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Abstract 

In this project, I build two question answering system that have relatively good 
performance on SQuAD 2.0 dataset. The baseline model is Bi-Directional Attention 
Flow (BiDAF), which achieved 59.21 F1, 55.92 EM and 65.85 AvNA on Dev 

dataset. Firstly I implement a CNN-based character embedding to it which achieved 
60.192 EM, 63.480 F1 and 69.89 AvNA on Dev dataset. Then I re-implement 
QANet with Pytorch which is basically the same as the original paper proposed 
one. It achieved 59.973 EM, 63.403 F1 and 68.12 AvNA on Dev dataset, which is 

less than the first one. Ultimately, I got 59.307 EM and 62.761 F1 on test set. 
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2 Introduction 

Machine Comprehension, given a context and question, aims to decide the answer location in context 
or no answer added in SQuAD 2.0[1]. The existing models have achieved great score in SQUAD 

1.1[2], while more challengable thing is not only correctly answer the questions, but determine 
whether there is an answer or not in the given context. The BiDAF model[3] achieved EM 67.7 and 

F1 77.3 on SQUAD 1.1. However, used as basline model, BiDAF only achieved EM 55.9 and F1 59.2 

after 30 epoch in my VM. It’s about 25% percent of reduction. One obvious weakness of BiDAF is 
that its recurrent structure can not be parallel computed, making training process quite slow. There 
had been proposed methods to avoid using RNNs[4]. But it sacrifice performance with around 1.1 
lower than BiDAF. 

The QANet[5] model solved this problem by replacing RNN with convolutions layer and self- 
attentions layer, showed in Figure 5 This architect has the ability to learn relationship of each 
word in context and have a look at surranding words at the same time, rather than learning sequtial 
represetation using RNN model. And then QANéet introduces convolutional network which can take 
advantage of GPU parallel computation. It is reported to achieve SOTA in 2017 with 84.6 F1 score. 

In this project, I further investigate the character embedding using baseline model BiDAF. Then I 
re-implement QANet using Pytorch and test it on SQUAD 2.0. But the speed of my QANéet is not as 
expected as the original paper reported "13x faster in training and 4x to 9x faster in inference". I can 
not resolve this issue, but I did some experiments about it which will be discussed in later section.



Machine comprehension and question answering (QA) have became important tasks in NLP area in 
the past few years. My project is mainly focus on QA on SquAD 2.0[1]. As I learned in lectures and 
Assignment 5, character-level embeddings perform better than word embedding on out-of-vocabulary 
words. Inspired by [6], I implement a convolution neural network which can convert inputs character 
to their CNN-based output. CNN is designed to automatically and adaptively learn spatial hierarchies 
of features through backpropagation by using multiple building blocks, such as convolution layers, 
pooling layers, and fully connected layers. I can use it to extract character-level representation of a 
given word and concatenate it with traditional word embedding for better represetation. 

Since the QANet model performs best in 2017 by replacing RNN with convolutions layer and self- 
attentions layer. Another important part of my project is to re-implement QANéet and have a better 
understanding of it. 

3 Related Work 

Question answering is one of acitve research area in NLP in the past few years. There have been 
various RNN based deep learning architectures researched and applied. Most of them consist of an 
encoder-decoder architecture, which is one of the most popular factors for recent success. 

Nowadays, the most successful model is transformer based model. Such as BERT[7] and its variants. 

These pre-trained model shows great performance on a wide range of NLP tasks, including question 
answering. Due to handout limitation, I’m not going to use it. Before BERT appears, BiDAF is one 
of SOTA model on SQuAD dataset. It uses bi-direction LSTM to capture forward and backward 
information from context word vectors. Different from BiDAF, QANéet uses self-attention with 

position embedding to capture context information. It get rid of RNN architectrue in order to be 
computed in parallel. The author reported QANet is faster and achieved higher scores on SQUAD 
dataset. As their training time is less, they can adjust more hyperparameters and use data augmentation 
to improve variety of training data. The author also said by introducing convolution layer and self- 
attention layer improved F1 by +2.7/1.3 respectively. And data augmentation gives another +1.1 Fl 
at most. 

4 Approach 

4.1 CNN Based Character-Embedding Overview 

As proposed in BiDAF original parper[3], I add character-level embedding into embedding layer. 
I referd to Pytorch official tutorial([8]) to accomplish a CNN which can convert input character to 

CNN-based embeddings. The CNN model just contains one convolutional layer and one max-pool 
layer. And I concatenate the original 300 dimention word embedding with 200 dimension character 
embedding to form the combined embedding. After this operation, the embedding layer uses a lookup 
method to convert context and questions into embedding. 

4.2 QANet Model Overview 

Specifically speaking, it has 5 layers. 
Input Embedding layer: It has pre-trained, 300 dimentinal word embedding from GloVe [9]. The 
character is represented as 200 dimensinal trainable vector. The output of a given word vector z is 
the concatenation of [z,, : x-] € R°°°. Then I pass this vector to a highway network. 

Embedding Encoder Layer: The encoder layer uses convolution-layer and self-attention layer to 
replace RNN-based layer. AS illustrated in the right of 5. Here positional encoding formula I used in 
the layer PE(y55,2;) = sin . Where pos is the position of the word in the context, 7 refers to 

1 
  

each dimention of the vector, oe fers to the dimention of vector. Then I refered the [10] to implement 

the depthwise separable convolution layer. The kernal size is 7, the number of conv layers is 2, the 
number of multi-head attention is 4. The self-attention layer uses multi-head attention to calculate 
the interaction between query and key. I referred to (https://github.com/BangLiu/QANet-PyTorch) to 
implement this layer. 

Context-query Attention Layer: This layer is a common layer in question answering model. It 
uses a similarity martix S € R”*™ computed from context C’ and query Q. Then apply softmax



function to each row of S to get S. The similarity between context word c and query word q is 
f(g,c) = Wolg,c,q © c], where Wo is a trainable parameter. The context-to-query attention A is 

Z ~ =T 
A=8S-Q? © R™4, And the query-to-context attention Bis B= S-S - C7. 

Model Encoder Layer: The model encoder layer consist of a attention layer whose head number is 4. 
And 2 depth seperable conv layer[10] connecting with a feedforward layer. Each model encoder layer 
takes previous output attention A and B and then output three shared weight matrics Mo, M1, Mo. 

Output Layer: The three matrices are fed into output layer as 5. This layer is to predict the 
probability of start position and end position in the context. The probability is given by p! = 
softmax(W,[Mo; M1]) and p? = softmax(W2[M0; M2)]) respectively. The loss function is 
defined as the average of cross-entropy between the predicted start/end position with the true start/end 
position. 

I was able to carry out the embedding layer with previous character embedding described in section 
4.1. The embedding encoder layer is almost the same as the original paper, but only gives 4 heads in 
attention layer. Because number of 8 heads consumes more time to train and get similar result as 4. 
For the model encoder layer, I chose the same hyperparameter with the paper. The mask is a little 
different, I uses True while the starter code uses False. 

4.3 Baseline 

For the baseline, I take the BiDAF model proposed in [3]. The only difference is that provied start 
code doesn’t have a character embedding layer. A full implement of baseline model can be found 
here: https://github.com/minggg/squad. 

4.4 Implementation 

For CNN Based Character-Embedding, I referred to the paper[6]. The character split data 
is provided by starter code. For QANet I referred to the official tensorflow implimenta- 
tion (https://github.com/NLPLearn/QANet). As to encoder block I mainly referred to Bangliu 
(https://github.com/BangLiu/QANet-PyTorch). I tried my best to align with starter code’s style. 
At first, I would like to do multiple parameter experiments, since it is said QANet is quite faster. How- 
ever, the implemented model is almost as slow as the baseline. So it’s hard to do more experiments 
on hyperparameters and data augmentation proposed by the original paper. And I tried to scale batch 
size to see the reason of the model slowness. But it seems that smaller batch size runs as slow as the 
original size of 64. Other parameters I used is descried in section 4. 

5 Experiments 

5.1 Data 

This project uses modified SQUAD 2.0 dataset.[1] The SQUAD 2.0 dataset posed by crowdworkers 
on a set of Wikipedia articles and the answer is either a segment of context, or None. The data has 

been split into three parts train, dev and test. Training set has 129,941 examples, dev data set has 
6078 examples and test set has 5915 examples which is added some special hand-labeled examples. 

5.2 Evaluation method 

First of all, There are three answers provied for each SQUAD question from different crowd worker. 
The evaluation method is briefly listed below: 
EM : Extract Match. If the prediction answered exactly the same as golden answer, the result is 1. 
Otherwise it returns 0. 
F1: It measures the portion of overlap tokens between the predicted answer and the truth answer. 
AvNA: it represent the model’s prediction exists — a span of text, vs None answer. Though the loss 
score(NLL) may be low, AVNA equals to 0 tells us the prediction is unreliable.



5.3. Experimental details 

I firstly added character embedding concatenate with word embedding into BiDAF. I trained the 
model for 30 epoch with a learning rate of 0.5, dropout rate 0.2, batch size 64. It takes about 31 hours 
to complete training process on Azure NC6_Promo. 

Then I implement the QANet. In order not to run out of memory, I have to set batch size to 32. I 
choose the Adam optimizer as original paper proposed during 1000 warm-up steps. During warm-up 
scheme with an inverse exponential steps, the learning rate will increase from 0.0 to 0.001. And 
then maintain a constant learning rate for the rest of training process. Exponential moving average is 
applied on all trainable variables with a decay rate 0.9999. For regularization, I use L2 weight deday 
where \ = 3 x 10~” on all weight parameters. 

5.4 Results 

Table1l shows the overall result. 

  

Fl EM AvNA 

Dev set: Baseline 59.21 55.92 65.85 

Dev set: QANet 59.97 63.40 68.12 

Dev set: BiDAF with Char Embedding 60.19 63.48 69.89 

Test set: BiDAF with Char Embedding 59.31 62.76 N/A 

Table 1: Result of implemented models. 

My best model is BiDAF with CNN-based character embedding, which achieved 60.19 F1, 63.48 

EM, 69.89 AvNA on dev set and 59.31 F1, 62.76 EM. My model ranked 23th on ITD Squad Track 
(test leaderboard) at writing time. This model takes 300 dimentional word embedding concatenate 
with 200 dimentional character embedding, batch size 64 and 4 attention heads. It takes around 40 
minutes per epoch and 31 hours to train in total. The evaluation scores are showed in Figure [? ]. 
As the figure shows, EM, F1 and AvNA keep relatively at the same level as steps get larger. So 30 
epoch is enough for the training process. As comparison, baseline model takes about 30 minutes 
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Figure 1: BiDAF with Character Embedding performance on dev set 

per epoch to train and get 59.21 Fl, 55.92 EM and 65.85 AvNA. It takes about 24 hours to train the 
whole model on Azure. 
Then, my implimented QANet model takes about 65 minutes per epoch to train, which is unexpected. 
It takes about 48 hours to complete the training process. It is far from the original paper reported 
"...our model is 3x to 13x faster in training and 4x to 9x faster in inference"[5]. I was almostly 
follow every setting from original paper to accomplish the model. It is strange to see that the model 
speed differentiates so much. So I did an experiment to investigate the slowness of self-implemented 
QANet. It shows that if I scale the batch size of the model, like 32 to 16, it will keep training speed



for about 65 minutes per epoch. Due to GPU memory limitation, I can not enlarge the barch size with 
128. I think that the slowness of self-implemented QANet model is mainly due to resource allocation 
limitation. In other word, if we use muptiple GPU, it could perform better on speed due to the ability 
of parallel computation. It is interesting to arrange QANet on multi-GPU to verify the hypothesis. 
I’m not able to do that, since there is hardward limitation. 

As for the performance of my implemented QANet model, it achieved 59.97 F1, 63.40 EM and 68.12 
AvNA which is as expectation. In [1], the auther reported "...a strong neural system that gets 86% 
F1 on SQuAD 1.1 achieves only 66% F1 on SQuAD 2.0." It can be seen from Figure 2, the QANet 
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Figure 2: Self-implemented QANet performance on dev set. 

model reaches it peak at around 3.3M steps, which is 26 epoch. Then all of the EM, F1, training loss 
head down until the end of training. I think it is mainly due to model overfitting. It means that even if 
increase the number of epoch will NOT impove the scores at all. However, it is possible to adjust 
dropout rate to make model less overfitting. This is also worth investigating in the future. 

6 Qualitative Analysis 

I randomly pick some questions which my model gave wrong prediction. 

step 3,402,146 

* Question: The time required to output an answer on a deterministic Turing machine is expressed as what? 
* Context: For a precise definition of what it means to solve a problem using a given amount of time and space, a computational model such as the deterministic Turing 
machine is used. The time required by a deterministic Turing machine M on input x is the total number of state transitions, or steps, the machine makes before it halts and 
outputs the answer ("yes" or "no"). A Turing machine M is said to operate within time f(n), if the time required by M on each input of length n is at most f(n). A decision 
problem A can be solved in time f(n) if there exists a Turing machine operating in time f(n) that solves the problem. Since complexity theory is interested in classifying 
problems based on their difficulty, one defines sets of problems based on some criteria. For instance, the set of problems solvable within time f(n) on a deterministic Turing 
machine is then denoted by DTIME(f(n)). 

* Answer: state transitions 
* Prediction: yes" or "no") 

Figure 3: Wrong prediction of BiDAF with Character Embedding model. 

Comment: This is an error occurred in model BiDAF with character embedding. Perhaps the model 
made this mistake showed in Figure 3 because it misunderstand the question. The subject of question 
is "The time ... is expressed as what?". While the model thought it is asking about "output an answer 
on a deterministic Turing machine". I observed the same error in the baseline model. One possible 
method to avoid this kind of mistake is to reconstruct the question, like translate the quesion into 
another language and put it back proposed in [5].



step 2,500,591 

* Question: Currently, how many votes out of the 352 total votes are needed for a majority? 
* Context: The second main legislative body is the Council, which is composed of different ministers of the member states. The heads of government of member states also 
convene a "European Council" (a distinct body) that the TEU article 15 defines as providing the ‘necessary impetus for its development and shall define the general political 
directions and priorities’. It meets each six months and its President (currently former Poland Prime Minister Donald Tusk) is meant to ‘drive forward its work’, but it does 
not itself ‘legislative functions’. The Council does this: in effect this is the governments of the member states, but there will be a different minister at each meeting, 
depending on the topic discussed (e.g. for environmental issues, the member states’ environment ministers attend and vote; for foreign affairs, the foreign ministers, etc.). 
The minister must have the authority to represent and bin the member states in decisions. When voting takes place it is weighted inversely to member state size, so 
smaller member states are not dominated by larger member states. In total there are 352 votes, but for most acts there must be a qualified majority vote, if not consensus. 
TEU article 16(4) and TFEU article 238(3) define this to mean at least 55 per cent of the Council members (not votes) representing 65 per cent of the population of the EU: 
currently this means around 74 per cent, or 260 of the 352 votes. This is critical during the legislative process. 

« Answer: 260 
* Prediction: N/A 

Figure 4: Wrong prediction of QANet model. 

Comment: Here is another error occured in QANet model. As showed in Figure 4, my QANet 
model gave no answer for this question. Because it matches wrong span of context, "In total there 
are 352 votes...". Apparently there is no answer in that sentence. The correct answer is right after a 
long, complicated sentence. It means this model is lack of ability to seize relationships between long 
sequential context with question. 

7 Conclusion 

Summarize the main findings of your project, and what you have learnt. Highlight your achievements, 
and note the primary limitations of your work. If you like, you can describe avenues for future 
work. In this project, 1) I add CNN-based character embedding to BiDAF and the result shows the 
performance on SQuAD 2.0 dataset increased by +7.56 EM, +0.98 F1 and +4.04 AvNA score. The 
idea is to capture the most important feature, the one most highest value, from a given vector. And 
then concatenate the information with word level embedding. The result ranks 23-th on class test 
leaderboard on March 16th. 2) I re-implement the QANet model as [5]. Its performance on SQUAD 

2.0 dataset is NOT as fast and good as expected. I noticed that even decrease the batch size, the 
model spend roughly the same time per epoch. Because of GPU memory limitation, I’m unable to 
try larger batch size. I noticed that increase the number of heads in self-attention can increase the 
model performance. But for slowness of the model, I don’t have time to try all kinds of parameters 
combination as I wanted. For future work, I would like to implement an ensemble of models to get 
better performance and try to speed up training process by employing serveral GPUs. 
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Figure 5: The architecture of QANet (left) with its encoder blocks inner structure(right). Figure 

copied from [5]


