores for the particular eval dataset are highlighted in bold.

-every | data
param

37.69

 yers.

In composing our final model, we saved the validation checkpoints by highest F1 metric and then
chose the best performing 4 vs 5 expert models by EM metric. Thus, we balance the impact of the two
evaluation metrics on the composition of our final model. Our final model achieves a performance of
EM 39.79 and F1 54.53 on the validation set and EM 41.88 and F1 59.60 on the test set.

Model Training Eval | EM Fl Overall | Overall | Overall | Overall
number Train Val | MoKE layer | eval-every | data | (val) | (val) EM Fl EM F1

data data (heads) param (val) (val) (test) (test)
6 SQNA NERA | RA Yes (4) 500 RA | 27.34 | 43.65
10 SQNANERE | RE Yes (4) 500 RE | 56.25 | 75.04 | 39.79 54.54 41.88 59.60
11 SQ NA NE DU | DU Yes (4) 500 DU | 35.71 | 44.77

Table 4: Inner-layer experts in final model.

This performance on the test set is partly due to the differences in observation shares from the test
vs validation set databases - with shares of 9.61% RA, 61.77% RE, and 28.62% DU in the test set

and 33.51% RA, 33.51% RE, and 32.98% DU in the validation set. Had we observed the same
performance in the validation set for each inner-layer model given the mixture of observations in
the test set, we would have expected a performance of EM 47.59 and F1 63.36 on the test set. The
fact that our model’s performance on the test set is well below this benchmark suggests that our
inner-layer models overfit the validation data. In hindsight, we may have been able to increase our
performance on the test set by increasing the "eval-every" parameter, by manually defining the step
where we save the model checkpoint used for prediction (based on smoothed performance graphs
reported in Appendix 2), or by defining a function that chooses the final model checkpoint based
on smoothed performance values. However, we did not do this so as to not artificially optimize our
results based on the test set results.

5 Qualitative analysis

Our results provide several interesting findings. The superior performance of our model compared to
the baseline lends credence to our inner-outer-layer MoE model approach. However, we make the
following observations that may be used for further improvements to the model in the future:

First, our results indicate a confounding vs. transfer-learning robustness trade-off between predicting
multiple OOD datasets. Training on several IND and OOD datasets at once creates an opportunity
for observations from one OOD dataset to inform the predictions on other OOD datasets (learning
being transferred across contexts). However, training parameters for prediction in one OOD dataset
may also interfere with training parameters for predictions in another OOD dataset (confounding
predictions in other contexts). Our results in Model 5 show that MoE is one way to partially resolve
this tradeoff - by using a sequential layer of experts where separate parameters can be trained for
different datasets while still allowing learning transfer to occur. However, Models 6 through 11 show
that in our context, the noise reduction benefits from performing just a single OOD prediction task
per outer-layer expert outweigh the costs of diminished transfer-learning from other OOD datasets.
Accordingly, Model 5 outperforms the baseline for predictions on the validation set, but does not
outperform our MoE inner-outer model.

Second, we note that some of our inner-layer models perform better on four input datasets with five
experts. This is surprising since we would have expected each expert to (roughly) focus on one
training dataset each. The performance increase of models with five experts (number of training
datasets + 1) may indicate that models benefit from adding one expert who may represent a "general
text baseline" while the remaining experts may represent components unique to the different datasets
that go beyond this general baseline. In this case, the gate would then weigh expert outputs as a
mixture of the "general text baseline" expert plus inputs from remaining experts whose predictions
correspond to components of the observation that go beyond the "general text baseline".

Third, we note that our validation performance fluctuates in our inner-layer models despite steadily
declining training loss (see Appendix 2). We take these observations as an indication that (though our
"eval-every" checkpoint storage parameter size is too small) our model is not generally over-fitting
the training data. Instead, we believe that part of these fluctuations may be caused by our sequential
use of DistiIBERT and MoE layers. Changes in the DistiIBERT model parameters resulting from
backpropagated losses from one expert may result in changes to the output of the DistiIBERT layer.
These changes may in turn change the ideal distribution of components which should be handled by
a given expert. Thus, certain changes in the underlying DistilBERT model may periodically make
larger re-adjustments in the expert layer necessary. As a result, in a model such as ours, validation
loss may change in a wave-like pattern. This may have an impact on our choice of the ideal number of
experts. For example, in models with one expert whose parameters map general text characteristics,
DistilIBERT model changes may require a reshuffling of components among experts less frequently,
potentially leading to smoother curves. Further research would be needed to confirm this. This
finding may also indicate that the overall model and performance may benefit from pre-training via
Model Agnostic Meta Learning (Finn et al., 2017) [19] methods such as Reptile (Dou et al., 2019)

[20] which would instantiate parameters in a way that achieves faster learning performance, thereby
potentially smoothing fluctuations.

Overall the performance of our model suggests that it works well in our context. A strong limitation
is that the outer-layer of our model architecture requires training data with an identifiable origin for
any OOD data that we would like to predict.

6 Conclusion

This project demonstrates an inner-outer application of MoE which substantially increases the
question-answering capabilities of a DistiIBERT language model from baseline performance. We
applied the general concomitant covariates principle of the MoE model both to individual heads
within models (inner-layer) and as a design principle to structure multiple larger models (outer-layer),
thereby increasing performance on a task with limited OOD data. Our experimentation has revealed
an optimal arrangement of both our inner- and outer-layer experts. The decision to take over the task
assignment of the gating feature in our outer-layer proved to be instrumental in an environment of
OOD data scarcity where data origin is known. Overall, we believe that treating various elements of
models as "experts" to be a potentially fruitful approach to future explorations into NLP applications,
specifically for QA. Future designs may decrease fluctuations in prediction performance by pre-
initializing weights for inner experts using Model Agnostic Meta Learning methods that increase
learning speed or by reducing validation steps / adjusting the rules by which model checkpoints are
saved to reduce overfitting.

References

[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,

Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv: 1706.03762.

[2] Sanh, V., Debut, L., Chaumond, J., Wolf, T. (2019). DistilBERT, a distilled version of BERT:

smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

[3] Jacobs, R. A., Jordan, M. I., Nowlan, S. J., Hinton, G. E. (1991). Adaptive mixtures of local

experts. Neural computation, 3(1), 79-87.

[4] Gormley, I. C., Murphy, T. B. (2010). A mixture of experts latent position cluster model for
social network data. Statistical methodology, 7(3), 385-405.

[5] Friihwirth-Schnatter, S., Pamminger, C., Weber, A., Winter-Ebmer, R. (2012). Labor market entry

and earnings dynamics: Bayesian inference using mixtures-of-experts Markov chain clustering.
Journal of Applied Econometrics, 27(7), 1116-1137.

[6] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q. (2015, May). Line: Large-scale

information network embedding. In Proceedings of the 24th international conference on world
wide web (pp. 1067-1077).

[7] Villani, A. C., Lemire, M., Fortin, G., Louis, E., Silverberg, M. S., Collette, C., ... Franchimont,

D. (2009). Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility.
Nature genetics, 41(1), 71.

[8] Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., Dean, J. (2017).

Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538.

[9] Yao, B., Walther, D., Beck, D., Fei-Fei, L. (2009). Hierarchical mixture of classification experts

uncovers interactions between brain regions. Advances in Neural Information Processing Systems,
22, 2178-2186.

[10] Rasmussen, C. E., Ghahramani, Z. (2002). Infinite mixtures of Gaussian process experts.

Advances in neural information processing systems, 2, 881-888.

[11] Aljundi, R., Chakravarty, P., Tuytelaars, T. (2017). Expert gate: Lifelong learning with a
network of experts. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 3366-3375).

[12] Eigen, D., Ranzato, M. A., Sutskever, I. (2013). Learning factored representations in a deep

mixture of experts. arXiv preprint arXiv:1312.4314.

[13] Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P. (2016). Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint arXiv: 1606.05250.

[14] Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M., Parikh, A., Alberti, C., Epstein D.,

Polosukhin, I., Kelcey M., Devlin J., Lee, K., Toutanova, K. N., Jones, L., Chang, M., Dai, A.,

Uszkoreit, J., Le, Q., Petrov, S. (2019). Natural questions: a benchmark for question answering

research. Transactions of the Association for Computational Linguistics, 7, 453-466.

[15] Trischler, A., Wang, T., Yuan, X., Harris, J., Sordoni, A., Bachman, P., Suleman, K. (2016).

Newsqa: A machine comprehension dataset. arXiv preprint arXiv: 1611.09830.

[16] Lai, G., Xie, Q., Liu, H., Yang, Y., Hovy, E. (2017). Race: Large-scale reading comprehension

dataset from examinations. arXiv preprint arXiv:1704.04683.

[17] Levy, O., Seo, M., Choi, E., Zettlemoyer, L. (2017). Zero-shot relation extraction via reading

comprehension. arXiv preprint arXiv:1706.04115.

[18] Saha, A., Aralikatte, R., Khapra, M. M., Sankaranarayanan, K. (2018). DuoRC: Towards

complex language understanding with paraphrased reading comprehension. arXiv preprint
arXiv: 1804.07927.

[19] Finn, C., Abbeel, P., Levine, S. (2017, July). Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning (pp. 1126-1135). PMLR.

[20] Dou, Z. Y., Yu, K., Anastasopoulos, A. (2019). Investigating meta-learning algorithms for
low-resource natural language understanding tasks. arXiv preprint arXiv:1908.10423.

A Appendix

Appendix 1: Number of answer-samples per dataset, split by training, validation, and test sets.

answer:
Dataset ID vs OOD | Abbreviation

Appendix 2: Training Loss, EM, and F1 graphs for 4 vs 5 expert versions of final models by dataset.

RACE Relation Extraction DuoRC

1.6 + 1.6 +

1.24 1.2 4

Training} og. 08
loss

0.4 = 44 0.4—

0 0 0

OQ 5k 10k 15k 20k 25k 30k 35k 40k 45k QO 5k 10k 15k 20k 25k 30k 35k 40k 45k OQ 5k 10k 15k 20k 25k 30k 35k 40k 45k

25 4 55 >
32 +

20 |

454 |
15 + 28 |

EM 10 - 35 + 24 |
5 -+

0 25 + 20 +

QO 5k 10k 15k 20k 25k 30k 35k 40k 45k QO 5k 10k 15k 20k 25k 30k 35k 40k 45k QO 5k 10k 15k 20k 25k 30k 35k 40k 45k

38 |

344

30 |
F1 |

26 +

22.44

O 5k 10k 15k 20k 25k 30k 35k 40k 45k 0 5k 10k 15k 20k 25k 30k 35k 40k 45k 0 5k 10k 15k 20k 25k 30k 35k 40k 45k

leyend 4 inner-layer experts 4 inner-layer experts 4 inner-layer experts

5 inner- layer experts 5 inner- layer experts 5 inner- layer experts

10

