
Efficiency of Dynamic

Coattention with
Character Level Embeddings

Stanford CS224N Default Project

George Younger Michael Lin
Department of Computer Science Department of Computer Science

Stanford University Stanford University
gyounger@stanford.edu mlin4@stanford.edu

Semir Shafi
Department of Computer Science

Stanford University
semir@stanford.edu

Abstract

Question answering has long been a difficult task for computers to perform well
at, as it requires a deep understanding of language and nuance. However, recent
developments in neural networks have yielded significant strides in how well
computers are able to answer abstract questions; concepts like dynamic coattention
and character level embeddings have helped machines with abstract tasks like
reading comprehension. Despite these strides, training models utilizing these
techniques remains cumbersome and exceedingly time consuming. Within the
scope of this project, we attempt to replicate the techniques mentioned above in
conjunction with each other while simultaneously removing aspects of the training
process that extend its time frame unnecessarily; our goal was to optimize not only
for accuracy of the model but also for the speed of training after discovering our
initial baseline model took approximately 15 hours to train on a remote GPU.

1 Key Information to include

¢ Mentor: Elissa Li

¢ External Collaborators (if you have any): N/A

¢ Sharing project: Sure!

2 Introduction

With recent developments in neural networks, question answering has become an increasingly popular
methodology of testing how sophisticated a network is and of determining how closely machines can
mimic human understanding of language and its nuances. This is an exceptionally difficult problem-
question answering requires understanding of both the information that the entity asking the question
desires as well as how to glean this information from provided text (as well as determining if the
information is even present to begin with).

One problem with these models is that they are sometimes prohibitively computationally expensive
to train. As an example, the baseline model provided to us by the starter code for this project took
around 13 hours to train; any tweaks or adjustments required a complete retrain of the model. While
accuracy in question answering is certainly an important goal, sometimes speed and ease of use can

Stanford CS224N Natural Language Processing with Deep Learning

be equally or even more important goals- some users may be willing to sacrifice some accuracy for
the speed at which they can adjust the model.

After identifying this problem, our team decided to implement a couple improvements on top of
the baseline model provided to us and attempt to optimize it such that it could be trained more
quickly while sacrificing minimal accuracy. Our group chose to implement character embeddings
in conjunction with a dynamic coattention model. After doing a literature review, we believed that
character embeddings provided a relatively painless and simple means of increasing our accuracy
in question answering without sacrificing much, if any, computation time. We determined that
the dynamic coattention model would require significantly more computation time, but would also
provide a much more robust and accurate question answering model upon which we could experiment
with different adjustments to attempt to optimize for speed of training.

3 Related Work

3.1 BiDAF

Our baseline model drew inspiration from the BiDAF model as described in [1]. Seo et. al propose
a multi-stage hierarchical process that uses bi-directional attention. Unlike previous work, since
they compute attention at every time step and permit the attended vector to flow into the modeling
layer, they minimize the loss caused by early summarization. Furthermore, they also leverage a
memory-less attention mechanism where the attention at each time step doesn’t depend on attention
from the previous time step (i.e. avoiding dynamic attention).

3.2 Dynamic Coattention

Xiong and Zhong proposed a two-fold solution to overcome local maxima when answering a question
[2]. They propose a "coattention model" to give attention to both the question and the context at the
same time, building a codependent representation of them simultaneously which they use to predict
the starting and ending point of the answer within the context. Second, they introduced a dynamic
point decoder, which iteratively moves through the context to determine which start and endpoints in
the context satisfy the question best.

3.3. QANet

Yu et al. developed a model to tackle a similar problem: the latency of training and reference of
RNNs used for question answering [3]. Their QANet model eliminates all RNNs and instead consists
of convolution and self-attention. They achieve 3-13x faster training time on the SQuAD dataset
without compromising accuracy in comparison to recurrent models.

4 Approach

Initially, our approach was simply the vanilla baseline model provided to us by the teaching staff.
From there, we constructed a character embedding layer to be appended to the word embeddings
we were already utilizing (this was our progress at the milestone). Finally, based on the description
of a coattention model[2], we constructed our own implementation of the coattention model, but

we did not have time to implement the dynamic decoder also described by the paper as we found it
prohibitively difficult to implement.

4.1 Initial Model

Our initial model consisted of two embedding layers, the context and the question embeddings, which
both had word embeddings concatenated together. Once we had constructed these embeddings, we
passed them through an attention layer, which were just vanilla weight matrices with a bias term.
Finally, we passed these through a decoder layer, which was initially just a simple fully connected
linear layer followed by an output layer. This was by far our most simplistic model, but it provided
the base on which we constructed the rest of our models.

4.2 Character Embeddings

Once we added character embeddings to our model, it was effectively the exact same as the former
model (layers were all the same, they had just changed sizes to accommodate character embeddings
concatenated on top of the word embeddings). We then passed this through the same decoder model
that we had in the initial model, but again with the layer dimensions adjusted to reflect that we had
added character embeddings to the input. This was the model we used for the milestone.

4.3 Coattention Model

We used the paper referenced in [2] to build our coattention model, constructing our layers and weight
matrices in the same way they did. Our model first constructs the embeddings for the characters and
words in both the context and the question. The original paper utilizes an LSTM layer to embed the
words in the question and the character, but we decided to just utilize an Embedding layer similar to
what we used for the word + character embeddings in the milestone.

We then compute what the paper refers to as the Affinity Matrices between the two; this is the product
of the context matrix and the question matrix, with the softmax across the different dimensions to
compute the affinities of each with respect to the other; these are referred to by the paper as the
normalized attention weights A? and A?. We compute the product of A® and D to get the attention
contexts of every word in the document given the question; essentially, we are looking to see how
important each word in the document could be given the words in the question. We concatenate this
with the question embeddings and take a similar product to get the attention contexts of every word
in the question given the document; this now tells us which words in the question are particularly
important to calculate the answer to the question. Finally, we concatenate this matrix with the
document embeddings and feed the final result into an LSTM layer.

Pictured below is a diagram from the paper referenced showing how the coattention model is
constructed, which we referenced to build our own coattention model.

U Ue

" | | | | | 2a al at al at | tt Le] te ra

m+1 D
documen A

pears
ay nun‘

Figure 2: Coattention encoder. The affinity matrix DL is not shown here. We instead directly show
the normalized attention weights A? and A®.

yo
np

ai
d

yo
np

oi
d

| a

e
a

e
a

=
]

=
a

ye
ou
oo

Q:

ell
n+1

y
e
o
u
0
d

4.4 Output

The original paper implements a dynamic pointer decoder, iterating across many different potential
output points and choosing the best one. Without testing it, we believed that this might introduce
a bottleneck to training time, which would counter our goal of optimizing the model for speed;
additionally, the coder looked prohibitively difficult to implement, so we opted to utilize the simple
output model from the original BiDAF model in the milestone.

We experimented with different layers being added to and subtracted from the output layer (we
attempted to add an additional LSTM layer, believing it would help with the coattention encodings
by identifying similar patterns of words across the question and the answer like "Where was John

Adams born?" "John Adams was born in..."). We also experimented with removing the modeling
layer from the output as we believed the coattention model would have sufficient complexity to be
able to identify answers to the questions accurately.

5 Experiments

Our experiments mainly just consisted of training our model and seeing how it performed on unseen
dev sets of data; we trained 3 different models after our various adjustments described in our approach
to the model and saw their performance on the Fl, EM, and AvNA metrics provided by Tensorboard.

5.1 Data

The data we used was paragraphs potentially containing salient information to a question and then
the question itself. For example, the question could look something like

"Who won the NFL MVP award in 2016?"

and the paragraph could look something like

The 2016 NFL season began on September 1, 2016, and concluded with the Super Bowl
on February 13, 2017. The NFL champions for this season were the New England Patriots, who
defeated the Atlanta Falcons 34-28 in the Super Bowl. The NFL MVP for this season was Matt Ryan,
the quarterback for the Atlanta Falcons.

If the system were to correctly identify that Matt Ryan was the answer to this question, or
give an answer similar to that, it would be rewarded; otherwise, it would receive a score of 0 and need

to tweak its parameters. The data for this model consisted of thousands of these question/answer pairs
to help the machine develop and understanding of what a question was looking for. Additionally,
some provided contexts did not contain the answer to the question asked; in this case, the machine is
trained to respond without a response as it does not have the necessary information to be able to
answer the question.

5.2 Evaluation method

Our evaluation consisted of the previously discussed metrics of the Fl, EM, and AvNA scores on
the dev set of data, as well as the time taken to train the model as we were seeking to optimize for
both the accuracy of the model as well as the speed with which it could train. We wanted to see if we
could sacrifice minimal accuracy from the character embedding model and simultaneously train in
less time, as the character embedding model took around 13 hours to train.

5.3 Experimental details

Running our experiments was fairly straightforward- we tinkered with the model locally until we
believed it was ready to be trained, then copied the code from our local machine onto a remote Azure
machine to train on the aforementioned training data set. Every 50,000 iterations, we would pause
the model to evaluate its performance on a development set of questions and answers not yet seen, to
ensure that it was not overfitting to the training data and was indeed learning correct parameters to

5.4 Results

Visual representation of our models’ performance on the dev sets:

AvNA EM FI
tag: dev/AVNA tag: dev/EM tag: dev/F1

62

| 48 50.

) 500k 1M 1.5M 2M 2.5M 8M 3.5M QO 500k 1M 1.5M 2M 2.5M 83M 3.5M

ra
he

ra IM E MM E

NLL
tag: dev/NLL

46

=o

Name Smoothed Value Step Time CELT =)

O train/baseline-20 1.773 1.252 3.898M Wed Mar 3,04:10:05 13h36m 20s

train/baseline-44 3.332 4.34 3.898M Sun Mar 14,03:27:17 6h 40m 43s

1-104 oF. ta Le ao 2.946 3.898M Sun Mar 14, 18:49:13 15h 18m 53s

In the above graphs, the green is our character embedding model, the pink is the model we trained
with coattention encoding that had a modeling layer appended to the output layer, and the brown is
the model we trained with coattention encoding that did not have a modeling layer appended to the
output layer.

Clearly, our coattention models did not perform nearly as well as the pure character embedding
model, so the model we chose to use for the final test set was our character embedding model.
We go into detail about why we believe this to be the case in the evaluation section, but the main
point that we believe we should have considered in hindsight was that applying coattention to word
embeddings grants importance to words in the opposite context (question to document and vice versa)
based on their presence; when we appended character embeddings, we believe we were introducing
false signals to the model that made it believe that the characters were important to answering the
questions when in fact it just introduced quite a bit of noise.

In this vein, we discovered that removing the modeling layer from the output of the coattention model
did not substantially decrease our accuracy, but it did shave approximately 60% of the training time
off the model that did have the modeling layer in its output. We don’t believe this is because the
modeling layer is unimportant, but rather because combining coattention with character embeddings
will not work in general; if we were to have implemented a pure coattention model without character
embeddings, we believe the difference between the two models would have been far more stark.

Additionally, the pure character embeddings BiDAF model performs far better than the more complex
coattention model with the modeling layer in its output at less time; this suggests that combining these
two approaches actually makes the model worse along with being more computationally complex,
which was the opposite of what we were trying to achieve.

Similarly,

6 Analysis

6.1 Ablation Study

Our baseline word-level embedding BiDAF model achieved an F1 score of 58. Adding character level
embeddings had a positive impact on the performance. The F1 score increased from 58 to 63. Because
word embeddings can only handle previously seen words, adding a character level embedding appears
to perform superiorly since out-of-vocabulary words can also be given an embedding.

Our coattention model with a modeling layer and character level embedding did not perform nearly
as well as we would have expected. It acheived an F1 score of about 56. We attribute its low score
to the lack of implementation of a dynamic decoder (lack of time) and because we incorporated
character level embeddings. Essentially, the coattention model might have performed poorly because
the character embeddings introduced more similarities between the question and the context than
should have actually been attributed. For example, the coattention model attributes importance to
embeddings in the question and document based on their presence in the opposite context; with words
this works well to identify important tokens, but once characters are introduced, it may be attributing
importance to specific characters, which can end up being nonsensical. We noticed that the time it
took to train the model was significant. In an effort to remove the bottleneck, the same coattention
model without a modeling layer trained in half the time but still achieved an F1 score greater than
54. Basically, removing the modelling layer did not significantly affect performance but significantly
reduced the training time.

6.2 Specific Examples

We looked at several examples in the dev step to see how the question and answering was performing
across the three models, and we found some pretty valuable insights from looking at the qualitative
results, especially as we consider what about these models led to these different results:

6.2.1 "Why" Questions

Example 1: Why is Warsaw’s flora very rich in species?

¢ BiDAF with character embeddings: The species richness is mainly due to the location of
Warsaw within the border region of several big floral regions.

¢ Coattention without modeling layer, with character embeddings: N/A

¢ Coattention with modeling layer and character embeddings: N/A

¢ Correct answer: location of Warsaw

To support our quantitative results of which models performed better, it’s clear here that the BiDAF

with character embeddings worked better. What we tended to see with most "why" questions was that
the first model would be able to answer it, but the next two couldn’t find it. Additionally, we found

that BiDAF with character embeddings tended to do better with longer answers and with more word
variations. Perhaps the coattention models weren’t able to understand that "rich in species" correlated
with "species richness".

6.2.2 Not Answerable Questions

Who made experimental measurements on a model Rankine cycle?

¢ BiDAF with character embeddings: N/A

¢ Coattention without modeling layer, with character embeddings: Watt

¢ Coattention with modeling layer and character embeddings: Joseph Black

¢ Correct answer: N/A

Similarly, the BiDAF seemed to perform better than the Coattention models. Interestingly enough,
in this section, it was stated that "The experimental measurements made by Watt on a model steam
engine led to the development of the separate condenser. Watt independently discovered latent heat,
which was confirmed by the original discoverer Joseph Black, who also advised Watt on experimental
procedures."

Perhaps the Coattention without modeling layer saw the proximity that Watt was to "experimental
measurements" and decided that the answer was correct, while the other Coattention with modeling
perhaps noted that Joseph Black was the "original discoverer". Either way, in many of the examples
we looked at, they seemed to put more weight in associated names/people than trying to find the exact
answer.

6.2.3 'Not'' Questions

How many non-Muslims are in Greater London??

¢ BiDAF with character embeddings: Over 900,000.

¢ Coattention without modeling layer, with character embeddings: 900,000

¢ Coattention with modeling layer and character embeddings: 900,000

¢ Correct answer: N/A

All three models were tricked into returning 900,000 because in the paragraph it stated that "there are
over 900,000 Muslims in Greater London." This happened in a lot of other questions where there
was a negation. Clearly, this shows that all three models still aren’t able to understand how negatives
function relative to the sentences.

7 Conclusion

We explored a handful of different approaches on improving the SQuAD evaluation score within
the context of coattention models. Immediately, we noticed character-level embeddings increase
evaluation metrics by a few points and decided to explore coattention models with character-level
embeddings. The performance of our coattention models without a dynamic decoder performed
significantly worse than the baseline. We noted how removing the modeling layer reduced the training
time in half while achieving a similar performance.

We hypothesized that the coattention model did not perform as well because the character-level
embeddings introduced unnecessary and irrelevant similarities between the question and context
embedding. Furthermore, we noted that there were some variance in the training runs especially in the
F1 score. Some potential avenues for future work can explore removing character-level embeddings,
reintroducing a dyamic decoder and observing the performance between a coattention model with
and without a modeling layer to see if there are still improvements in training time. Furthermore, it
would also be interesting to further explore the QANet model to understand how they intended to
improve on training time.

We acknowledge that our model did not perform as well as we would’ve liked but we note that we’ve
seen promise in the ability to reduce training time.

References

[1] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional

attention flow for machine comprehension. arXiv preprint arXiv: 1611.01603, 2016.

[2] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. arXiv preprint arXiv: 1611.01604, 2016.

[3] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,

and Quoc V Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. arXiv preprint arXiv: 1804.09541, 2018.

