
Examining the Effectiveness of a Mixture of Experts
Model with Static Fine-tuned Experts on QA

Robustness

Stanford CS224N Default Project (Robust QA)

Matthew Kolodner Jack Xiao

Department of Computer Science Department of Computer Science

Stanford University Stanford University

mkolod@stanford.edu jackxiao@stanford.edu

Abstract

While much progress has been made in recent years on modeling and solving
natural language understanding problems, these models still struggle to understand
certain aspects of human language. One of the most difficult areas for current
models is generalization. While humans can easily generalize beyond a training
data set, computers often have difficulty developing non-superficial correlations
beyond the provided data. In this project, we tackled this concept of computer
generalization through the development of a robust question answering (QA)
system that is able to generalize answers to questions from out-of-domain (OOD)
input. Here, we applied a modified Mixture of Experts (MoE) model, where gating
and expert training are handled seperately, over the 6 datasets in order to create
robustness through specialization of the various expert models. We also applied
few-sample fine-tuning to large and small components of the model to try to better
account and generalize for cases where there is little data. Ultimately, from the
results of the model, we observed that this modified MoE architecture has several

limitations through its expert and training method and was unable to improve
significantly on the baseline of the model. In addition, we also observed that
the few-sample fine-tuning techniques greatly improved the performance of the
small, out-of-domain expert but barely improved, and sometimes harmed, models
with a larger dataset. As a whole, this paper illustrates the potential limitations of
applying a simple MoE model and few-sample fine-tuning to the complex task of
generalization and may suggest the implementation of more advanced structures
and techniques are necessary for strong performance.

1 Key Information to include

¢ Staff Mentor: Yuyan Wang

2 Introduction

In recent years, we have seen a gradual improvement in ability for computers to model and solve
natural language understanding problems. This can be seen through the implementation of various
state-of-the-art architectures such as BERT [1]. Yet, although certainly much progress had been made
in this field, there is still much work to be done for computers to be able to fully understand human
language [2] [3] [4] [5]. One current area that many models still struggle with is applying learned
characteristics to out-of-domain data through generalization. While humans are typically able to
generalize learned information beyond a training data set, computers often have a much more difficult
time developing important correlations beyond data that it has been taught. There is a strong need for

Stanford CS224N Natural Language Processing with Deep Learning

computer models to identify non-superficial relations as they learn in order to achieve a more robust
performance as a whole. In this paper, we explore a method for improving computer generalization
through the development of a robust QA system through various model architectures and techniques.

3 Related Work

3.1 Mixtures of Local Experts

Mixture of Experts (MoE) is a model that utilizes several specialized experts in order decompose and
improve performance on specific sub tasks within a model [6]. This model also utilizes a gating
function in order to assign experts to their corresponding subtasks. The resulting modified measure
of error in the MoE model allows the individual experts to remain mostly localized in the error
calculation, better optimizing for their own subtasks.

Rather than weighting the experts and comparing them collectively to the desired output,
each of the experts seeks to optimize of the desired output independently. Although there may still be
some impact between experts, this effect is relatively small compared to prior implementations of
similar models, as the sign of the error and update for each expert will still be accurate and localized.
Furthermore, this will force expert that performs worse than the weighted average of all the experts to
receive less priority from the gating network, while an expert that performs better than the weighted
average of all the experts will receive more priority. By the end of training, this will ensure that each
expert is specialized in their respective field.

This model has already been successfully applied this to a 4-class vowel discrimination
problem. The model and results discussed in [6] suggest that applying MoE as a means of
decomposing a problem may be applicable in a larger context. We hope to take this MoE framework
and apply it to our problem of developing a robust QA model. Much like how experts were able to be
connected to several subtasks in the paper, we also hoped to divide the QA problem into subtasks
based on the datasets used for training the model. This way, out-of-domain data would be more
accurately identified and modeled through an out-of-domain specialized expert.

3.2 Few-sample BERT Fine-tuning

Several approaches are described in [7] for improving the performance of pre-trained language
models where there is a very small language model with a small amount of training data. One of the
techniques discussed in paper suggests including the debiasing step in ADAM in order to achieve
better performance overall. Another technique suggests re-initializing the top layers of a pretrained
model, since these layers typically encode specialized information specific to the pretraining dataset.
This way, the pretraining can perform better on the small dataset. Another method discussed suggests
fine-tuning the model for longer periods of time in order to improve training stability and model
performance. Several other existing methods have also shown promise, including utilizing pre-
trained weight decay, mixout (replacing a parameter in the model with the corresponding pre-trained
parameter with probability p at each iteration), and layer-wise learning rate decay. After applying
these techniques to several problems, the paper deduces that utilizing these techniques can greatly
improve performance when using a few-sample data set. In our paper, we hope to apply some of these
techniques to a baseline DistilBERT [8] model and our individual MoE experts. These few-sample
fine-tuning methods may allow us to significantly improve model performance even with limited
data.

4 Approach

4.1 Mixture of Static Experts

Our primary method of approaching this problem was to employ a modified Mixture of Experts
model to the datasets provided in order to improve the model’s performance for robust question
answering [6]. In the MoE model, our goal is to train n experts on data from the model, with each
expert being in charge of some specific sub-task of the problem. In the case of RobustQA, we looked

to decompose the model’s datasets into the n sub-tasks for each expert to train on. In this case, with 3
larger in-domain datasets and 1 small out-of-domain (OOD) dataset, we would have 4 experts, | or
each of the in-domain datasets and 1 for the entire OOD dataset (since the individual OOD datasets

are very small). Unlike in traditional MoE models where experts are trained alongside the gating
network, we trained and fine-tuned our experts independently prior to the training of the gating
network. In other words, we utilize a Mixture of Experts model with static experts. For each of our
4 experts, we fine-tuned a pretrained DistiIBERT model on their respective dataset(s) so they can
become specialized in their task. Through this, we control which specific examples update which
specific experts and combine the results of the individual experts with a gating function, potentially
achieving a greater robustness in our model.

We fine-tuned each of the experts in this modified format, separately from the gating por-
tion of the MoE model, as to avoid memory errors during training while also ensuring a specific
assignment of each expert and breakdown of tasks. After completing the fine-tuned model, we looked
to train a gating function through a simple multilayer perceptron (MLP) in order to enable the MoE
model to select which expert to use for which training example. For our MLP, we initially designed it
as a 3 layer softmax gating function consisting of an input layer, an hidden layer, and an output layer.
Each layer was calculated using f(W;X 2 + b;), where W;, b;, and X; are the weights and bias and

inputs, respectively, for layer 7, and f is a ReLU activation function for non-linearity, followed by a
softmax applied to the final layer to obtain the output as a probability distribution. We also tested
variations of this model, including the removal of the bias term, (with layer calculation formula
becoming f(W;X7’)) and additional hidden layers. For each training example x, we calculated the
output as

n

y= > Hide
i=l

where 4; is the output of x evaluated on expert 2’s fine-tuned DistiIBERT model and g; is the output
of the gating function applied to x. We evaluated loss L for each example x as

L = —log)) gic?

where C;; is the cross entropy loss calculated from x evaluated on expert 7’s fine-tuned DistilIBERT
model. One important note is each expert only updates its model parameters in the fine-tuning step
on its specific datasets and not in the MoE model computations. This is so the experts can remain
specialized and the out-of-domain experts won’t overfit to the in-domain datasets, since there is a lot
more in-domain data.

wl 2 i

DistiIBERT_1

DistiIBERT_2 DistiIBERT_n Gating Network

<< e

Input Data

Figure 1: Illustration of DistiIBERT MoE Architecture [9]

4.2 Baseline and Few-sample Fine-tuning

For our baseline, we use a DistiIBERT model trained on the entire in-domain training set. DistiIBERT,

which is a smaller, faster version of the larger BERT model while still retaining much of the language
understanding capability [8], provides a solid foundation from which we can evaluate potential model
improvements.

After applying the MoE model to our dataset, we implemented several few-sample fine-
tuning optimizations on both the original DistilBert and on the lone OOD expert. The few-sample
techniques we experimented with include longer fine-tuning, pre-trained layer re-initialization, and
employing weight decay. Through these methods, we can examine the impact of such few-sample
fine-tuning techniques on our baseline DistiIBERT model as a whole as well as its impact (as
intended in [7]) on performance after training on the very limited OOD dataset.

5 Experiments

5.1 Data

The three in-domain reading comprehension datasets that we will use to train our QA system are
SQuAD, NewsQA, and Natural Questions. Our QA system will be tested on three out-of-domain
datasets: DuoRC, RACE, and RelationExtraction. From each of the three in-domain datasets, wedraw

50000 training examples. We also draw a small set of 127 training examples from each theout-of-
domain datasets. The resulting total training set is of size 150381. In addition to the training set, we
also have a dev set consisting of 10507 examples fromSQuAD, 4212 examples from NewsQA, 12836
examples from Natural Questions, 126 examplesfrom DuoRC, and 128 examples from each of RACE
and RelationExtraction. The held-out test setconsists of 4360 examples from the three out-of-domain
datasets. Each example from the datasets is a triple consisting of a context, a question, and an answer.

5.2 Evaluation method

Our QA system will be evaluated using a the Exact Match (EM) score and the F1 score. These metrics

provide a clear comparison between our baseline DistiIBERT model, the MoE model, and models
refined with few-sample fine-tuning in their ability to select accurate answers from text. Because
the focus of our experiment is to improve robustness and performance on OOD datasets, we will
primarily use the scores of the models on the OOD validation set for consistency in evaluation.

5.3 Experimental details

Each of our models was trained using an Adam optimizer with 6; = 0.9, 62 = 0.999, anda

learning rate of 3 x 10~°. Specifically for our MoE models, the input layer for our gating network
has a size of 384, based on input sequence length of the data, and our output layer has a size of
4, based on the number of experts. The hidden layer is of size 260, was deduced from taking
3 x input_size + output_size [10]. The majority of training was performed using a batch size of
16, but a batch size of 14 was used when training our MoE experts in order to avoid memory errors.

For our MoE models, we tested different versions of our gating network, which involved
varying the number of hidden layers and removing bias terms. Then, to explore few-sample
fine-tuning methods, we varied the training epochs (between 3 and 4 when training on the large
in-domain dataset and between 3 and 20 when training on the small OOD dataset), and examined the
individual/combined effects of layer re-initialization and weight decay. Additionally, by focusing
few-sample fine-tuning techniques specifically on the OOD expert, we can get a better idea of the
effectiveness of such methods in true few-sample contexts compared to their use in a broader training
process on larger datasets.

5.4 Results

Both MoE models performed worse than expected, with scores lower than the basline DistilBERT
model (see Table 1). Interestingly, the performance of the two MoE models exactly matched the
performance of two individual experts. One of our MoE models matched the results of our SQUAD

expert, and the other MoE model matched the results of our OOD expert. This (as confirmed in our
analysis) was a result of the MoE system latching onto a single expert and using only that expert for
every example input.

MoE Scores (on OOD dev set)

Expert F1 Score EM Score

DistilIBERT (baseline) 48.43 33.25

MoE 43.01 26.18

MoE (with added bias term in gating function) 27.08 18.32

SQuAD Expert 43.01 26.18

Natural Questions Expert 36.79 20.42

NewsQA Expert 39.42 25.39

OOD Expert (20 Epochs) 27.08 18.32

Table 1: Baseline score on OOD dev compared to MoE score and individual expert scores

When implementing few-sample fine-tuning techniques when training on the large in-domain datasets,
we were able to observe minor performance improvements (see Table 2). Through these fine-tuning
adjustments, we obtained our best performing model (DistiIBERT with 4 epochs of fine-tuning
on in-domain data and additional tuning on OOD data), which achieved an F1 score of 58.101
and and EM score of 39.151 on the Robust QA test leaderboard. Overall, however, the fine-
tuning techniques described in [7] provided minimal improvement over the baseline DistilIBERT
model.

Model Scores (on OOD dev set)

Model Fl Score EM Score

DistiIBERT (baseline) 48.43 33.25

DistiIBERT (with additional tuning on OOD data) 48.95 33.51

DistilBERT (longer fine-tuning, 4 epochs) 49.97 33.77

DistilBERT (longer fine-tuning and OOD data) 49.89 34.29

DistiIBERT (1 re-initialized layer) 46.87 31.41

DistiIBERT (2 re-initialized layers) 46.46 31.15

DistilBERT (with weight decay) 47.00 31.68

Table 2: Baseline compared with fine-tuning techniques

We observe the most interesting and significant results (as we expected) when applying the few-
sample fine-tuning techniques on the OOD Expert, tuning only on the small OOD training set. Simply
by training longer, we achieve a nearly 6% performance increase. Pretrained layer re-initialization
and weight decay provided further performance improvements. Both a | layer re-initialization and a
1 layer re-initialization combined with weight decay yield a performance increase of nearly 9% over
the baseline Expert trained for 3 epochs, and a 3% increase over the model trained for 20 epochs.
Most notably, while training for longer resulted in better performance over all 3 individual OOD
datasets, layer re-initialization caused a sharp increase in performance specifically for the DuoRC
dataset.

Few-sample Fine-tuning F1 Results for OOD Expert (on OOD dev set)

Model DuoRC | RACE | RE Overall

DistiIBERT (3 epochs) 4.35 5.47 54.44 | 21.51

DistiLBERT (20 epochs) 7.52 10.44 62.98 | 27.08

DistilBERT (1 layer re-init, 20 epochs) 16.18 11.16 62.62 30.06

DistilBERT (2 layers re-init, 20 epochs) 13.74 11.29 61.24 28.73

DistilBERT (with weight decay, 20 epochs) 13.08 10.88 61.83 28.68

DistiIBERT (with 1 layer reinit + weight decay) || 16.40 11.16 63.14 | 30.31

Table 3: Few-sample fine-tuning on limited OOD data

6 Analysis

6.1 Mixture of Experts Analysis

Even after tuning our hyper-parameters for the MoE model, including adjusting hidden size and
number of hidden layers, the baseline model continued to outperform our MoE model. This is made
apparent through the higher Fl and EM score of the baseline model compared to both the MoE and
the experts. One key observation, as noted earlier, is that both MoE models had an identical F1 and El
score to two of the experts. More specifically, the MoE model with a weight and bias activation had
the same performance as the out-of-domain expert, and the MoE model with just a weight activation
had the same performance as the SQuAD expert. Looking into the probability tensor in the model
which encodes the selection of expert(s) for each example in a batch, we can see why this is the case.
For the MoE model with just a weight activation, this tensor becomes:

1.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00

Here, the first column represents the first expert, which is the SQUAD expert, and each row represents
one example in a batch. A similar observation was made for the MoE model with a weight and
bias activation for the out-of-domain expert. Ultimately, rather than selecting a combination of
experts for a specific task or varying the probability of choosing an expert to yield better overall
performance results, the MLP instead chooses to only identify and use one expert for the entire
problem. In the case of the MoE with only weights, it likely chose the SQUAD expert because it
was the best-performing expert. One possible reason why the MoE selecting the out-of-domain
expert with the bias parameter could be because the bias parameters were encoding heavy favoritism
towards out-of-domain expert because it may perform very well on training, but not extrapolate well
to the validation set due to over fitting from the limited training size of the out-of-domain expert.

Either way, this indicates that our MoE model can only perform as well as its best-performing expert,
and since each of our experts performed under the baseline, it makes sense that the MoE model as a
whole also would do the same. As a result, our MoE model is limited in two ways: firstly, if the
previously trained experts are poor-performing (especially for the Out-of-Domain expert), our model
will perform poorly. However, in addition, the gating function of our modified MLP also poses a
weakness since it can only select one expert. One likely reason why our MoE model observes this
secondary weakness is because of the modified nature of the expert model, where the experts are all
independently fine-tuned prior to the training of the gating function, and remain static while the
gating network is trained. While this does accomplish the task of making sure that only certain
subsets of data update certain experts, this also means that we are evaluating the model based on the
performance of the each of the experts alone. Ideally, the way the models’ performance should be
evaluated is based on both the decision of the gating function in addition to the performance of the
model, with updates to both the gating network and localized experts during training. This distinction
explains why our model only trains on one expert models’ performance and why the performance
may have fallen short in that regard. However, at the same time, [6] explains that one weakness of
their model was that only 3 of the 8 experts were active in the final model. This may indicate that this
may be a shortcoming of a primitive mixture of experts approach as a whole, and more work needs to
be done in improving the MoE design.

6.2 Few-sample Fine-tuning Analysis

Seeing as our MoE model was largely dependent on its best-performing expert, we decided to
conduct a small ablation study to analyze the effect of few-sample fine tuning on both a DistilBERT
trained on the entire dataset and the out-of-domain expert. For the DistilBERT trained on the whole
model, we observed that only two methods improved the performance of the model: increased
time fine-tuning and additional tuning on OOD data, together increasing the Fl performance of the
baseline model by 1.54%. On the other hand, each of the other few-sample fine-tuning techniques
slighty hurt the model’s performance. The likely explanation for this is due to the the relatively
large size of the data available. While these techniques were suggested for few-sample performance

improvements, in the case of a data set with lots of data, using few-sampling techniques alone won’t
be able to improve performance on the out-of-domain components of the data which are few in
number. Looking at some selected examples from the model, we can deduce specific areas where the
few-sample fine-tuning didn’t have much effect.

We noticed a potential correlation between context length and accuracy of the prediction.
A widespread trend we observed among the output data was that questions with longer corresponding
contexts often produced an incorrect result, while questions with shorter corresponding contexts
often yield correct results.

Context: As elderly people go about their day in Manhattan, Harry walks along a sidewalk with his
tabby cat Tonto on a leash, quoting Shakespeare’s "King Lear" as he goes [...] Harry meets his
old friend Jacob on a bench, and tells him that his apartment building is being torn down to build a
parking lot [...] Harry soon learns that he can’t go through security with Tonto, so he takes a cab
to get a bus. Along the route, Harry asks the bus driver to stop so that Tonto can relieve himself,
whereupon the cat runs away across a cemetery [...]
Context Length: 3757
Question: Who is Harry’s travelling companion?
Correct Answer: Tonto
Model Answer: Jacob on a bench, and tells him that his apartment building is being torn down to
build a parking lot. Jacob

In the above example, we can see that the phrase "travelling companion" is never explicity mentioned
in the context, and answering the question correctly would involve deducing the meaning of those
question words and understanding the parts of the context that involve traveling and companionship.
This can mean that our model had difficulty extracting long-term dependencies as well as identifying
a correct prediction in a large context body. Contrast this with a shorter, more simple example:

Context: Stephen Silvagni (born 31 May 1967) is a former Australian rules footballer for the
Carlton Football Club.
Context Length: 106
Question: What was the name of Stephen Silvagni’s team?
Correct Answer: Carlton Football Club
Model Answer: Carlton Football Club

Upon closer inspection, we might draw the conclusion that length alone is not the root cause behind
incorrect predictions. As a whole, we find that longer contexts involve more challenging relationships
between words, longer dependencies, and overall more vague and inspecific language (e.g. the use
of synonyms, pronouns, lack of shared words between question and context). While few-sample
fine-tuning often yields improved early performance from a pretrained model, in this case, we can
see that this improved early performance may have little effect in improving long-term dependency
extraction on large models. As a result, few-sampled fine-tuning has limited effects on improving a
large DistiIBERT model.

In addition to the large DistiIBERT model, we also experimented with few-sample fine-
tuning on our Out-of-Domain expert. We did this because the OOD expert was the worst-performing
expert due to its limited datasize and could benefit greatly from few-sample fine-tuning. From our
results, we see that implementing several of these fine-tuning techniques on this expert lead to
significant improvements in the model’s performance, gaining 8.8% from its original F1 score.

One interesting aspect about the data is that this expert performed extremely well on the
Relation Extraction dataset for all variations, having at least a 54% F1 score in all cases. Investigating
this dataset, one probable reason for this becase this dataset contains many short contexts and simple
reading comprehension questions [11]. In contrast, the initial Fl performnce on the DuoRC dataset
was very low, at 4.35%. After applying the few-sample improvements through re-initialization
of top layers, weight decay, and longer fine-tuning time, the DuoRC dataset was able to see the

largest increase in performance, increasing by 12.35%. The DuoRC dataset is known to have more
complicated dependencies and and challenging answers considering that the contexts from which and
answer is to be predicted and the contexts from which the true answer is derived share little lexical
overlap [12].

As a result, it makes sense that the re-initializing of top layers helps, since one key benefit
of this technique is the fact that the model can learn more complex dependencies faster. This is
built off the intuition that the top layer of the pretrained data encodes specific information for the
pretrained data rather than our training data and is better off reinitialized. While this did lead to a
very slight decrease in performance on the Relation Extraction dataset, combining this re-initializing
feature with weight decay lead to the largest overall improvement. It is likely that re-initializing 2
layers harmed performance compared to | layer re-initialization because of how the 2nd layer may
have encoded valuable information from pre-training that is less task-specific. That being said, these
techniques such as layer re-initialization certainly yield the effects of improved performance, lower
training loss, and quicker convergence that [7] describes (see Figures 2 and 3 in Appendix).

Overall, these results illustrate that the few-sample fine-tuning performs well on the out-of-
domain expert due to its small data size. Between both the pretrained models that few-sample tuning
was performed on, it can be inferred that few-sample tuning works best on small-sample data sets,
but could be detrimental to large-sample data sets. In addition, few-sample tuning has difficulty
separating small OOD inputs from large in-domain inputs when trained together, as shown by the
decrease in F1 performance.

7 Conclusions and Future Work

In this project, we implemented, evaluated, and analyzed a MoE model with few-sample fine-tuning
in order to improve QA robustness on out-of-domain questions and contexts. This was our first
attempt at implementing a complex deep learning model from scratch, and we both gained a lot
of valuable experience in debugging, fine-tuning, and redesigning the implementation. First, we
applied a modified MoE model using 4 fine-tuned DistiIBERT experts and a MLP gating function.
Then, we applied few-sample fine-tuning to both the whole domain DistilBERT model and to the
out-of-domain expert in an effort to increase the robustness of these models. With the fine-tuning, we
tested several methods including longer training, re-initializing of top-layers, and weight decay.

From the results, we could see that the static MoE model did not perform very well on the
out-of-domain data, only being able to perform as well as its best expert while being unable to
surpass the baseline model in performance. This is likely due to the limitations imposed by the
expert performance and static nature of the experts, although there are also larger considerations
of poor performance when applying a simple MoE architecture for complicated problems such
as generalization. We also observed that only a few techniques for few-sample fine-tuning had
positive effects on the performance of training sets with lots of in-domain data and relatively little
out-of-domain data. On the other hand, many of these techniques led to positive results for improving
performance of the out-of-domain expert, which had little training data.

In the future, there are many things we hope to do in order to continue improving our im-
plementation. One area of improvement is with the MoE model itself. We had used a static, modified
MoE approach in this paper due to memory issues on the GPUs, so one thing we could research
could be using the memory more efficiently. This way, we could implement a MoE model that would
be able to train its experts at the same time as the MLP gating function. Another thing we could look
to do is to apply a different, more advanced MoE architecture to the model, such as a Hierarchical
MoE architecture. This experiments with adding multiple gating functions in the selection process,
which could lead to more experts being selected, as opposed to a single expert being chosen for every
example. We could also improve on the few-sample fine-tuning by investigating the effect other
techniques that we did not have time to test and implement, such as mixout and layer-wise learning
rate decay.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2019.

Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems,
2017.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R. Bowman,
and Noah A. Smith. Annotation artifacts in natural language inference data, 2018.

R. Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing
syntactic heuristics in natural language inference, 2019.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy:
Behavioral testing of nlp models with checklist, 2020.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive
mixtures of local experts. Neural Computation, 3(1):79-87, 1991.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q. Weinberger, and Yoav Artzi. Revisiting
few-sample bert fine-tuning, 2020.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version

of bert: smaller, faster, cheaper and lighter, 2020.

Jongwon Yoon, Sung-Ihk Yang, and Sung-Bae Cho. Adaptive mixture-of-experts models for
data glove interface with multiple users. Expert Syst. Appl., 39:4898—4907, April 2012.

[10] Jeff Heaton. The number of hidden layers, Jun 2017.

[11] Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction

via reading comprehension, 2017.

[12] Amrita Saha, Rahul Aralikatte, Mitesh M. Khapra, and Karthik Sankaranarayanan. Duorc:

Towards complex language understanding with paraphrased reading comprehension, 2018.

8 Appendix

Figure 2: Training loss of OOD Expert. Notice that the green line (fine-tuning with 1 layer
re-initialization) is consistently lower than the orange line (baseline).

20 30 |
16 |

20 | 12 |

ot
a | | |

Figure 3: EM (left) and F1 (right) scores of OOD Expert on OOD dev set. Notice that the
green line (fine-tuning with 1 layer re-initialization) rises quicker and converges above the

orange line (baseline).

10

