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Abstract 

Question answering (QA) is an important problem with numerous application 
in real life. Sometimes, the resource of certain QA task is limited. This work 

aims to build a robust QA system that can generalize to novel QA tasks with 
few examples and gradient steps. We propose a Mixture-of-Experts(MoE) style 
training framework, and use meta-learning methods for domain adaptation. We also 
explored data augmentation techniques, and successfully improve out-of-domain 
QA performance of baseline models on F-1 score from 50.81 to 53.84 and exact 
match (EM) score from 34.82 to 39.27. Our approach achieves a F-1 score of 60.8 
and EM score of 42.2 on the out-of-domain QA testing leaderboard. 

1 Introduction 

Question answering(QA) has achieved significant performance improvements over the last few 
decades and is widely used in our daily life such as online search and smart assistants. Although 
the development of QA is rapid, it usually needs to collect and feed in large amount of training 
datasets of natural human language. Our goal is to build a robust QA system that automatically 
answer questions posed by humans in a natural language with few examples and gradient steps 
based on the provided DistiIBERT model. In order to improve the performance of DistilBERT 
model, we explore and implement models and techniques including Mixture-of-Experts (MoE), 
meta-learning (MAML Algorithm), and data augmentation. Eventually, we successfully integrate the 
three mentioned approaches with a focus on MoE and boost the F1/EM scores on the out-of-domain 
test datasets. 

2 Related Work 

¢ Mixture-of-Experts (MoE) 

The paper "Adaptive mixtures of local experts"[1] authored by R. Jacobs, Michael I. Jordan, 
S. Nowlan, and Geoffrey E. Hinton in 1991 first introduces Mixture-of-Experts (MoE): a 
supervised procedure for systems composed of many separate networks learning to handle a 
subset of the complete set of training cases which can be viewed as either a modular version 
of a multi-layer supervised network, or as an associative version of competitive learning. 
Since then, MoE training has been implemented in many NLP research papers[2, 3] and 
demonstrate great model improvement. 

We reference the original paper in 1991[1] as our main approach to boost the performance 
of DistiIBERT model on the robustQA task: training k models (or "experts") along with a 
gating function (in this case, MLP) that controls the mixture and update the experts. 

¢ Data Augmentation in NLP 

Data augmentation technique, from simple to complex, is vastly utilized in many NLP 
papers[4, 5, 6, 7, 8] due to limited labeled training datasets available. The paper "An 
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exploration of data augmentation and sampling techniques for domain-agnostic question 
answering"[9] shows us applicable techniques for our in-domain data augmentation in order 
to prevent model from learning brittle correlations that hurt the out-of-domain performance. 
In this paper, the researchers investigate the various data sampling strategies, query and con- 
text paraphrases generated by back-translation: English translated to German and translated 
back to English, to add quantity to the original in-domain datasets. Their experiments show 
that data augmentation techniques including back-translation and word substitutions can 
improve the F1/EM scores on testing on the out-of-domain datasets and the robustness of 
QA system. 

In addition, we reference "Semantically Equivalent Adversarial Rules for Debugging NLP 
Models"[10] which presents that data augmentation significantly reduces bugs, while main- 
taining accuracy. The paper introduces an original data augmentation technique called 
SEAR: semantically equivalent adversarial rule, which can be applied to any type of mod- 
els and allows human users to accept/reject rules based on whether or not they preserve 
semantics. 

Meta-Learning 

We review "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks"[11] to 
explore possible applications of meta-learning in question answering task. The paper covers 
step-by-step implementation of Model-Agnostic Meta-Learning(/MAML) algorithm that 
is compatible with gradient-descent trained model and its application to various learning 
problems including text classification. The paper shows that meta-learning can solve new 
learning tasks using only a small number of training samples, which matches our goal of 
learning to answer questions with few training examples. 

Many other papers[12, 13, 14, 15] in NLP area also uses meta-learning to boost model per- 
formance since labeld NLP datasets are very limited. We particularly look at "Investigating 
Meta-Learning Algorithms for Low-Resource Natural Language Understanding Tasks"[16] 
and "Learning to few-shot learn across diverse natural language classification tasks"[17] 
for insights. Both paper covers how to build few-shot models via meta learning with very 
few resource for training, which takes a small number of samples from a task (called the 
support set) as input and outputs an adapted model that can make accurate predictions 
on new examples from the task (the query set). The goal of meta-learning training is to 
maximise accuracy on the query set after adapting to the support set. Both papers validate 
that the MAML algorithm can strongly beat the baseline. 

The paper "On First-Order Meta-Learning Algorithms"[18] introduces another first-order 
gradient-based meta-learning algorithm called Reptile, which works by repeatedly sampling 
a task, training on it, and moving the initialization towards the trained weights on that task. 
Like MAML, Reptile learns an initialization for the parameters of a neural network model. 
When we optimize these parameters at test time, learning becomes faster. The paper shows 
that combining MAML and Reptile can optimize well for within-task generalization. 

Few-shot learning in NLP 

Few-shot modeling[19, 20] is an important problem that can be applied to various areas 
of natural language processing. With in-context learning, the model, including a general 
and task-agnostic representation, can adapt to a new problem not being limited to a specific 
task. We review "Making Pre-trained Language Models Better Few-shot Learners"[21] to 
explore practical application of few-shot learning in NLP, mainly for fine-tuning purpose. 
The researchers use smaller language models to improve the computational efficiency of fine- 
tuning on a small number of annotated examples. They successfully outperform standard 
fine-tuning procedures in a low resource setting. Specifically, the approach this paper 
proposes for few-shot language modeling can achieve performance greater than GPT-3, 
which has an unrealistic number of parameters for common research-purpose devices. This 
aligns with the setting of our work where only limited computation is available.
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Figure 1: Proposed Mixture-of-Experts Model 

3 Approach 

3.1 Problem Set-up 

For the question-answering (QA) task, we assume a input tuple (c, q) where c is the context and q is 
the question, and the goal is to find the answer a. We also assume that the answer a is a part of the 
context c, so instead of forming the problem as a natural language generation problem, we make our 
model to predict the start and end indices 7s¢arz¢ and tenq of the answer in c. 

The goal of this study is to adapt to a set of out-of-domain QA tasks J’ = {T7,..., 77” } with datasets 
from a set of in-domain QA tasks Dj, = {D1, ..., Dm} and a few examples from each out-of-domain 

QA task Dou; = {D},..., Di}. Given that all of the QA tasks have the same format, we are able to 
test each model on different datasets which can help us understand the domain gap between these 
datasets better. 

3.2 Base models 

We use the DistiIBERT[22] for question answering model implemented by HuggingFace[23] as our 
baseline models, which is required by the default project handout (robustQA)[24]. The model uses a 
DistilBERT and a linear classifier to make predictions of the starting and ending indices of an answer 
in the context. We will refer each of these models as "base models" in the following. We initialize all 
of the base models using the provided weights of a BERT-based pretrained transformer and finetune 
on different datasets. Particularly, we set the base model that trains on all three in-domain datasets as 
our "baseline model" for us to compare with. 

3.3. Data augmentation 

We explore two data augmentation techniques: synonym replacement and random swap to increase 
the diversity of the dataset available for training models, without actually collecting new data. We use 
the nlpaug library [25] to generate augmented data. Following [25], we employ the PPDB database 
[26] for synonym replacement. For each word, we set the probability of it being augmented (either 
swapped or replaced by synonym mentioned in the following) to be p = 0.3. 

We employ the augmentation strategy as follows: for a given context-question pair, we use make 
k; augmented example with the augmented context and the same question, and another k with the 
augmented question and the same context. We use this conservative strategy of augmentation to make 
training more stable, without having too much deviance to the original data. Unless mentioned, we 
set k to be 1. Note that randomly swapping two words might possibly change the ground-truth start 
and end indices of the answer, but practically, we do not observe that this hurts QA performance. 

3.4 Gating network for mixture-of-experts output aggregation 

We train our base models with different datasets and data augmentation techniques. To adapt to novel 
domains, we employ the method of using a mixture of experts (MoE)[1].



As shown in Figure 1, we train a QA model EF; for each in-domain dataset D; and another one 

with all in-domain datasets combined. We call this set of (m + 1) QA models "experts", denoted 
as € = {EF}, ..., Em+1}. We have another lightweight model G which we call the gating network, 
producing QA results by weighting the embeddings produced by each expert model. During training, 
we fix the parameters of each expert to train G' only. 

The gating network G, illustrated in Figure 1, takes the concatenated embeddings of each experts 
before the final layer, e = {€1,...,@m+1i}, and the input tokenized data d. The goal is to produce an 
output embedding by weighting the embeddings of each individual expert. We compute 

a = softmax(Q(d)' K(e)) 

to get the weight of the embeddings from each expert by a query similar with dot-product attention, 
and @ and K are multilayer perceptron. The final embedding, e€ fingi, is obtained by a weighted sum: 

Efinal = S AGE; 

i 

We then add a dropout[27] layer after getting the embedding, and a QA output layer for the final 
prediction just like the base model mentioned in Section 3.2 to predict the start and end indices of the 
answer in the given context. 

During training, we fix the weights of each of the base models (or the "experts"), and only train the 
gating network G' to generate the QA result by making reference to each of the experts. We refer 
to training the gating network as MoE training. We also apply meta-learning algorithms for MoE 
training as discussed next. 

3.5 Meta Learning 

Meta Learning is a technique to learn to learn a new task. The idea is to form a representation that 
can be quickly adapted to a new task. MAML [11] is a meta-learning algorithm that tries to improve 
the query set performance of each in-domain tasks during training. Refer to the paper [11] for further 
details of the algorithm. 

We integrate MAML algorithm into MoE training with the weights of each experts FE; fixed. Algo- 
rithm 1 shows the pesudocode of the MAML algorithm we implement for our setup. In brief, at each 
meta-learning step, we sample a set of tasks (datasets in our context) and adapt to each tasks with 
certain steps. We update the parameters such that all tasks can have good performance after a few 
steps of adaptation. 

We train the gating network G with the MAML algorithm and finetune on each individual out-of- 
domain dataset to report the final performance. Details are discussed in the sections below. 

4 Experiments 

4.1 Data 

We utilize three in-domain datasets: the Stanford Question Answering Dataset (SQuAD) [28], Natural 

Questions [29], and NewsQA [30], all pre-processed in the same format as SQuAD. In addition, we 

use three out-of-domain datasets: DuoRC[31], RACE[32], and RelationExtraction[33]. All data is 

provided in the first place and please refer to the default project handout (robustQA)[24] for further 
detail. 

4.2 Evaluation method 

We evaluate model performance with Exact Match (EM) score and F1 score, and measure few-shot 

performance on out-of-domain tasks and comparison to in-domain task scores. This evaluation 
standard is set by the default project handout (robustQA)[24] as well as the leaderboard.



  

MAML Algorithm for MoE Training 

Require: D: a set of datasets 
Require: a, 3: step size hyperparameters 
1: randomly initialize 0 
2: while not done do 
3 Sample np datasets D; ~ D 

4: Set meta-loss Lineta < 0 

5: for all D; do 

6: ere 
7 

8 
9 

  

Sample N examples from the training set of D; 
for 7 in 1,..., K: 

Evaluate the gradient Vg Lp, (fo) with respect to the N examples 
10: Compute adapted parameters 0’ with gradient descent 
11: Sample K examples from the query set of D; 

12: Lmeta = Lmeta + Lp; (for) 

13: end for 
14: Update 6 + 6 — BVo6L meta 

15: end while 
  

Table 1: Pseudocode for our MAML implementation 

4.3 Experimental details 

For training the base networks, we use the AdamW[34] optimizer with a learning rate of 3e-5 for all 
models for 3 epochs with a batch size of 16. We picked the best model based on in-domain validation 
performance to obtain a group of experts. Training takes 3 hours for each epoch for the concatenated 
dataset, and becomes slightly lower for each individual dataset. 

For MoE training, we employ the same setup as previously discussed. We fix the weights of each 
individual expert and train the gating network G' only. We observe that the network achieves decent 
metric numbers after only a few hundred steps, and the best performance is often achieved at around 
2000 steps, which takes about two hours to train. 

For using meta-learning for training the gating network, we use the learn2learn package[35] for 
the meta-learner that handles cloning and adaptation of the parameters, and write most code on our 
own for the meta-training loop. For meta-learning parameters, we use a meta-step learning rate 3 of 
3e-5, and a domain-adaptation learning rate a of le-4. We choose the number of datasets to sample 
at each meta-step 7p to be 3, the batch size N to be 16, and the number of adaptation steps within 
each meta-step to be 2. We train the gating network with MAML for 3 epochs, but we generally 
observe the best performance is obtained at around 2000 steps just like vanilla MoE training, but it 
takes about 8 hours. Note that MAML requires more time to train because each meta-step contains 
multiple steps of adaptation to multiple tasks. After MAML training, we finetune on each individual 
out-of-domain training sets for domain adaptation, which generally takes within 200 steps. 

5 Results and Quantitative Analysis 

In this section, we will discuss our results on the out-of-domain testing and development sets. We 
have achieved the F1 score of 60.8 and EM score of 42.2 on the RobustQA out-of-domain test set 

leaderboard with our MAML model discussed later in this section. The performance is among one of 
the best-performing models. 

5.1 Results of base-model training 

We first analyze the results of base-model training. Table 2 shows the performance of base models 
trained with different dataset and augmentation. Note that each base model is discussed in Section 
3.2; we train different base models in order to select the candidates for experts used in the later MoE 
training.



  

  

  

  

        

In-Domain Out-Domain 

Training set | Augmentation Fl EM Fl EM 

x 76.27 61.42 | 41.25 24.35 
SQuAD synonym 75.26 59.94 | 42.04 25.92 

swap 75.31 60.44 | 42.63 28.27 

x 55.75 38.44 | 38.61 24.87 
NewsQA synonym 52.07 32.69 | 39.37 24.35 

swap 55.12 38.08 | 39.57 24.08 

x 66.89 50.83 | 35.88 20.16 
NatQuestions synonym 66.81 49.73 | 34.89 19.90 

swap 66.91 49.52 | 37.76 19.90 

x 70.21 54.26 | 50.81 34.82 
Combined synonym 70.79 54.56 | 44.87 28.27 

swap 70.26 53.70 | 46.65 30.10   

Table 2: Performance of base models trained on different sets, with or without data augmentation. 

We test the performance of each result model with in-domain and out-domain development set. Note 
that in-domain here refers to the same dataset as the training set (for example, if we train with SQUAD 
training set, the in-domain development set is SQUAD dev). For out-domain development set, we use 
the combination of RACE, RelationExtraction, and DuoRC. The "Combined" training set here is the 

one trained with all three in-domain training sets (SQUAD, NewsQA, and NatQuestions). 

We first see that for in-domain testing, the best performance is achieved without augmentation, but 
augmentation tends to help with out-domain testing. We hypothesize that augmentation diversifies 
the in-domain data, making the model less prone to overfitting to the in-domain tasks. This would 
hurt in-domain testing performance but helps the model to generalize to novel tasks better. 

Meanwhile, we also observe that synonym augmentation improves in-domain testing performance 
for the model trained on all three datasets, but augmentation hurts for out-domain sets. We think that 
the combined training set has far greater diversity than a single dataset, and the problem of overfitting 
to the training domain is less significant. We also observe that the model trained with the combined 
dataset without augmentation performs the best on out-of-domain development set. In the following 
discussion, we will refer to this model as the baseline we try to improve. 

5.2 Effect of using Mixture-of-Experts 

Next, we use different base models (or "experts") for mixture-of-expert training with the gating 
network G. Table 3 shows the performance of different MoE models, with the top row as the baseline 
model mentioned in Section 5.1. 

We hypothesize that the models in section 5.1 all overfit to their corresponding training set to some 
extent, so we choose different base models as our experts in this section. We first choose three models 
trained without augmentation, one from each dataset, to construct the set of three experts. We the train 
the gating network with these three networks and refer to it as MoEs in the table. We made another 
experiment by adding the baseline model into the experts and call the MoE model MoE4. The last 
experiment is replacing each individual model with the one trained with the swapping augmentation, 
but keeping the baseline model unchanged. We call this model MoE sap. 

We first observe that none of the MoE models perform better than the baseline on in-domain 
development set. It is reasonable because the baseline network has a bias towards in-domain tasks; 
adding weaker experts to the baseline might not help with in-domain testing. However, we do observe 
that MoE, improves out-of-domain development set performance. We believe that with more experts, 
the model is less prone to overfitting to achieving a better in-domain performance. This technique can 
be the source of the model’s ability to generalize to unseen domains. MoE, 5,yap further improves the 

performance of MoE, by using base models that are more robust to out-of-domain tasks. As shown 
in Table 2, base models trained on augmented single tasks tend to perform better outside the training 
domain.



However, we do observe that MoE3 performs much worse than the baseline. We hypothesize that each 
of the three models might be overfitting to their own training tasks because of the lack of diversity and 
enough training data, which makes it hard for the gating network to form good representation for the 
downstream task. Adding the baseline network helps alleviate this form of overfitting to individual 
datasets. 

  

  

    

In-Domain Out-Domain 

Model Fl EM Fl EM 

Basecombinea | 70.21 54.26 | 50.81 34.82 

MoE3 68.73 53.02 | 42.78 28.01 

MoE, 70.19 54.23 | 51.92 35.34 

MoE4 swap 68.42 51.81 | 52.00 36.13   

Table 3: Performance of MoE training with different base models, with or without data augmentation. 

5.3. Meta Learning for training the Gating Network 

We then explore using meta-learning for MoE training. As discussed in Section 3.5, for meta-learning 
training we need a set of datasets with the training set used in adaptation and the query set used 
for meta-adaptation. For each of the in-domain datasets, we use its training set as the training set 
in Algorithm 1 and the development set as the query set. When we use out-of-domain datasets, we 
set their training sets as query set instead because we need the development set for the purpose of 
evaluation. 

We explore two different meta-learning setups: one with the three in-domain tasks (D;,, = {SQuAD, 
NewsQA, NatQuestions}), and another with the three in-domain tasks and three out-domain tasks 

(Dout = {RACE, RelationExtraction, DuoRC}). We denote them as MAMLp,, and MAMLo,,, +p 

in table 4. 
out 

In Table 4, we observe that using MAML with finetuning on individual out-of-domain training sets 
improves the performance on all metrics to a great extent. This proves our hypothesis that MAML can 
learn to adapt to unseen tasks really well by learning to learn during the meta-training phase. We also 
observe that when we bring out-of-domain tasks into meta-training, even if the training set is small 
and we use the training set also as the query set, the performance on out-of-domain development set 
is improved greater. This technique might help the model handling the three out-of-domain datasets 
better during domain adaptation. 

However, when we submitted the best-performing MAML model trained on all 6 tasks to the testing 
leaderboard, we obtained an F1 score of 58.59 and EM of 39.66, which is lower than we expected. 

We hypothesize that because the training and development sets of the out-of-domain datasets are very 
small, there might be a gap between these sets and the larger test set. Then we used the MAML model 
trained on in-domain set only, MAMLo,, , and lowered the number of domain adaptation steps to 
around 100. This model achieves the testing performance of F1 of 60.80 and 42.25, which is among 
the best-performing models. Therefore, the second model that uses the tiny out-of-domain training set 
might be "overfitting to the development set" although not using the data from the development set. 
The first MAML model, trained on the three large in-domain dataset, might have a greater capability 
in generalization. 

  
RACE RelExtr DuoRC Total 

Model Fl EM Fl EM Fl EM Fl EM 

MAMLo,,, 37.53 23.44 | 73.14 53.12 | 46.40 35.71 | 52.39 37.43 
MAMLo,, +5 38.67 26.56 | 76.65 56.25 | 46.09 34.92 | 53.84 39.27 

  

        out   

Table 4: Performance of MoE models trained with the MAML algorithm.



6 Qualitative Analysis 

Having observed that the mixture-of-expert training framework improves out-of-domain QA testing 
performance, a question rises: what have the MoE models learned? In this section, we visualize 
the attention weights in the gating network to see how it constructs the final embedding from the 
knowledge of different experts. 

Average attention weight of RACE validation set Average attention weight of RelationExtraction validation set    
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Figure 2: Comparing between the validation F1 scores of each base-model ("expert") and the learned 
attention weights from each gating network. 

We use the model MAMLo,,, to construct Figure 2. Figure 2(a) shows the validation F1 scores of 
each individual experts on each out-of-domain tasks. 2(b) shows the weights the gating network 
puts on each model embedding. We see a correspondence between the attention weights and model 
performance, especially for RACE and RelationExtraction. In addition, we observe that the output 
of RACE and DuoRC depends more on the baseline "Combined" model (which performs the best), 

this can be due to the F1 score of each expert trained on individual datasets to be too low. For 
RelationExtraction, however, the gating network learns to depend less on the baseline model and use 
the other models to reduce overfitting. 

7 Conclusion 

In conclusion, we find that Mixture-of-Experts (MoE)[1] works well on improving the performance of 

DistiIBERT[22] model on the robust QA task along with data augmentation[25] including synonym 
replacement and random swap, and meta-learning including MAML algorithm[11] for domain 
adaptations. As a result, we successfully increase F-1 score from 50.81 to 53.84 and exact match 
(EM) score from 34.82 to 39.27 in out-of-domain validation performance. Eventually, we manage to 
achieve a F-1 score of 60.8 and EM score of 42.2 on the out-of-domain QA testing leaderboard. The 
primary limitation of our work is that due to limited time, we have not experimented more types of 
meta-learning algorithms, parameters and data augmentation techniques. Also, due to limitation of 
GPU capability, we are unable to perform meta-learning with more adaptation steps. Future directions 
to improve our work could be experimenting more meta-learning algorithms and parameters, and 

utilizing the attributes of data in the datasets to form more tasks and scale the number of in-domain 
and out-of-domain datasets.



8 External Collaborator 

We have consulted Jerry Zhenbang Tan (ztan035 @stanford.edu) regarding meta-learning in our 
proposal and training result analysis in our milestone report. However, Jerry has not contributed to 
the final report. 
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