
Improving Out-of-Domain Question Answering with
Mixture of Experts

Stanford CS224N Default Project (Robust QA track)

Haofeng Chen, Danni Ma
Department of Computer Science

Stanford University
alexhc@stanford.edu, dannima@stanford.edu

Abstract

Question answering (QA) is an important problem with numerous application
in real life. Sometimes, the resource of certain QA task is limited. This work

aims to build a robust QA system that can generalize to novel QA tasks with
few examples and gradient steps. We propose a Mixture-of-Experts(MoE) style
training framework, and use meta-learning methods for domain adaptation. We also
explored data augmentation techniques, and successfully improve out-of-domain
QA performance of baseline models on F-1 score from 50.81 to 53.84 and exact
match (EM) score from 34.82 to 39.27. Our approach achieves a F-1 score of 60.8
and EM score of 42.2 on the out-of-domain QA testing leaderboard.

1 Introduction

Question answering(QA) has achieved significant performance improvements over the last few
decades and is widely used in our daily life such as online search and smart assistants. Although
the development of QA is rapid, it usually needs to collect and feed in large amount of training
datasets of natural human language. Our goal is to build a robust QA system that automatically
answer questions posed by humans in a natural language with few examples and gradient steps
based on the provided DistiIBERT model. In order to improve the performance of DistilBERT
model, we explore and implement models and techniques including Mixture-of-Experts (MoE),
meta-learning (MAML Algorithm), and data augmentation. Eventually, we successfully integrate the
three mentioned approaches with a focus on MoE and boost the F1/EM scores on the out-of-domain
test datasets.

2 Related Work

¢ Mixture-of-Experts (MoE)

The paper "Adaptive mixtures of local experts"[1] authored by R. Jacobs, Michael I. Jordan,
S. Nowlan, and Geoffrey E. Hinton in 1991 first introduces Mixture-of-Experts (MoE): a
supervised procedure for systems composed of many separate networks learning to handle a
subset of the complete set of training cases which can be viewed as either a modular version
of a multi-layer supervised network, or as an associative version of competitive learning.
Since then, MoE training has been implemented in many NLP research papers[2, 3] and
demonstrate great model improvement.

We reference the original paper in 1991[1] as our main approach to boost the performance
of DistiIBERT model on the robustQA task: training k models (or "experts") along with a
gating function (in this case, MLP) that controls the mixture and update the experts.

¢ Data Augmentation in NLP

Data augmentation technique, from simple to complex, is vastly utilized in many NLP
papers[4, 5, 6, 7, 8] due to limited labeled training datasets available. The paper "An

Stanford CS224N Natural Language Processing with Deep Learning

exploration of data augmentation and sampling techniques for domain-agnostic question
answering"[9] shows us applicable techniques for our in-domain data augmentation in order
to prevent model from learning brittle correlations that hurt the out-of-domain performance.
In this paper, the researchers investigate the various data sampling strategies, query and con-
text paraphrases generated by back-translation: English translated to German and translated
back to English, to add quantity to the original in-domain datasets. Their experiments show
that data augmentation techniques including back-translation and word substitutions can
improve the F1/EM scores on testing on the out-of-domain datasets and the robustness of
QA system.

In addition, we reference "Semantically Equivalent Adversarial Rules for Debugging NLP
Models"[10] which presents that data augmentation significantly reduces bugs, while main-
taining accuracy. The paper introduces an original data augmentation technique called
SEAR: semantically equivalent adversarial rule, which can be applied to any type of mod-
els and allows human users to accept/reject rules based on whether or not they preserve
semantics.

Meta-Learning

We review "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks"[11] to
explore possible applications of meta-learning in question answering task. The paper covers
step-by-step implementation of Model-Agnostic Meta-Learning(/MAML) algorithm that
is compatible with gradient-descent trained model and its application to various learning
problems including text classification. The paper shows that meta-learning can solve new
learning tasks using only a small number of training samples, which matches our goal of
learning to answer questions with few training examples.

Many other papers[12, 13, 14, 15] in NLP area also uses meta-learning to boost model per-
formance since labeld NLP datasets are very limited. We particularly look at "Investigating
Meta-Learning Algorithms for Low-Resource Natural Language Understanding Tasks"[16]
and "Learning to few-shot learn across diverse natural language classification tasks"[17]
for insights. Both paper covers how to build few-shot models via meta learning with very
few resource for training, which takes a small number of samples from a task (called the
support set) as input and outputs an adapted model that can make accurate predictions
on new examples from the task (the query set). The goal of meta-learning training is to
maximise accuracy on the query set after adapting to the support set. Both papers validate
that the MAML algorithm can strongly beat the baseline.

The paper "On First-Order Meta-Learning Algorithms"[18] introduces another first-order
gradient-based meta-learning algorithm called Reptile, which works by repeatedly sampling
a task, training on it, and moving the initialization towards the trained weights on that task.
Like MAML, Reptile learns an initialization for the parameters of a neural network model.
When we optimize these parameters at test time, learning becomes faster. The paper shows
that combining MAML and Reptile can optimize well for within-task generalization.

Few-shot learning in NLP

Few-shot modeling[19, 20] is an important problem that can be applied to various areas
of natural language processing. With in-context learning, the model, including a general
and task-agnostic representation, can adapt to a new problem not being limited to a specific
task. We review "Making Pre-trained Language Models Better Few-shot Learners"[21] to
explore practical application of few-shot learning in NLP, mainly for fine-tuning purpose.
The researchers use smaller language models to improve the computational efficiency of fine-
tuning on a small number of annotated examples. They successfully outperform standard
fine-tuning procedures in a low resource setting. Specifically, the approach this paper
proposes for few-shot language modeling can achieve performance greater than GPT-3,
which has an unrealistic number of parameters for common research-purpose devices. This
aligns with the setting of our work where only limited computation is available.

Experts E

Gating Network G

QA
Tokenized Results

Data

Figure 1: Proposed Mixture-of-Experts Model

3 Approach

3.1 Problem Set-up

For the question-answering (QA) task, we assume a input tuple (c, q) where c is the context and q is
the question, and the goal is to find the answer a. We also assume that the answer a is a part of the
context c, so instead of forming the problem as a natural language generation problem, we make our
model to predict the start and end indices 7s¢arz¢ and tenq of the answer in c.

The goal of this study is to adapt to a set of out-of-domain QA tasks J’ = {T7,..., 77” } with datasets
from a set of in-domain QA tasks Dj, = {D1, ..., Dm} and a few examples from each out-of-domain

QA task Dou; = {D},..., Di}. Given that all of the QA tasks have the same format, we are able to
test each model on different datasets which can help us understand the domain gap between these
datasets better.

3.2 Base models

We use the DistiIBERT[22] for question answering model implemented by HuggingFace[23] as our
baseline models, which is required by the default project handout (robustQA)[24]. The model uses a
DistilBERT and a linear classifier to make predictions of the starting and ending indices of an answer
in the context. We will refer each of these models as "base models" in the following. We initialize all
of the base models using the provided weights of a BERT-based pretrained transformer and finetune
on different datasets. Particularly, we set the base model that trains on all three in-domain datasets as
our "baseline model" for us to compare with.

3.3. Data augmentation

We explore two data augmentation techniques: synonym replacement and random swap to increase
the diversity of the dataset available for training models, without actually collecting new data. We use
the nlpaug library [25] to generate augmented data. Following [25], we employ the PPDB database
[26] for synonym replacement. For each word, we set the probability of it being augmented (either
swapped or replaced by synonym mentioned in the following) to be p = 0.3.

We employ the augmentation strategy as follows: for a given context-question pair, we use make
k; augmented example with the augmented context and the same question, and another k with the
augmented question and the same context. We use this conservative strategy of augmentation to make
training more stable, without having too much deviance to the original data. Unless mentioned, we
set k to be 1. Note that randomly swapping two words might possibly change the ground-truth start
and end indices of the answer, but practically, we do not observe that this hurts QA performance.

3.4 Gating network for mixture-of-experts output aggregation

We train our base models with different datasets and data augmentation techniques. To adapt to novel
domains, we employ the method of using a mixture of experts (MoE)[1].

As shown in Figure 1, we train a QA model EF; for each in-domain dataset D; and another one

with all in-domain datasets combined. We call this set of (m + 1) QA models "experts", denoted
as € = {EF}, ..., Em+1}. We have another lightweight model G which we call the gating network,
producing QA results by weighting the embeddings produced by each expert model. During training,
we fix the parameters of each expert to train G' only.

The gating network G, illustrated in Figure 1, takes the concatenated embeddings of each experts
before the final layer, e = {€1,...,@m+1i}, and the input tokenized data d. The goal is to produce an
output embedding by weighting the embeddings of each individual expert. We compute

a = softmax(Q(d)' K(e))

to get the weight of the embeddings from each expert by a query similar with dot-product attention,
and @ and K are multilayer perceptron. The final embedding, e€ fingi, is obtained by a weighted sum:

Efinal = S AGE;

i

We then add a dropout[27] layer after getting the embedding, and a QA output layer for the final
prediction just like the base model mentioned in Section 3.2 to predict the start and end indices of the
answer in the given context.

During training, we fix the weights of each of the base models (or the "experts"), and only train the
gating network G' to generate the QA result by making reference to each of the experts. We refer
to training the gating network as MoE training. We also apply meta-learning algorithms for MoE
training as discussed next.

3.5 Meta Learning

Meta Learning is a technique to learn to learn a new task. The idea is to form a representation that
can be quickly adapted to a new task. MAML [11] is a meta-learning algorithm that tries to improve
the query set performance of each in-domain tasks during training. Refer to the paper [11] for further
details of the algorithm.

We integrate MAML algorithm into MoE training with the weights of each experts FE; fixed. Algo-
rithm 1 shows the pesudocode of the MAML algorithm we implement for our setup. In brief, at each
meta-learning step, we sample a set of tasks (datasets in our context) and adapt to each tasks with
certain steps. We update the parameters such that all tasks can have good performance after a few
steps of adaptation.

We train the gating network G with the MAML algorithm and finetune on each individual out-of-
domain dataset to report the final performance. Details are discussed in the sections below.

4 Experiments

4.1 Data

We utilize three in-domain datasets: the Stanford Question Answering Dataset (SQuAD) [28], Natural

Questions [29], and NewsQA [30], all pre-processed in the same format as SQuAD. In addition, we

use three out-of-domain datasets: DuoRC[31], RACE[32], and RelationExtraction[33]. All data is

provided in the first place and please refer to the default project handout (robustQA)[24] for further
detail.

4.2 Evaluation method

We evaluate model performance with Exact Match (EM) score and F1 score, and measure few-shot

performance on out-of-domain tasks and comparison to in-domain task scores. This evaluation
standard is set by the default project handout (robustQA)[24] as well as the leaderboard.

MAML Algorithm for MoE Training

Require: D: a set of datasets
Require: a, 3: step size hyperparameters
1: randomly initialize 0
2: while not done do
3 Sample np datasets D; ~ D

4: Set meta-loss Lineta < 0

5: for all D; do

6: ere
7

8
9

Sample N examples from the training set of D;
for 7 in 1,..., K:

Evaluate the gradient Vg Lp, (fo) with respect to the N examples
10: Compute adapted parameters 0’ with gradient descent
11: Sample K examples from the query set of D;

12: Lmeta = Lmeta + Lp; (for)

13: end for
14: Update 6 + 6 — BVo6L meta

15: end while

Table 1: Pseudocode for our MAML implementation

4.3 Experimental details

For training the base networks, we use the AdamW[34] optimizer with a learning rate of 3e-5 for all
models for 3 epochs with a batch size of 16. We picked the best model based on in-domain validation
performance to obtain a group of experts. Training takes 3 hours for each epoch for the concatenated
dataset, and becomes slightly lower for each individual dataset.

For MoE training, we employ the same setup as previously discussed. We fix the weights of each
individual expert and train the gating network G' only. We observe that the network achieves decent
metric numbers after only a few hundred steps, and the best performance is often achieved at around
2000 steps, which takes about two hours to train.

For using meta-learning for training the gating network, we use the learn2learn package[35] for
the meta-learner that handles cloning and adaptation of the parameters, and write most code on our
own for the meta-training loop. For meta-learning parameters, we use a meta-step learning rate 3 of
3e-5, and a domain-adaptation learning rate a of le-4. We choose the number of datasets to sample
at each meta-step 7p to be 3, the batch size N to be 16, and the number of adaptation steps within
each meta-step to be 2. We train the gating network with MAML for 3 epochs, but we generally
observe the best performance is obtained at around 2000 steps just like vanilla MoE training, but it
takes about 8 hours. Note that MAML requires more time to train because each meta-step contains
multiple steps of adaptation to multiple tasks. After MAML training, we finetune on each individual
out-of-domain training sets for domain adaptation, which generally takes within 200 steps.

5 Results and Quantitative Analysis

In this section, we will discuss our results on the out-of-domain testing and development sets. We
have achieved the F1 score of 60.8 and EM score of 42.2 on the RobustQA out-of-domain test set

leaderboard with our MAML model discussed later in this section. The performance is among one of
the best-performing models.

5.1 Results of base-model training

We first analyze the results of base-model training. Table 2 shows the performance of base models
trained with different dataset and augmentation. Note that each base model is discussed in Section
3.2; we train different base models in order to select the candidates for experts used in the later MoE
training.

In-Domain Out-Domain

Training set | Augmentation Fl EM Fl EM

x 76.27 61.42 | 41.25 24.35
SQuAD synonym 75.26 59.94 | 42.04 25.92

swap 75.31 60.44 | 42.63 28.27

x 55.75 38.44 | 38.61 24.87
NewsQA synonym 52.07 32.69 | 39.37 24.35

swap 55.12 38.08 | 39.57 24.08

x 66.89 50.83 | 35.88 20.16
NatQuestions synonym 66.81 49.73 | 34.89 19.90

swap 66.91 49.52 | 37.76 19.90

x 70.21 54.26 | 50.81 34.82
Combined synonym 70.79 54.56 | 44.87 28.27

swap 70.26 53.70 | 46.65 30.10

Table 2: Performance of base models trained on different sets, with or without data augmentation.

We test the performance of each result model with in-domain and out-domain development set. Note
that in-domain here refers to the same dataset as the training set (for example, if we train with SQUAD
training set, the in-domain development set is SQUAD dev). For out-domain development set, we use
the combination of RACE, RelationExtraction, and DuoRC. The "Combined" training set here is the

one trained with all three in-domain training sets (SQUAD, NewsQA, and NatQuestions).

We first see that for in-domain testing, the best performance is achieved without augmentation, but
augmentation tends to help with out-domain testing. We hypothesize that augmentation diversifies
the in-domain data, making the model less prone to overfitting to the in-domain tasks. This would
hurt in-domain testing performance but helps the model to generalize to novel tasks better.

Meanwhile, we also observe that synonym augmentation improves in-domain testing performance
for the model trained on all three datasets, but augmentation hurts for out-domain sets. We think that
the combined training set has far greater diversity than a single dataset, and the problem of overfitting
to the training domain is less significant. We also observe that the model trained with the combined
dataset without augmentation performs the best on out-of-domain development set. In the following
discussion, we will refer to this model as the baseline we try to improve.

5.2 Effect of using Mixture-of-Experts

Next, we use different base models (or "experts") for mixture-of-expert training with the gating
network G. Table 3 shows the performance of different MoE models, with the top row as the baseline
model mentioned in Section 5.1.

We hypothesize that the models in section 5.1 all overfit to their corresponding training set to some
extent, so we choose different base models as our experts in this section. We first choose three models
trained without augmentation, one from each dataset, to construct the set of three experts. We the train
the gating network with these three networks and refer to it as MoEs in the table. We made another
experiment by adding the baseline model into the experts and call the MoE model MoE4. The last
experiment is replacing each individual model with the one trained with the swapping augmentation,
but keeping the baseline model unchanged. We call this model MoE sap.

We first observe that none of the MoE models perform better than the baseline on in-domain
development set. It is reasonable because the baseline network has a bias towards in-domain tasks;
adding weaker experts to the baseline might not help with in-domain testing. However, we do observe
that MoE, improves out-of-domain development set performance. We believe that with more experts,
the model is less prone to overfitting to achieving a better in-domain performance. This technique can
be the source of the model’s ability to generalize to unseen domains. MoE, 5,yap further improves the

performance of MoE, by using base models that are more robust to out-of-domain tasks. As shown
in Table 2, base models trained on augmented single tasks tend to perform better outside the training
domain.

However, we do observe that MoE3 performs much worse than the baseline. We hypothesize that each
of the three models might be overfitting to their own training tasks because of the lack of diversity and
enough training data, which makes it hard for the gating network to form good representation for the
downstream task. Adding the baseline network helps alleviate this form of overfitting to individual
datasets.

In-Domain Out-Domain

Model Fl EM Fl EM

Basecombinea | 70.21 54.26 | 50.81 34.82

MoE3 68.73 53.02 | 42.78 28.01

MoE, 70.19 54.23 | 51.92 35.34

MoE4 swap 68.42 51.81 | 52.00 36.13

Table 3: Performance of MoE training with different base models, with or without data augmentation.

5.3. Meta Learning for training the Gating Network

We then explore using meta-learning for MoE training. As discussed in Section 3.5, for meta-learning
training we need a set of datasets with the training set used in adaptation and the query set used
for meta-adaptation. For each of the in-domain datasets, we use its training set as the training set
in Algorithm 1 and the development set as the query set. When we use out-of-domain datasets, we
set their training sets as query set instead because we need the development set for the purpose of
evaluation.

We explore two different meta-learning setups: one with the three in-domain tasks (D;,, = {SQuAD,
NewsQA, NatQuestions}), and another with the three in-domain tasks and three out-domain tasks

(Dout = {RACE, RelationExtraction, DuoRC}). We denote them as MAMLp,, and MAMLo,,, +p

in table 4.
out

In Table 4, we observe that using MAML with finetuning on individual out-of-domain training sets
improves the performance on all metrics to a great extent. This proves our hypothesis that MAML can
learn to adapt to unseen tasks really well by learning to learn during the meta-training phase. We also
observe that when we bring out-of-domain tasks into meta-training, even if the training set is small
and we use the training set also as the query set, the performance on out-of-domain development set
is improved greater. This technique might help the model handling the three out-of-domain datasets
better during domain adaptation.

However, when we submitted the best-performing MAML model trained on all 6 tasks to the testing
leaderboard, we obtained an F1 score of 58.59 and EM of 39.66, which is lower than we expected.

We hypothesize that because the training and development sets of the out-of-domain datasets are very
small, there might be a gap between these sets and the larger test set. Then we used the MAML model
trained on in-domain set only, MAMLo,, , and lowered the number of domain adaptation steps to
around 100. This model achieves the testing performance of F1 of 60.80 and 42.25, which is among
the best-performing models. Therefore, the second model that uses the tiny out-of-domain training set
might be "overfitting to the development set" although not using the data from the development set.
The first MAML model, trained on the three large in-domain dataset, might have a greater capability
in generalization.

RACE RelExtr DuoRC Total

Model Fl EM Fl EM Fl EM Fl EM

MAMLo,,, 37.53 23.44 | 73.14 53.12 | 46.40 35.71 | 52.39 37.43
MAMLo,, +5 38.67 26.56 | 76.65 56.25 | 46.09 34.92 | 53.84 39.27

 out

Table 4: Performance of MoE models trained with the MAML algorithm.

6 Qualitative Analysis

Having observed that the mixture-of-expert training framework improves out-of-domain QA testing
performance, a question rises: what have the MoE models learned? In this section, we visualize
the attention weights in the gating network to see how it constructs the final embedding from the
knowledge of different experts.

Average attention weight of RACE validation set Average attention weight of RelationExtraction validation set

Average attention weight of DuoRC validation set
BEOD

‘At
ten

tio
n

We
ig

ht

Att
ent

ion
 W

ei
gh

t

Att
ent

ion
 W

ei
gh

t

F1 scores on RACE validation set F1 scores on DuoRC validation set

 NewsQA _NatQuestions Combined
Modet

b-1 b-2 b-3

(b) Attention weights

squao NewsQA NatQuestions Combined NewsQA NatQuestions Combined
Model! Model

Figure 2: Comparing between the validation F1 scores of each base-model ("expert") and the learned
attention weights from each gating network.

We use the model MAMLo,,, to construct Figure 2. Figure 2(a) shows the validation F1 scores of
each individual experts on each out-of-domain tasks. 2(b) shows the weights the gating network
puts on each model embedding. We see a correspondence between the attention weights and model
performance, especially for RACE and RelationExtraction. In addition, we observe that the output
of RACE and DuoRC depends more on the baseline "Combined" model (which performs the best),

this can be due to the F1 score of each expert trained on individual datasets to be too low. For
RelationExtraction, however, the gating network learns to depend less on the baseline model and use
the other models to reduce overfitting.

7 Conclusion

In conclusion, we find that Mixture-of-Experts (MoE)[1] works well on improving the performance of

DistiIBERT[22] model on the robust QA task along with data augmentation[25] including synonym
replacement and random swap, and meta-learning including MAML algorithm[11] for domain
adaptations. As a result, we successfully increase F-1 score from 50.81 to 53.84 and exact match
(EM) score from 34.82 to 39.27 in out-of-domain validation performance. Eventually, we manage to
achieve a F-1 score of 60.8 and EM score of 42.2 on the out-of-domain QA testing leaderboard. The
primary limitation of our work is that due to limited time, we have not experimented more types of
meta-learning algorithms, parameters and data augmentation techniques. Also, due to limitation of
GPU capability, we are unable to perform meta-learning with more adaptation steps. Future directions
to improve our work could be experimenting more meta-learning algorithms and parameters, and

utilizing the attributes of data in the datasets to form more tasks and scale the number of in-domain
and out-of-domain datasets.

8 External Collaborator

We have consulted Jerry Zhenbang Tan (ztan035 @stanford.edu) regarding meta-learning in our
proposal and training result analysis in our milestone report. However, Jerry has not contributed to
the final report.

References

[1] S. Nowlan R. Jacobs, Michael I. Jordan and Geoffrey E. Hinton. Adaptive mixtures of local
experts. Neural Computation: 3:79-87, 1991.

[2] Jiahuan Pei, Pengjie Ren, and Maarten de Rijke. A modular task-oriented dialogue system
using a neural mixture-of-experts. CoRR, abs/1907.05346, 2019.

[3] Phong Le, Marc Dymetman, and Jean-Michel Renders. Lstm-based mixture-of-experts for

knowledge-aware dialogues. CoRR, abs/1605.01652, 2016.

[4] Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen, Yangyang Lu, and Zhi Jin. Improved relation
classification by deep recurrent neural networks with data augmentation. CoRR, abs/1601.03651,
2016.

[5] Marzieh Fadaee, Arianna Bisazza, and Christof Monz. Data augmentation for low-resource

neural machine translation. CoRR, abs/1705.00440, 2017.

[6] S. Yu, J. Yang, D. Liu, R. Li, Y. Zhang, and S. Zhao. Hierarchical data augmentation and the

application in text classification. JEEE Access, 7:185476—185485, 2019.

[7] Jasdeep Singh, Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher.
XLDA: cross-lingual data augmentation for natural language inference and question answering.
CoRR, abs/1905.11471, 2019.

[8] Toan Tran, Trung Pham, Gustavo Carneiro, Lyle J. Palmer, and Ian D. Reid. A bayesian data
augmentation approach for learning deep models. CoRR, abs/1710.10564, 2017.

[9] Zhucheng Tu Chris DuBois Shayne Longpre, Yi Lu. An exploration of data augmentation and
sampling techniques for domain-agnostic question answering. arXiv: 1912.02145, 2019.

[10] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Semantically equivalent adversarial
rules for debugging NLP models. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 856-865, Melbourne, Australia,
July 2018. Association for Computational Linguistics.

[11] Sergey Levine Chelsea Finn, Pieter Abbeel. Model-agnostic meta-learning for fast adaptation
of deep networks. arXiv: 1703.03400, 2017.

[12] Wenpeng Yin. Meta-learning for few-shot natural language processing: A survey, 2020.

[13] Po-Sen Huang, Chenglong Wang, Rishabh Singh, Wen-tau Yih, and Xiaodong He. Natural
language to structured query generation via meta-learning. CoRR, abs/1803.02400, 2018.

[14] Fei Mi, Minlie Huang, Jiyong Zhang, and Boi Faltings. Meta-learning for low-resource natural
language generation in task-oriented dialogue systems. CoRR, abs/1905.05644, 2019.

[15] Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai, and Andrew McCallum. Self-supervised
meta-learning for few-shot natural language classification tasks, 2020.

[16] Zi-Yi Dou, Keyi Yu, and Antonios Anastasopoulos. Investigating meta-learning algorithms for
low-resource natural language understanding tasks. CoRR, abs/1908.10423, 2019.

[17] Trapit Bansal, Rishikesh Jha, and Andrew McCallum. Learning to few-shot learn across diverse
natural language classification tasks. CoRR, abs/1911.03863, 2019.

[18] John Schulman Alex Nichol, Joshua Achiam. On first-order meta-learning algorithms.

arXiv: 1803.02999, 2018.

[19] Wenpeng Yin, Nazneen Fatema Rajani, Dragomir Radev, Richard Socher, and Caiming Xiong.
Universal natural language processing with limited annotations: Try few-shot textual entailment
as a start, 2020.

[20] Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun Li, Jinchao Li, Michael Zeng, and Jianfeng

Gao. Few-shot natural language generation for task-oriented dialog, 2020.

[21] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723, 2020.

{22] Julien Chaumond Victor Sanh, Lysandre Debut and Thomas Wolf. Distilbert, a distilled version

of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv: 1910.01108,, 2019.

[23] Distilbert. https://huggingface.co/transformers/model_doc/distilbert.html.
Accessed: 2021-03-05.

[24] Cs 224n default final project: Building a qa system (robust qa track). http: //web.stanford.
edu/class/cs224n/project/default-final-project-handout-robustga-track.
pdf. Accessed: 2021-03-05.

[25] Makcedward. makcedward/nlpaug.

[26] Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. Ppdb: The paraphrase
database. In Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 758-764,
2013.

[27] Dropout. https: //www.tensorflow.org/api_docs/python/tf/keras/layers/
Dropout. Accessed: 2021-03-05.

[28] Konstantin Lopyrev Pranav Rajpurkar, Jian Zhang and Percy Liang. Squad: 100, 000+ questions
for machine comprehension of text. CoRR, abs/1606.05250, 2016.

[29] Olivia Redfield Michael Collins Ankur Parikh Chris Alberti Danielle Epstein [lia Polosukhin

Matthew Kelcey Jacob Devlin Kenton Lee Kristina N. Toutanova Llion Jones Ming-Wei Chang
Andrew Dai Jakob Uszkoreit Quoc Le Tom Kwiatkowski, Jennimaria Palomaki and Slav Petrov.

Natural questions: a benchmark for question answering research. Association for Computational
Linguistics (ACL), 2019.

[30] Xingdi Yuan Justin Harris Alessandro Sordoni Philip Bachman Adam Trischler, Tong Wang
and Kaheer Suleman. Newsqa: A machine comprehension dataset. ACL 2017, page 191, 2017.

[31] Mitesh M. Khapra Amrita Saha, Rahul Aralikatte and Karthik Sankaranarayanan. Duorc:
Towards complex language understanding with paraphrased reading comprehension. ACL,
2018.

[32] Hanxiao Liu Yiming Yang Guokun Lai, Qizhe Xie and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. EMNLP, 2017.

[33] Eunsol Choi Omer Levy, Minjoon Seo and Luke Zettlemoyer. Zero-shot relation extraction via
reading comprehension. arXiv preprint arXiv: 1706.04115, 2017.

[34] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv:1711.05101,
2017.

[35] learn2learn. https://github.com/learnables/learn2learn. Accessed: 2021-03-05.

10

