
Faster Attention for Question Answering

Stanford CS224N Default Project (no extenal mentor or collaborators and not sharing project)

Jack Beasley
Symbolic Systems Program

Stanford University
jbeasley@stanford.edu

Abstract

In this project (a default final project on the IID track), I built a question-answering
system for SQUAD 2.0 by exploring both the BiDAF model [1] through modifica-
tions of the default baseline as well as a from scratch implementation of QANet
[2], a self-attention [3] based question-answering architecture. The BiDAF mod-

ifications which added character embeddings achieved a small, but significant
improvement over the baseline model on the test set with F1: 64.083, EM: 60.423.
However, the QANet models only nearly matched the baseline BiDAF scoring
with character embeddings. Curiously, not only did my QANet under-perform
the baseline in model performance, it also turned out to be significantly slower to
train and at inference time on GPUs. Though profiling, I found that the QANet
model is indeed faster on CPUs, however significantly under-performs the baseline
BiDAF model on GPUs because the BiDAF model’s slowest component, the RNN,

is implemented as a highly optimized CuDNN routine on GPUs that the custom
QANet encoder block did not benefit from. Finally, this profiling also shows that
faster attention mechanisms, as explored in the literature [4] [5], are unlikely to

improve performance on this particular SQUAD 2.0 workload as additional instruc-
tion overhead would likely wash out any performance gains absent better operation
compilation for GPUs or a custom GPU kernel.

1 Introduction

While in recent years, pre-trained embeddings using architectures like BERT [6] have lead to
impressive advances many text-based tasks, including question-answering, pre-trained models tend
to be very large, requiring long pre-training times and powerful hardware. These large transformer-
based models perform well, but are difficult to modify and experiment with due to their resource
requirements, prompting a variety of efforts to reduce algorithmic complexity [7].

While these techniques have been aimed at reducing pre-training resource usage for large transformer-
based models like BERT, many of these techniques focus on the self-attention mechanism of the
transformer architecture, so should in-principle apply to any transformer-based model. Thus, for this
default final project, I aim to asses how well these new efficiency improvements to transformers might
apply to QANet [2], a state-of-the-art Transformer-based question-answering model from the era
before BERT and pre-trained embeddings. If these algorithmic performance improvements improve
the train and inference time of QANéet, those speed improvements could lead to model improvements
by making bigger models and longer training runs feasible.

Thus, this project first begins with some modifications to the baseline BiDAF model, namely adding
character embeddings to create a stronger baseline model which outperformed the original baseline.
Next, I built a from-scratch implementation of QANet, evaluate each model for both prediction
performance and runtime performance.

Stanford CS224N Natural Language Processing with Deep Learning

2 Related Work

Before self-attention and Transformer-based architectures were developed [3], RNN-based models

had proved to be quite successful on question answering tasks. In particular, the BIDAF model given
as a baseline [1] was a successful model that achieved state-of-the-art performance on SQuAD (pre

SQuaAD 2.0). BiDAF is a six-layer model which consists of the following layers:

1. Character embedding: A embedding of words using a character-level CNN [8]

2. Word embedding: Pre-trained GLoVe word embeddings [9] combined with character

embeddings and passed through a two-layer Highway network

3. Context Embedding Layer: LSTMs are applied both to the context and the question to get
the matrix X from the context words and the matrix U from the query words

4. Attention Flow Layer: Attends to _X and U from the context and query respectively

5. Modeling layer Attends to X and U from the context and query respectively

Building from BiDAF by incorporating the ideas from Transformer architectures, then used in
machine translation [3], QANet replaces the LSTM-based context embedding and modeling layers
with stacks of "Encoder blocks" which consists of a closed-form positional encoding, a convolutional
layer, a self-attention layer, then finally a feed-forward layer as seen in figure 1. These blocks are
then stacked to take the place of the LSTM embedding and modeling layers.

One Encoder

Position Encoding

Figure 1: QANet encoder block

This architecture eliminates slow LSTMs and thus runs much faster. The QANet authors documented a

2.9-13.3X speedup of train iteration time and a 3.7-8.8X speedup for inference time over bidirectional
LSTMs like BiDAF. Because of this speedup, the authors were able to train for much longer with
more data using data augmentation techniques. This train-time speed increase combined with the
models performance resulted in QANet reaching BiDAF’s best F1 score of 77.0 with a fifth the
training time.

However, there have been further improvements on self-attention performance that could improve
further. To understand this, consider the multi-headed self-attention layer [3] that is included in the

QANet architecture. Multi-headed self-attention is built from scaled dot-production attention as
defined in equation 1. Let there be matrices Q, K, V € R”*¢ where n is the input sequence length
and d is the embedding dimension.

T

Attention(Q, kK, V) = softmax (S) V (1)

This attention is then weighted by a weight matrix W; to form the attention head 7 as defined in
equation 2.

Head(Q, K,V,i) = Attention(QW2, KW‘, VW) (2)

Finally, the output of each of the h heads is concatenated to form the multi-headed attention output in
equation 3.

MultiHead(Q, K, V,h) = Head(Q, K,V,1) ®... ® Head(Q, K, V,h) (3)

The key performance issue that Linformer and Reformer seek to alleviate is the scaled-dot product
attention operation as the multiplication term QK7 multiplies two n x d matrices, which is an O(n”)
operation with respect to sequence length in both time and space.

To address this, both the Reformer paper and the Linformer paper find ways of avoiding the calculation

of the full matrix S = softmax (26). Because the softmax output is definitionally dominated by

a few terms where Q, and K; are similar, the Reformer used Locality-Sensitive-Hashing (LSH) to

efficiently find which vectors are similar, then compute an approximation of S' using only those. This
approach performs well and reduces the computation of self-attention to O(n log n), however, with a
fairly large constant which means it is only faster when n is fairly large [4].

The Linformer paper takes a different approach to this same problem by noticing that S' is a low-rank
matrix and formally proving this to be so. Intuitively this makes sense because the softmax output
is dominated by only a few similar parts of Q and Kx. Instead of using LSH to exploit this fact, the
Linformer projects kv and Q into a k dimensional space, where k < n but k is large enough such that
the first / singular values are cumulatively much larger than the remaining singular values. Because
k is a constant unrelated to length, the matrix multiplication becomes an O(n) linear time and space
operation while maintaining good performance [5].

While these methods do result in very significant reductions in algorithmic complexity and faster
performance on pre-training tasks, it remains to be seen if they will result in better performance on
Transformer models with multi-headed self-attention, but no pre-training.

3 Approach

My approach can be split into three portions: implementing character embeddings for BiDAF,
implementing and tweaking QANet and profiling the runtime performance of both models.

3.1 BiDAF

The starter code included a BiDAF model (which I refer to simply as “BiDAF’”’), which achieved an
F1 of 60.91 and EM of 57.64 using only pre-trained GloVE word vector inputs.

To extend this model, I added CNN-based character-level embeddings. These embeddings start from
character vectors, then are passed through a convolutional layer with hidden size 32 and kernel size 1,
then max-pooled. These character-level embeddings are then concatenated with the GloVE word
embeddings and sent through a two-layer highway encoder. The CNN character embedding work
follows from [8] and the overall architecture follows directly from the original BiDAF paper [1]. I
refer to this model as “CharBiDAP”.

3.2 QANet

After extending BiDAF to use character embeddings, I implemented QANéet as a modification of the
original BiDAF models as QANet shares the same embeddings, query-to-context and context-to-query
attention and output layers.

The largest implementation piece of this was implementing the encoder block abstraction (figure 1),
which is used throughout the QANet model. My implementation begins with a positional encoding
layer of alternating sine and cosine patterns as defined in the original transformer paper [3]. I could
have used learned positional encodings, however, some recent work seemed to indicate that this sine
and cosine encoding scheme performs similarly or better to learned encodings [10]. The positional
encoding is a simple periodic function of position and dimension as seen in equation 4:

sin(p/10000 Tmodal) ifiis even
_ (4)

cos(p/100007moat) if dis odd
PE(p,i) =

After this position encoding, the embedding is passed through a layer norm, followed by four depth-
wise separable convolutional layers with kernel size 7 and residual connections as in the QANet paper.
After the convolutional layers, the embedding is sent through a layer norm and then to a multi-headed
self-attention layer with 8 attention heads and residual connections. Finally, the attention output is
sent through a layer norm and then two feed-forward layers with residual connections and output.

A single encoder block then replaced the LSTM context and query encoders from BiDAF with shared
weights for both context and query embeddings.

A stack of two encoder blocks replaced the LSTM modeling layer in the “QANet” and “CharQANet”
and a stack of four encoder blocks formed the model layer for “CharTallQANet”.

3.3. Measuring Performance

To measure performance, I used the PyTorch profiler which can record function runtime on both
CPUs and GPUs. This profiler records function names, start times and end times for all executed
functions during train time and allows for user-defined annotations. Because this trace data is detailed,
it can get quite large and is thus impractical to record an entire training run, thus, I instead recorded

only the first four batches of a training run for each model, which resulted in a profile size of 1 GB
while averaging function runtime over the four batches. While four is a fairly small number of trials
to average over, in practice, the time per batch varies very little during training so these results should
easily generalized to the whole training process.

4 Experiments

4.1 Data

Tused SQuAD 2.0 as defined for the default final project rules for training. All model results are from
models trained on the default train dataset and evaluated on the default validation and test datasets.

4.2 Evaluation method

In terms of model evaluation, I track EM and F1 score on the SQUAD question answering task as
defined by the rules of the default final project.

T evaluated train speed using the average time for the total train, forward portion and backward portion
averaged over four batches in the training set, using the PyTorch profiler as described in the approach
section.

4.3. Model Results

The CharBiDAF improvements resulted in an F1 of 63.99 and an EM of 60.36 on the validation
dataset and an even-higher F1 of 64.08 and EM of 60.42 on the test dataset, which turned out to be
my best-performing model.

The “QANet” and “CharQANet” models both slightly underperformed the baseline “BiDAF” on
the validation set, getting Fl of 60.68, EM of 57.0 and F1 of 60.38, EM of 56.76 respectively. The
“CharTallQANet” with two extra model layers slightly outperformed the baseline with an F1 of 61.29
and EM of 57.54. Full validation results can be found in table 4.3. However, all QANet models

significantly underperformed on the test dataset as seen in 4.3.

Model Name Fl EM

BiDAF 60.271 | 56.720

CharBiDAF 64.083 | 60.423

CharQANet 58.114 | 54.117

CharTallQANet | 58.476 | 54.658

Table 1: Model test results on the test dataset

Model Name Fl EM NLL | AvNA

BiDAF 60.91 | 57.64 | 3.01 | 67.62

CharBiDAF 63.99 | 60.36 | 2.96 | 70.51

QANet 60.68 | 57.02 | 3.0 68.63

CharQANet 60.38 | 56.76 | 3.08 | 68.24

CharTallQANet | 61.29 | 57.54 | 3.05 | 69.47

Table 2: Model test results on the validation dataset

4.4 Performance Results

Interestingly, I was only able to replicate the QANet speedup over BiDAF on CPUs and not on
GPUs. On a CPU, I observed a 3.3X speedup, which is within the range of what the original paper
found. However, on GPU, the QANet is slower and only runs 0.83X as fast as BiDAF. Note that

GPU utilization is high on GPU runs as the CPU time matches the GPU time, meaning that the CPU
is waiting for GPU calls to complete, as we’d expect from an ML workload that is doing nearly all
computation on the GPU rather than the CPU 4.4. For the forward pass, QANet ran 2.2X faster as
BiDAF on CPUs and nearly identically on GPUs 4.4. On the backward pass, QANet ran 3.9X faster
then BiDAF on CPUs and 0.8X as fast on GPUs.

5 Analysis

5.1 Model

While disappointing that the QANet models could not outperform the BiDAF with character embed-
dings, it is not all that surprising given that the GPU performance of QANet turned out to be slower.
In the original QANet paper, the QANet model outperforms by being faster than BiDAF and using

Model | Hardware | CPU Time | GPU Time | Total Time

BiDAF CPU 136.969s Os 136.969s

BiDAF GPU 3.108s 3.109s 3.109s

QANet CPU 41.786s Os 41.786s

QANet GPU 3.7218 3.7218 3.721

Table 3: Model train iteration runtime with batch size 64

Model | Hardware | CPU Time | GPU Time | Total Time

BiDAF CPU 35.661s Os 35.661s

BiDAF GPU 1.7538 1.753s 1.753s

QANet CPU 15.735s Os 15.735s

QANet GPU 1.726s 1.726s 1.726s

Table 4: Model forward iteration runtime with batch size 64

Model | Hardware | CPU Time | GPU Time | Total Time

BiDAF CPU 101.290s Os 101.290s

BiDAF GPU 2.118s 2.118s 2.118s

QANet CPU 26.029s Os 26.029s

QANet GPU 2.588s 2.588s 2.588s

Table 5: Model backward iteration runtime with batch size 64

than directly executing them. To see this, consider that a 4X performance increase on CPUs actually
slowed GPU code because the many smaller operations that make up QANet increase the instruction
overhead absent custom GPU kernels or better GPU operation compilation enough to wipe out that
architectural speed up. Shrinking bigger QANet operations into several smaller still operations as
Linformers and Reformers do would likely only increase this overhead.

6 Conclusion

While the QANet implementation did not perform well, this project was a great way to explore model
training performance and uncovered an interesting, if artificial tradeoff between operation efficiency
and number of operation kernels used for GPU computations. While Nvidia has eliminated this trade-
off for LSTMs with a custom GPU kernel in CuDNN, this result does underscore the work on matrix

operation compilers that could effectively fuse many matrix operations into a single, optimized kernel
without the engineering effort of writing a highly-optimized GPU kernel in a low-level language like
GC.

7 Acknowledgements

This project was a great learning experience for me that was a fantastic introduction to natural
language processing, deep learning systems and a great vantage point to see how ML and systems fit
together. Thanks to the course staff for making this project and the learning this quarter possible!

8 Appendix: Figures

60-

50

Model

— BiDAF

— CharBiDAF

— CharQANet

— QANet

— TallCharQANet

T T T T T T 1

1,000,000 2,000,000 3,000,000 4,000,000

Step

Figure 6: Dev EM score during training

Model

— BiDAF

— CharBiDAF

— CharQANet

— QANet

— TallCharQANet

 T T T T T T 1

1,000,000 2,000,000 3,000,000 4,000,000

Step

Figure 7: Dev F1 score during training

Model

6- — BiDAF
— CharBiDAF

— CharQANet

— QANet

5- — TallCharQANet

a
a
2a

4 +

3 -

T T T T T T T 1

0 1,000,000 2,000,000 3,000,000 4,000,000

Step

Figure 8: Train log loss during training

References

[1] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional

Attention Flow for Machine Comprehension. arXiv:1611.01603 [cs], June 2018.

[2] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,

and Quoc V. Le. QANet: Combining Local Convolution with Global Self-Attention for Reading
Comprehension. arXiv: 1804.09541 [cs], April 2018.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. arXiv:1706.03762 [cs],

December 2017.

[4] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The Efficient Transformer.

arXiv:2001.04451 [cs, stat], February 2020.

[5] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-Attention

with Linear Complexity. arXiv:2006.04768 [cs, stat], June 2020.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding. arXiv: 1810.04805 [cs], May
2019.

[7] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient Transformers: A Survey.

arXiv:2009.06732 [cs], September 2020.

[8] Yoon Kim. Convolutional Neural Networks for Sentence Classification. arXiv: 1408.5882 [cs],

September 2014.

[9] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global vectors for
word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532-1543, 2014.

[10] Yu-An Wang and Yun-Nung Chen. What Do Position Embeddings Learn? An Empirical Study
of Pre-Trained Language Model Positional Encoding. arXiv:2010.04903 [cs], October 2020.

