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Abstract 

While much progress has been made in recent years on modeling and solving 
natural language understanding problems, these models still struggle to understand 
certain aspects of human language. One of the most difficult areas for current 
models is generalization. While humans can easily generalize beyond a training 
data set, computers often have difficulty developing non-superficial correlations 
beyond the provided data. In this project, we tackled this concept of computer 
generalization through the development of a robust question answering (QA) 
system that is able to generalize answers to questions from out-of-domain (OOD) 
input. Here, we applied a modified Mixture of Experts (MoE) model, where gating 
and expert training are handled seperately, over the 6 datasets in order to create 
robustness through specialization of the various expert models. We also applied 
few-sample fine-tuning to large and small components of the model to try to better 
account and generalize for cases where there is little data. Ultimately, from the 
results of the model, we observed that this modified MoE architecture has several 

limitations through its expert and training method and was unable to improve 
significantly on the baseline of the model. In addition, we also observed that 
the few-sample fine-tuning techniques greatly improved the performance of the 
small, out-of-domain expert but barely improved, and sometimes harmed, models 
with a larger dataset. As a whole, this paper illustrates the potential limitations of 
applying a simple MoE model and few-sample fine-tuning to the complex task of 
generalization and may suggest the implementation of more advanced structures 
and techniques are necessary for strong performance. 

1 Key Information to include 

¢ Staff Mentor: Yuyan Wang 

2 Introduction 

In recent years, we have seen a gradual improvement in ability for computers to model and solve 
natural language understanding problems. This can be seen through the implementation of various 
state-of-the-art architectures such as BERT [1]. Yet, although certainly much progress had been made 
in this field, there is still much work to be done for computers to be able to fully understand human 
language [2] [3] [4] [5]. One current area that many models still struggle with is applying learned 
characteristics to out-of-domain data through generalization. While humans are typically able to 
generalize learned information beyond a training data set, computers often have a much more difficult 
time developing important correlations beyond data that it has been taught. There is a strong need for 
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computer models to identify non-superficial relations as they learn in order to achieve a more robust 
performance as a whole. In this paper, we explore a method for improving computer generalization 
through the development of a robust QA system through various model architectures and techniques. 

3 Related Work 

3.1 Mixtures of Local Experts 

Mixture of Experts (MoE) is a model that utilizes several specialized experts in order decompose and 
improve performance on specific sub tasks within a model [6]. This model also utilizes a gating 
function in order to assign experts to their corresponding subtasks. The resulting modified measure 
of error in the MoE model allows the individual experts to remain mostly localized in the error 
calculation, better optimizing for their own subtasks. 

Rather than weighting the experts and comparing them collectively to the desired output, 
each of the experts seeks to optimize of the desired output independently. Although there may still be 
some impact between experts, this effect is relatively small compared to prior implementations of 
similar models, as the sign of the error and update for each expert will still be accurate and localized. 
Furthermore, this will force expert that performs worse than the weighted average of all the experts to 
receive less priority from the gating network, while an expert that performs better than the weighted 
average of all the experts will receive more priority. By the end of training, this will ensure that each 
expert is specialized in their respective field. 

This model has already been successfully applied this to a 4-class vowel discrimination 
problem. The model and results discussed in [6] suggest that applying MoE as a means of 
decomposing a problem may be applicable in a larger context. We hope to take this MoE framework 
and apply it to our problem of developing a robust QA model. Much like how experts were able to be 
connected to several subtasks in the paper, we also hoped to divide the QA problem into subtasks 
based on the datasets used for training the model. This way, out-of-domain data would be more 
accurately identified and modeled through an out-of-domain specialized expert. 

3.2 Few-sample BERT Fine-tuning 

Several approaches are described in [7] for improving the performance of pre-trained language 
models where there is a very small language model with a small amount of training data. One of the 
techniques discussed in paper suggests including the debiasing step in ADAM in order to achieve 
better performance overall. Another technique suggests re-initializing the top layers of a pretrained 
model, since these layers typically encode specialized information specific to the pretraining dataset. 
This way, the pretraining can perform better on the small dataset. Another method discussed suggests 
fine-tuning the model for longer periods of time in order to improve training stability and model 
performance. Several other existing methods have also shown promise, including utilizing pre- 
trained weight decay, mixout (replacing a parameter in the model with the corresponding pre-trained 
parameter with probability p at each iteration), and layer-wise learning rate decay. After applying 
these techniques to several problems, the paper deduces that utilizing these techniques can greatly 
improve performance when using a few-sample data set. In our paper, we hope to apply some of these 
techniques to a baseline DistilBERT [8] model and our individual MoE experts. These few-sample 
fine-tuning methods may allow us to significantly improve model performance even with limited 
data. 

4 Approach 

4.1 Mixture of Static Experts 

Our primary method of approaching this problem was to employ a modified Mixture of Experts 
model to the datasets provided in order to improve the model’s performance for robust question 
answering [6]. In the MoE model, our goal is to train n experts on data from the model, with each 
expert being in charge of some specific sub-task of the problem. In the case of RobustQA, we looked



to decompose the model’s datasets into the n sub-tasks for each expert to train on. In this case, with 3 
larger in-domain datasets and 1 small out-of-domain (OOD) dataset, we would have 4 experts, | or 
each of the in-domain datasets and 1 for the entire OOD dataset (since the individual OOD datasets 

are very small). Unlike in traditional MoE models where experts are trained alongside the gating 
network, we trained and fine-tuned our experts independently prior to the training of the gating 
network. In other words, we utilize a Mixture of Experts model with static experts. For each of our 
4 experts, we fine-tuned a pretrained DistiIBERT model on their respective dataset(s) so they can 
become specialized in their task. Through this, we control which specific examples update which 
specific experts and combine the results of the individual experts with a gating function, potentially 
achieving a greater robustness in our model. 

We fine-tuned each of the experts in this modified format, separately from the gating por- 
tion of the MoE model, as to avoid memory errors during training while also ensuring a specific 
assignment of each expert and breakdown of tasks. After completing the fine-tuned model, we looked 
to train a gating function through a simple multilayer perceptron (MLP) in order to enable the MoE 
model to select which expert to use for which training example. For our MLP, we initially designed it 
as a 3 layer softmax gating function consisting of an input layer, an hidden layer, and an output layer. 
Each layer was calculated using f(W;X 2 + b;), where W;, b;, and X; are the weights and bias and 

inputs, respectively, for layer 7, and f is a ReLU activation function for non-linearity, followed by a 
softmax applied to the final layer to obtain the output as a probability distribution. We also tested 
variations of this model, including the removal of the bias term, (with layer calculation formula 
becoming f(W;X7’)) and additional hidden layers. For each training example x, we calculated the 
output as 

n 

y= > Hide 
i=l 

where 4; is the output of x evaluated on expert 2’s fine-tuned DistiIBERT model and g; is the output 
of the gating function applied to x. We evaluated loss L for each example x as 

L = —log )) gic? 

where C;; is the cross entropy loss calculated from x evaluated on expert 7’s fine-tuned DistilIBERT 
model. One important note is each expert only updates its model parameters in the fine-tuning step 
on its specific datasets and not in the MoE model computations. This is so the experts can remain 
specialized and the out-of-domain experts won’t overfit to the in-domain datasets, since there is a lot 
more in-domain data. 
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Figure 1: Illustration of DistiIBERT MoE Architecture [9] 

 



4.2 Baseline and Few-sample Fine-tuning 

For our baseline, we use a DistiIBERT model trained on the entire in-domain training set. DistiIBERT, 

which is a smaller, faster version of the larger BERT model while still retaining much of the language 
understanding capability [8], provides a solid foundation from which we can evaluate potential model 
improvements. 

After applying the MoE model to our dataset, we implemented several few-sample fine- 
tuning optimizations on both the original DistilBert and on the lone OOD expert. The few-sample 
techniques we experimented with include longer fine-tuning, pre-trained layer re-initialization, and 
employing weight decay. Through these methods, we can examine the impact of such few-sample 
fine-tuning techniques on our baseline DistiIBERT model as a whole as well as its impact (as 
intended in [7]) on performance after training on the very limited OOD dataset. 

5 Experiments 

5.1 Data 

The three in-domain reading comprehension datasets that we will use to train our QA system are 
SQuAD, NewsQA, and Natural Questions. Our QA system will be tested on three out-of-domain 
datasets: DuoRC, RACE, and RelationExtraction. From each of the three in-domain datasets, wedraw 

50000 training examples. We also draw a small set of 127 training examples from each theout-of- 
domain datasets. The resulting total training set is of size 150381. In addition to the training set, we 
also have a dev set consisting of 10507 examples fromSQuAD, 4212 examples from NewsQA, 12836 
examples from Natural Questions, 126 examplesfrom DuoRC, and 128 examples from each of RACE 
and RelationExtraction. The held-out test setconsists of 4360 examples from the three out-of-domain 
datasets. Each example from the datasets is a triple consisting of a context, a question, and an answer. 

5.2 Evaluation method 

Our QA system will be evaluated using a the Exact Match (EM) score and the F1 score. These metrics 

provide a clear comparison between our baseline DistiIBERT model, the MoE model, and models 
refined with few-sample fine-tuning in their ability to select accurate answers from text. Because 
the focus of our experiment is to improve robustness and performance on OOD datasets, we will 
primarily use the scores of the models on the OOD validation set for consistency in evaluation. 

5.3 Experimental details 

Each of our models was trained using an Adam optimizer with 6; = 0.9, 62 = 0.999, anda 

learning rate of 3 x 10~°. Specifically for our MoE models, the input layer for our gating network 
has a size of 384, based on input sequence length of the data, and our output layer has a size of 
4, based on the number of experts. The hidden layer is of size 260, was deduced from taking 
3 x input_size + output_size [10]. The majority of training was performed using a batch size of 
16, but a batch size of 14 was used when training our MoE experts in order to avoid memory errors. 

For our MoE models, we tested different versions of our gating network, which involved 
varying the number of hidden layers and removing bias terms. Then, to explore few-sample 
fine-tuning methods, we varied the training epochs (between 3 and 4 when training on the large 
in-domain dataset and between 3 and 20 when training on the small OOD dataset), and examined the 
individual/combined effects of layer re-initialization and weight decay. Additionally, by focusing 
few-sample fine-tuning techniques specifically on the OOD expert, we can get a better idea of the 
effectiveness of such methods in true few-sample contexts compared to their use in a broader training 
process on larger datasets. 

5.4 Results 

Both MoE models performed worse than expected, with scores lower than the basline DistilBERT 
model (see Table 1). Interestingly, the performance of the two MoE models exactly matched the 
performance of two individual experts. One of our MoE models matched the results of our SQUAD



expert, and the other MoE model matched the results of our OOD expert. This (as confirmed in our 
analysis) was a result of the MoE system latching onto a single expert and using only that expert for 
every example input. 

  

  

  

  

MoE Scores (on OOD dev set) 

Expert F1 Score EM Score 

DistilIBERT (baseline) 48.43 33.25 

MoE 43.01 26.18 

MoE (with added bias term in gating function) 27.08 18.32 

SQuAD Expert 43.01 26.18 

Natural Questions Expert 36.79 20.42 

NewsQA Expert 39.42 25.39 

OOD Expert (20 Epochs) 27.08 18.32         
  

Table 1: Baseline score on OOD dev compared to MoE score and individual expert scores 

When implementing few-sample fine-tuning techniques when training on the large in-domain datasets, 
we were able to observe minor performance improvements (see Table 2). Through these fine-tuning 
adjustments, we obtained our best performing model (DistiIBERT with 4 epochs of fine-tuning 
on in-domain data and additional tuning on OOD data), which achieved an F1 score of 58.101 
and and EM score of 39.151 on the Robust QA test leaderboard. Overall, however, the fine- 
tuning techniques described in [7] provided minimal improvement over the baseline DistilIBERT 
model. 
  

  

  

    

Model Scores (on OOD dev set) 

Model Fl Score EM Score 

DistiIBERT (baseline) 48.43 33.25 

DistiIBERT (with additional tuning on OOD data) 48.95 33.51 

DistilBERT (longer fine-tuning, 4 epochs) 49.97 33.77 

DistilBERT (longer fine-tuning and OOD data) 49.89 34.29 

DistiIBERT (1 re-initialized layer) 46.87 31.41 

DistiIBERT (2 re-initialized layers) 46.46 31.15 

DistilBERT (with weight decay) 47.00 31.68       
  

Table 2: Baseline compared with fine-tuning techniques 

We observe the most interesting and significant results (as we expected) when applying the few- 
sample fine-tuning techniques on the OOD Expert, tuning only on the small OOD training set. Simply 
by training longer, we achieve a nearly 6% performance increase. Pretrained layer re-initialization 
and weight decay provided further performance improvements. Both a | layer re-initialization and a 
1 layer re-initialization combined with weight decay yield a performance increase of nearly 9% over 
the baseline Expert trained for 3 epochs, and a 3% increase over the model trained for 20 epochs. 
Most notably, while training for longer resulted in better performance over all 3 individual OOD 
datasets, layer re-initialization caused a sharp increase in performance specifically for the DuoRC 
dataset. 

  

  

  

    

Few-sample Fine-tuning F1 Results for OOD Expert (on OOD dev set) 

Model DuoRC | RACE | RE Overall 

DistiIBERT (3 epochs) 4.35 5.47 54.44 | 21.51 

DistiLBERT (20 epochs) 7.52 10.44 62.98 | 27.08 

DistilBERT (1 layer re-init, 20 epochs) 16.18 11.16 62.62 30.06 

DistilBERT (2 layers re-init, 20 epochs) 13.74 11.29 61.24 28.73 

DistilBERT (with weight decay, 20 epochs) 13.08 10.88 61.83 28.68 

DistiIBERT (with 1 layer reinit + weight decay) || 16.40 11.16 63.14 | 30.31           
  

Table 3: Few-sample fine-tuning on limited OOD data



6 Analysis 

6.1 Mixture of Experts Analysis 

Even after tuning our hyper-parameters for the MoE model, including adjusting hidden size and 
number of hidden layers, the baseline model continued to outperform our MoE model. This is made 
apparent through the higher Fl and EM score of the baseline model compared to both the MoE and 
the experts. One key observation, as noted earlier, is that both MoE models had an identical F1 and El 
score to two of the experts. More specifically, the MoE model with a weight and bias activation had 
the same performance as the out-of-domain expert, and the MoE model with just a weight activation 
had the same performance as the SQuAD expert. Looking into the probability tensor in the model 
which encodes the selection of expert(s) for each example in a batch, we can see why this is the case. 
For the MoE model with just a weight activation, this tensor becomes: 

1.00 0.00 0.00 0.00 

1.00 0.00 0.00 0.00 

1.00 0.00 0.00 0.00 

Here, the first column represents the first expert, which is the SQUAD expert, and each row represents 
one example in a batch. A similar observation was made for the MoE model with a weight and 
bias activation for the out-of-domain expert. Ultimately, rather than selecting a combination of 
experts for a specific task or varying the probability of choosing an expert to yield better overall 
performance results, the MLP instead chooses to only identify and use one expert for the entire 
problem. In the case of the MoE with only weights, it likely chose the SQUAD expert because it 
was the best-performing expert. One possible reason why the MoE selecting the out-of-domain 
expert with the bias parameter could be because the bias parameters were encoding heavy favoritism 
towards out-of-domain expert because it may perform very well on training, but not extrapolate well 
to the validation set due to over fitting from the limited training size of the out-of-domain expert. 

Either way, this indicates that our MoE model can only perform as well as its best-performing expert, 
and since each of our experts performed under the baseline, it makes sense that the MoE model as a 
whole also would do the same. As a result, our MoE model is limited in two ways: firstly, if the 
previously trained experts are poor-performing (especially for the Out-of-Domain expert), our model 
will perform poorly. However, in addition, the gating function of our modified MLP also poses a 
weakness since it can only select one expert. One likely reason why our MoE model observes this 
secondary weakness is because of the modified nature of the expert model, where the experts are all 
independently fine-tuned prior to the training of the gating function, and remain static while the 
gating network is trained. While this does accomplish the task of making sure that only certain 
subsets of data update certain experts, this also means that we are evaluating the model based on the 
performance of the each of the experts alone. Ideally, the way the models’ performance should be 
evaluated is based on both the decision of the gating function in addition to the performance of the 
model, with updates to both the gating network and localized experts during training. This distinction 
explains why our model only trains on one expert models’ performance and why the performance 
may have fallen short in that regard. However, at the same time, [6] explains that one weakness of 
their model was that only 3 of the 8 experts were active in the final model. This may indicate that this 
may be a shortcoming of a primitive mixture of experts approach as a whole, and more work needs to 
be done in improving the MoE design. 

6.2 Few-sample Fine-tuning Analysis 

Seeing as our MoE model was largely dependent on its best-performing expert, we decided to 
conduct a small ablation study to analyze the effect of few-sample fine tuning on both a DistilBERT 
trained on the entire dataset and the out-of-domain expert. For the DistilBERT trained on the whole 
model, we observed that only two methods improved the performance of the model: increased 
time fine-tuning and additional tuning on OOD data, together increasing the Fl performance of the 
baseline model by 1.54%. On the other hand, each of the other few-sample fine-tuning techniques 
slighty hurt the model’s performance. The likely explanation for this is due to the the relatively 
large size of the data available. While these techniques were suggested for few-sample performance



improvements, in the case of a data set with lots of data, using few-sampling techniques alone won’t 
be able to improve performance on the out-of-domain components of the data which are few in 
number. Looking at some selected examples from the model, we can deduce specific areas where the 
few-sample fine-tuning didn’t have much effect. 

We noticed a potential correlation between context length and accuracy of the prediction. 
A widespread trend we observed among the output data was that questions with longer corresponding 
contexts often produced an incorrect result, while questions with shorter corresponding contexts 
often yield correct results. 

  

Context: As elderly people go about their day in Manhattan, Harry walks along a sidewalk with his 
tabby cat Tonto on a leash, quoting Shakespeare’s "King Lear" as he goes [...] Harry meets his 
old friend Jacob on a bench, and tells him that his apartment building is being torn down to build a 
parking lot [...] Harry soon learns that he can’t go through security with Tonto, so he takes a cab 
to get a bus. Along the route, Harry asks the bus driver to stop so that Tonto can relieve himself, 
whereupon the cat runs away across a cemetery [... ] 
Context Length: 3757 
Question: Who is Harry’s travelling companion? 
Correct Answer: Tonto 
Model Answer: Jacob on a bench, and tells him that his apartment building is being torn down to 
build a parking lot. Jacob 
  

In the above example, we can see that the phrase "travelling companion" is never explicity mentioned 
in the context, and answering the question correctly would involve deducing the meaning of those 
question words and understanding the parts of the context that involve traveling and companionship. 
This can mean that our model had difficulty extracting long-term dependencies as well as identifying 
a correct prediction in a large context body. Contrast this with a shorter, more simple example: 
  

Context: Stephen Silvagni (born 31 May 1967) is a former Australian rules footballer for the 
Carlton Football Club. 
Context Length: 106 
Question: What was the name of Stephen Silvagni’s team? 
Correct Answer: Carlton Football Club 
Model Answer: Carlton Football Club 
  

Upon closer inspection, we might draw the conclusion that length alone is not the root cause behind 
incorrect predictions. As a whole, we find that longer contexts involve more challenging relationships 
between words, longer dependencies, and overall more vague and inspecific language (e.g. the use 
of synonyms, pronouns, lack of shared words between question and context). While few-sample 
fine-tuning often yields improved early performance from a pretrained model, in this case, we can 
see that this improved early performance may have little effect in improving long-term dependency 
extraction on large models. As a result, few-sampled fine-tuning has limited effects on improving a 
large DistiIBERT model. 

In addition to the large DistiIBERT model, we also experimented with few-sample fine- 
tuning on our Out-of-Domain expert. We did this because the OOD expert was the worst-performing 
expert due to its limited datasize and could benefit greatly from few-sample fine-tuning. From our 
results, we see that implementing several of these fine-tuning techniques on this expert lead to 
significant improvements in the model’s performance, gaining 8.8% from its original F1 score. 

One interesting aspect about the data is that this expert performed extremely well on the 
Relation Extraction dataset for all variations, having at least a 54% F1 score in all cases. Investigating 
this dataset, one probable reason for this becase this dataset contains many short contexts and simple 
reading comprehension questions [11]. In contrast, the initial Fl performnce on the DuoRC dataset 
was very low, at 4.35%. After applying the few-sample improvements through re-initialization 
of top layers, weight decay, and longer fine-tuning time, the DuoRC dataset was able to see the



largest increase in performance, increasing by 12.35%. The DuoRC dataset is known to have more 
complicated dependencies and and challenging answers considering that the contexts from which and 
answer is to be predicted and the contexts from which the true answer is derived share little lexical 
overlap [12]. 

As a result, it makes sense that the re-initializing of top layers helps, since one key benefit 
of this technique is the fact that the model can learn more complex dependencies faster. This is 
built off the intuition that the top layer of the pretrained data encodes specific information for the 
pretrained data rather than our training data and is better off reinitialized. While this did lead to a 
very slight decrease in performance on the Relation Extraction dataset, combining this re-initializing 
feature with weight decay lead to the largest overall improvement. It is likely that re-initializing 2 
layers harmed performance compared to | layer re-initialization because of how the 2nd layer may 
have encoded valuable information from pre-training that is less task-specific. That being said, these 
techniques such as layer re-initialization certainly yield the effects of improved performance, lower 
training loss, and quicker convergence that [7] describes (see Figures 2 and 3 in Appendix). 

Overall, these results illustrate that the few-sample fine-tuning performs well on the out-of- 
domain expert due to its small data size. Between both the pretrained models that few-sample tuning 
was performed on, it can be inferred that few-sample tuning works best on small-sample data sets, 
but could be detrimental to large-sample data sets. In addition, few-sample tuning has difficulty 
separating small OOD inputs from large in-domain inputs when trained together, as shown by the 
decrease in F1 performance. 

7 Conclusions and Future Work 

In this project, we implemented, evaluated, and analyzed a MoE model with few-sample fine-tuning 
in order to improve QA robustness on out-of-domain questions and contexts. This was our first 
attempt at implementing a complex deep learning model from scratch, and we both gained a lot 
of valuable experience in debugging, fine-tuning, and redesigning the implementation. First, we 
applied a modified MoE model using 4 fine-tuned DistiIBERT experts and a MLP gating function. 
Then, we applied few-sample fine-tuning to both the whole domain DistilBERT model and to the 
out-of-domain expert in an effort to increase the robustness of these models. With the fine-tuning, we 
tested several methods including longer training, re-initializing of top-layers, and weight decay. 

From the results, we could see that the static MoE model did not perform very well on the 
out-of-domain data, only being able to perform as well as its best expert while being unable to 
surpass the baseline model in performance. This is likely due to the limitations imposed by the 
expert performance and static nature of the experts, although there are also larger considerations 
of poor performance when applying a simple MoE architecture for complicated problems such 
as generalization. We also observed that only a few techniques for few-sample fine-tuning had 
positive effects on the performance of training sets with lots of in-domain data and relatively little 
out-of-domain data. On the other hand, many of these techniques led to positive results for improving 
performance of the out-of-domain expert, which had little training data. 

In the future, there are many things we hope to do in order to continue improving our im- 
plementation. One area of improvement is with the MoE model itself. We had used a static, modified 
MoE approach in this paper due to memory issues on the GPUs, so one thing we could research 
could be using the memory more efficiently. This way, we could implement a MoE model that would 
be able to train its experts at the same time as the MLP gating function. Another thing we could look 
to do is to apply a different, more advanced MoE architecture to the model, such as a Hierarchical 
MoE architecture. This experiments with adding multiple gating functions in the selection process, 
which could lead to more experts being selected, as opposed to a single expert being chosen for every 
example. We could also improve on the few-sample fine-tuning by investigating the effect other 
techniques that we did not have time to test and implement, such as mixout and layer-wise learning 
rate decay.
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8 Appendix 

  

Figure 2: Training loss of OOD Expert. Notice that the green line (fine-tuning with 1 layer 
re-initialization) is consistently lower than the orange line (baseline). 
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Figure 3: EM (left) and F1 (right) scores of OOD Expert on OOD dev set. Notice that the 
green line (fine-tuning with 1 layer re-initialization) rises quicker and converges above the 

orange line (baseline). 
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