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Abstract 

Few-shot systems are valuable because they enable precise predictions using small 
amounts of expensive training data, making them particularly cost-efficient. In 
this paper, we explore a technique to improve the few-shot question answering 
capabilities of a pre-trained language model. We adjust a pre-trained DistiLBERT 
model such that it leverages datasets with large amounts of training data to achieve 
higher question-answering performance on datasets with very small amounts of 
available training data using a novel inner- and outer-layer of Mixture of Experts 
approach. 

1 Introduction 

The entrance of BERT (Bidirectional Encoder Representations form Transformers) (Vaswani, 2017) 

[1] onto the NLP stage caused a stir among the Machine Learning community after posting record 
numbers for a variety of language tasks, including Question Answering. The secret to BERT’s 
success was largely attributable to its bidirectional training of a transformer made possible by a 
masked language model. This was in contrast to the typical approaches of the day which included 
sequence movement in either left-to-right or a combination of both left-to-right and right-to-left 
training methods. 

However, BERT and more recent models continue to rely on a massive number of parameters, 
numbering in the hundreds of millions or more. This makes them costly to train and unrealistic 
foundations for transfer learning applications for on-device computations. In this paper, we utilize 
DistiIBERT (Sanh, 2019) [2], a lighter and faster version of BERT which has shown to retain 

nearly all of BERT’s language understanding abilities. Our goal is to successfully implement a 
novel Mixture of Experts (MoE) approach first introduced by Jacobs and colleagues (1991) [3] 

to dramatically raise DistiIBERT’s transfer learning capabilities within question answering in the 
context of dissimilar and scarce portions of training data. 

The MoE approach saw first light thirty years ago and has since been broadly adopted in dozens of 
applications ranging from predicting rank data (Gormley & Murphy, 2010) [4] and time series data 
(Fruhwirth-Schnatter et al., 2012) [5] to longitudinal data (Tang & Qu, 2015) [6] and non-normal 

data (Villani et al, 2009) [7]. Many different flavors of MoE have been tried, tested, and found 

useful. But the core principle behind each design is to subject the model parameters to a function 
incorporating concomitant covariates. 
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2 Related Work 

Perhaps the most significant application of MoE in recent years has been the contribution made 
by members of Google Brain (Shazeer et al., 2017) [8] who implemented a sparsely-gated 137 
billion-parameter MoE layer between LSTM layers to achieve state-of-the-art performance at a lower 
cost. This landmark paper was the first to implement conditional computation in deep networks 
successfully. 

Prior work focused on fleshing out various aspects of the MoE framework, such as hierarchical 
structure (Yao et al., 2009) [9], infinite number of experts (Rasmussen & Ghahramani, 2002) [10], 

and adding experts in a sequential manner (Aljundi et al., 2016) [11]. Eigen and colleagues (2013) 
[12] introduced the idea of using many MoE’s with separate gating networks, which proved a far 
more powerful approach than other variations since this approach allowed for the engagement of the 
neural network with multiple sub-problems which are often present in machine learning applications. 

While Eigen and colleagues stacked two groups of MoE’s, our approach will instead be to incorporate 
several "inner" MoE’s within "outer" MoE structures. This approach leverages both the insight of 
independently trained experts and specialization of experts which are guided to particularly salient 
aspects of our training data. 

3 Approach 
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Figure 1: Model structure illustration.



Our approach consists of the implementation of MoE on two separate levels: 

Outer-layer: Central to our approach is the realization that our prediction tasks consists of 
predictions from multiple separate out-of-domain (OOD) datasets. However, for each of these 
OOD datasets we have separate training and validation sets and, crucially, we know which data 
originated from which dataset. This allows us to train a separate, specialized model for data 
prediction from each OOD dataset. Thus, for the outer-layer of our model we employ the philosophy 
of the MoE method without relying on a gating network because we can manually assign data to 
experts based on its database of origin. By eliminating the gating component on the outermost 
level, we can obtain 100% assignment accuracy with 0 noise and reduce the number of total 
parameters that need to be trained. In summary, our outer-layer implementation is grounded in a re- 
peatable process for combining expert models in contexts where the data origin of OOD data is known. 

This approach has several benefits. First, it allows us to account for the scarcity of OOD data and 
train models without the confounding influence of other OOD datasets, resulting in minimal noise. 
Second, it allows us to train our inner-layer models in parallel on separate machines, resulting in 
dramatically increased training speed, a benefit of parallelization. Third, splitting our inner-layers 
across different machines means that each machine requires less memory since we do not have to 
store multiple large models in RAM. Finally, we gain additional flexibility since we can evaluate 
model performance of single experts separately, using different model architectures that yield optimal 
performance for their respective OOD dataset. 

Inner-layer: For our inner-layer experts we leverage the MoE method to optimize transfer 
learning from our in-domain (IND) data to predict OOD observations. First, we instantiated a 
pre-trained ’distilbert-base-uncased’ DistilIBERT as a question answering model. This model 
contains a randomly initialized question-answering head layer which requires further finetuning to 
translate DistiIBERT output tensors to predictions in a question-answering format. We removed 
this question-answering head layer and replaced it with a MoE layer consisting of 4 to 5 experts 
(depending on the OOD dataset) and a gating network. Each of our experts is a Multilayer 
Perceptron (MLP) with a hidden layer size of 64 and an output size of 2. However, we removed 
the final softmax activation function common in MLPs to make the experts useful as disparate 
question-answering heads. Rather than outputting probability distributions, these heads output 
two numeric values indicating the start- and stop-characters which "highlight" where the answer 
can be found found within the input text. Our gating network is an MLP with hidden size 64 and 
output size "number of expert" which drops the sequence length tensor dimension but contains 
a softmax activation layer. In the layer’s forward function, we weight each expert’s output by 
the probability distribution obtained from the gate, effectively deciding which of the experts we 
will listen to in making predictions from data considering the nature of the particular input observation. 

We implement a new loss function to 1) decouple each network’s weight updates from one another 
and 2) place each network’s performance in the context of the others: 

E= —log S~ pee3 lider ll” (1) 

Ostensibly, this means that each of our experts focuses on a different component / different 
components of the training data. This allows our model to predict observations from the small OOD 
dataset that have components similar to those that appear in the large IND data using experts with 
greater exposure to our large IND data. These observations will therefore lead to predictions with 
a higher degree of precision. Conversely, observations that have components which are different 
from those of our IND observations but similar to those of OOD observations can be predicted using 
experts that are more strongly trained on the scarce OOD training data. These predictions may be 
less precise due to lower data availability, but are at least not biased by dissimilar IND data training 
observations. 

Our sequential approach of implementing a DistiIBERT model with an internal MoE-layer has 
several distinct benefits over alternatives. First, our method adds a minimal number of additional 

layers to the model. Therefore, it is faster and more memory-efficient than a model with several



DistiIBERT experts linked within a MoE architecture would be. Second, since the MoE gate 
distributes back-propagation of gradients across experts, each expert is effectively only trained on a 
share of the available training data. Therefore, we need to keep each expert moderately complex so 
as to not over-fit on the OOD data. Our design’s MLP experts achieve this whereas a full DistiIBERT 
model expert would likely overfit the OOD data. Third, while backprop is divided amongst the 
question-answering heads, there is no other aspect of the DistiIBERT model that divides its learning. 
All backpropagated gradients flow through the entire DistiIBERT model. This allows our DistiI1BERT 
model to be finetuned on all data, not just the data the gate allocates to a specific expert. By 
engineering our model this way, we allow all experts to benefit from transfer learning from other 
experts via the upstream DistiIBERT model. 

In short, our approach uses MoE both as a design principle (in the outer-layer) and as a modelling 
method (in the inner-layer), yielding several performance and prediction benefits. Our model strongly 
outperforms our baseline on the validation set as a result. 

4 Experiments 

4.1 Data 

In-domain datasets: 

¢ SQuAD (SQ) - paragraphs from Wikipedia. Around 150k Questions and answers are 
crowd-sourced using Amazon Mechanical Turk. About half of the 150k questions cannot 
be answered using the provided paragraphs. The answers to the other questions are in the 
form of snippets of text taken directly from the source paragraph (Rajpurkar et al., 2016) [13]. 

¢ Natural Questions (NA) - data set derived from questions posed to Google in which 
Wikipedia pages from the top 5 results constitute the input. The output consists of a 
long-form, short-form, or ’null’ if no answer can be derived explicitly from the Wikipedia 
text (Kwiatkowski et al., 2019) [14]. 

¢ NewsQA (NE) - a machine comprehension data set of 100k human-generated Q&A pairs 

from 10k CNN news articles. Answers are spans of text from the corresponding input 
context (Trischler et al., 2016) [15]. 

Out-of-domain datasets: 

¢ RACE (RA) - 100k reading comprehension questions and answers from 28k passages 
asked to Chinese teenagers. Significant portion of reasoning is involved in answering these 
questions, resulting in massive model vs. human performance difference in recent models 
(43% vs. 95%, respectively) (Lai et al., 2017) [16]. 

¢ Relation Extraction (RE) - dataset of 30 million question answer pairs from Wikidata and 
WikiReading which were curated as part of a relationship extraction project (Levy et al., 
2017) [17]. 

¢ DuoRC (DU) - 186k Q&A pairs based on 7680 movie plots. Each question is drawn from 
either the IMBd or Wikipedia description of the movie with the corresponding answer drawn 
from the whichever description the question did not come from. This means that the answer 
is almost certainly not a simple extraction from the input text (Saha et al., 2018) [18]. 

For training our models, we do not use the complete datasets listed above but subsets thereof that 
are further split into train, validation, and test sets. See Appendix 1 for a table listing the number of 
"answers" in each of the single data-subsets.
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4.2 Evaluation method 

We use Exact Match (binary score that is 1 if system output and ground truth match exactly, and 0 
otherwise) and F1 scores (the harmonic mean of precision and recall of single words in the system 
output vs. ground truth) to evaluate our results. 

4.3 Experimental details, results, and results discussion 

First we trained our baseline, a single DistiLBERT model, to predict all OOD validation sets at once. 
In separate models we conducted additional finetuning to improve model performance. We used 
model 4, the model with the greatest overall predictive performance, as a baseline. Then we tested 
whether replacing QA heads with an MoE layer would yield performance improvements, which it did 
(see model 5), even without further finetuning. 
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Then, we optimized our inner-layer framework. To contextualize the performance of the single 
experts of the outer-layer, we create a second baseline consisting of the predictive performance of the 
baseline model applied to each OOD dataset separately. 
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Using four inner-layer expert QA heads (one per training dataset) for each inner-layer model improves 
on this new baseline for two out of three of our datasets. To maintain a standard of comparability 
with our baseline models, we preserved most configurations such as the learning rate (0.00003). 

Loss graphs show that the training loss decrease continuously. However, validation scores displayed 
periodic fluctuations. To account for this, we reduced the evaluation interval which dictates checkpoint 
save intervals. 

Lastly, we experimented with the number of experts of the inner-layer models and found that five 
experts (one expert per training dataset + 1) for the inner-layer models yields maximum performance 
in terms of EM for the RE and DU datasets. 

We ran further experiments to test whether additional performance improvements could be achieved. 
Particularly, we tested whether freezing the DistiIBERT model in our inner-layer experts by dis- 
connecting it from the torch graph and just training the QA head MoE layer alone would yield 
similar training results at a faster rate. While these models did indeed train much faster than the 
models that back-propagated losses throughout the entire DistiIBERT model (5h10m-6h53m vs. 
the 12h49-15h18m in models 6 to 11), their performance did not outperform the baseline. We also 
attempted to further finetune MoE inner-layer models, which generated no changes in predictive 
performance. 
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In composing our final model, we saved the validation checkpoints by highest F1 metric and then 
chose the best performing 4 vs 5 expert models by EM metric. Thus, we balance the impact of the two 
evaluation metrics on the composition of our final model. Our final model achieves a performance of 
EM 39.79 and F1 54.53 on the validation set and EM 41.88 and F1 59.60 on the test set. 

  

  

  

  

                        

Model Training Eval | EM Fl Overall | Overall | Overall | Overall 
number Train Val | MoKE layer | eval-every | data | (val) | (val) EM Fl EM F1 

data data (heads) param (val) (val) (test) (test) 
6 SQNA NERA | RA Yes (4) 500 RA | 27.34 | 43.65 
10 SQNANERE | RE Yes (4) 500 RE | 56.25 | 75.04 | 39.79 54.54 41.88 59.60 
11 SQ NA NE DU | DU Yes (4) 500 DU | 35.71 | 44.77 
  

    
Table 4: Inner-layer experts in final model. 

This performance on the test set is partly due to the differences in observation shares from the test 
vs validation set databases - with shares of 9.61% RA, 61.77% RE, and 28.62% DU in the test set 

and 33.51% RA, 33.51% RE, and 32.98% DU in the validation set. Had we observed the same 
performance in the validation set for each inner-layer model given the mixture of observations in 
the test set, we would have expected a performance of EM 47.59 and F1 63.36 on the test set. The 
fact that our model’s performance on the test set is well below this benchmark suggests that our 
inner-layer models overfit the validation data. In hindsight, we may have been able to increase our 
performance on the test set by increasing the "eval-every" parameter, by manually defining the step 
where we save the model checkpoint used for prediction (based on smoothed performance graphs 
reported in Appendix 2), or by defining a function that chooses the final model checkpoint based 
on smoothed performance values. However, we did not do this so as to not artificially optimize our 
results based on the test set results. 

5 Qualitative analysis 

Our results provide several interesting findings. The superior performance of our model compared to 
the baseline lends credence to our inner-outer-layer MoE model approach. However, we make the 
following observations that may be used for further improvements to the model in the future: 

First, our results indicate a confounding vs. transfer-learning robustness trade-off between predicting 
multiple OOD datasets. Training on several IND and OOD datasets at once creates an opportunity 
for observations from one OOD dataset to inform the predictions on other OOD datasets (learning 
being transferred across contexts). However, training parameters for prediction in one OOD dataset 
may also interfere with training parameters for predictions in another OOD dataset (confounding 
predictions in other contexts). Our results in Model 5 show that MoE is one way to partially resolve 
this tradeoff - by using a sequential layer of experts where separate parameters can be trained for 
different datasets while still allowing learning transfer to occur. However, Models 6 through 11 show 
that in our context, the noise reduction benefits from performing just a single OOD prediction task 
per outer-layer expert outweigh the costs of diminished transfer-learning from other OOD datasets. 
Accordingly, Model 5 outperforms the baseline for predictions on the validation set, but does not 
outperform our MoE inner-outer model.



Second, we note that some of our inner-layer models perform better on four input datasets with five 
experts. This is surprising since we would have expected each expert to (roughly) focus on one 
training dataset each. The performance increase of models with five experts (number of training 
datasets + 1) may indicate that models benefit from adding one expert who may represent a "general 
text baseline" while the remaining experts may represent components unique to the different datasets 
that go beyond this general baseline. In this case, the gate would then weigh expert outputs as a 
mixture of the "general text baseline" expert plus inputs from remaining experts whose predictions 
correspond to components of the observation that go beyond the "general text baseline". 

Third, we note that our validation performance fluctuates in our inner-layer models despite steadily 
declining training loss (see Appendix 2). We take these observations as an indication that (though our 
"eval-every" checkpoint storage parameter size is too small) our model is not generally over-fitting 
the training data. Instead, we believe that part of these fluctuations may be caused by our sequential 
use of DistiIBERT and MoE layers. Changes in the DistiIBERT model parameters resulting from 
backpropagated losses from one expert may result in changes to the output of the DistiIBERT layer. 
These changes may in turn change the ideal distribution of components which should be handled by 
a given expert. Thus, certain changes in the underlying DistilBERT model may periodically make 
larger re-adjustments in the expert layer necessary. As a result, in a model such as ours, validation 
loss may change in a wave-like pattern. This may have an impact on our choice of the ideal number of 
experts. For example, in models with one expert whose parameters map general text characteristics, 
DistilIBERT model changes may require a reshuffling of components among experts less frequently, 
potentially leading to smoother curves. Further research would be needed to confirm this. This 
finding may also indicate that the overall model and performance may benefit from pre-training via 
Model Agnostic Meta Learning (Finn et al., 2017) [19] methods such as Reptile (Dou et al., 2019) 

[20] which would instantiate parameters in a way that achieves faster learning performance, thereby 
potentially smoothing fluctuations. 

Overall the performance of our model suggests that it works well in our context. A strong limitation 
is that the outer-layer of our model architecture requires training data with an identifiable origin for 
any OOD data that we would like to predict. 

6 Conclusion 

This project demonstrates an inner-outer application of MoE which substantially increases the 
question-answering capabilities of a DistiIBERT language model from baseline performance. We 
applied the general concomitant covariates principle of the MoE model both to individual heads 
within models (inner-layer) and as a design principle to structure multiple larger models (outer-layer), 
thereby increasing performance on a task with limited OOD data. Our experimentation has revealed 
an optimal arrangement of both our inner- and outer-layer experts. The decision to take over the task 
assignment of the gating feature in our outer-layer proved to be instrumental in an environment of 
OOD data scarcity where data origin is known. Overall, we believe that treating various elements of 
models as "experts" to be a potentially fruitful approach to future explorations into NLP applications, 
specifically for QA. Future designs may decrease fluctuations in prediction performance by pre- 
initializing weights for inner experts using Model Agnostic Meta Learning methods that increase 
learning speed or by reducing validation steps / adjusting the rules by which model checkpoints are 
saved to reduce overfitting.
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A Appendix 

Appendix 1: Number of answer-samples per dataset, split by training, validation, and test sets. 

answer: 
Dataset ID vs OOD | Abbreviation 

 



Appendix 2: Training Loss, EM, and F1 graphs for 4 vs 5 expert versions of final models by dataset. 
  

  

  

        

  

    
  

  

    

  

  

  

          

RACE Relation Extraction DuoRC 

1.6 + 1.6 + 

1.24 1.2 4 

Training} og. 08 
loss 

0.4 = 44 0.4— 

0 0 0 

OQ 5k 10k 15k 20k 25k 30k 35k 40k 45k QO 5k 10k 15k 20k 25k 30k 35k 40k 45k OQ 5k 10k 15k 20k 25k 30k 35k 40k 45k 

25 4 55 > 
32 + 

20 | 

454 | 
15 + 28 | 

EM 10 - 35 + 24 | 
5 -+ 

0 25 + 20 + 

QO 5k 10k 15k 20k 25k 30k 35k 40k 45k QO 5k 10k 15k 20k 25k 30k 35k 40k 45k QO 5k 10k 15k 20k 25k 30k 35k 40k 45k 

38 | 

344 

30 | 
F1 | 

26 + 

22.44 

O 5k 10k 15k 20k 25k 30k 35k 40k 45k 0 5k 10k 15k 20k 25k 30k 35k 40k 45k 0 5k 10k 15k 20k 25k 30k 35k 40k 45k 

leyend 4 inner-layer experts 4 inner-layer experts 4 inner-layer experts 

5 inner- layer experts 5 inner- layer experts 5 inner- layer experts 
  

10 

 


