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Abstract 

Question Answering (QA) systems allow users to retrieve information using natural 

language queries [1]. In this project, we are training and testing QA models on 
SQuAD 2.0, a large dataset containing human-labelled question-answer pairings 
[2], with the goal of evaluating in-domain performance. Using a Bidirectional 
Attention Flow (BiDAF) model with word embeddings as a baseline, we identified, 

implemented and evaluated techniques to improve accuracy on the SQuAD task. 
Our initial experiments, which added character embeddings and a coattention layer 
to the baseline model, yielded mixed results. Therefore, we started over with a new 

model using Transformer-style encoder layers, based on the QANet [3]. This model 
posed many challenges, particularly in adapting to the unanswerable component of 
the SQuAD 2.0 dataset, and thus did not come close to achieving the performance 
of BiDAF-based models. 

1 Introduction 

Question-answering (QA) is a challenging and highly relevant task in the field of Natural Language 
Processing (NLP). Firstly, QA systems can be a valuable tool for information retrieval, allowing a 
user to query a large knowledge base in a more intuitive manner [1]. Secondly, the QA task effectively 
tests the ability of a model to encode meaning. Therefore techniques that are effective at QA may be 
applicable more broadly to other NLP tasks where capturing semantics is important. 

Crucially, a good QA system should be able to distinguish between answerable and non-answerable 
questions: no answer is preferable to an incorrect answer. Therefore, the dataset we used, SQUAD 
2.0, contains 50,000 unanswerable questions in addition to 100,000 human-labelled question-answer 

pairings [2]. Therefore, to achieve good results on SQUAD, QA systems must have the ability to 
classify questions as unanswerable, adding an additional challenge. 

In this project, we focused on evaluating in-domain performance on the SQuAD 2.0 dataset. Therefore 
we implemented several different techniques, beginning with modifications to the baseline BiDAF- 
inspired model [4]. After implementing character-level embeddings and coattention, which replaced 
single layers of the baseline model, we decided to start over and implement an entirely different 
model. We settled on the QANet architecture for its demonstrated strong performance on the SQUAD 
1.1 dataset [3], making a few changes to handle memory limitations and adapt the model to the 
SQuAD 2.0 dataset. 

2 Related Work 

Kim’s 2014 paper "Convolutional Neural Networks for Sentence Classification" proposed the use of 
convolutional neural networks (CNNs) to improve the performance of word embeddings. We applied 
Kim’s methods to generate character-level word embeddings for our paper, albeit in a very different 
context to Kim’s sentence classification task. 
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Regarding coattention, Xiong et al.’s 2018 paper "Dynamic Coattention Networks For Question 
Answering" addressed the use of Dynamic Coattention Networks (DCN) for the QA task, and used 
SQuAD as an evaluation metric. However, while the section on the Coattention Encoder was of 

relevance to us, we did not implement a full DCN. 

A key source for this project was Yu et al.’s 2018 paper "QANet: Combining Local Convolution 
with Global Self-Attention for Reading Comprehension", which we used as a reference for our 
implementation of a QANet model [3]. However, Yu et al. designed their model for the SQUAD 

1.1 task, not the SQUAD 2.0 task with its unanswerable questions. Therefore, the performance of 
this model on SQuAD 2.0 was uncertain. Secondly, this paper, though providing an indispensable 
conceptual background, left many implementation details open. 

3 Approach 

3.1 Baseline 

Our baseline model is based on the Bidirectional Attention Flow (BiDAF) model [5]. The code for 

this model was forked from the CS 224N project starter code repository on GitHub [4]. Crucially, 
the baseline model differs from Seo et al.’s BiDAF model [5] in that it solely uses word embeddings. 
These word embeddings are taken from pretrained GloVe word vectors, which are passed through a 
Highway Network [6] in the embedding layer. The embedding layer then feeds into a bidirectional 
LSTM encoder layer, then a BiDAF layer and finally a bidirectional LSTM modeling layer. 

3.2 Implementation 

We can split the changes we made into three categories. The first two are modifications to the baseline 
code, each replacing a single layer from the BiDAF-based starter code. The third is a significantly 
different model architecture, sharing only the embedding layer and attention layer with the baseline. 

1. Character-level Embeddings. 

Our implementation retains the GloVe vectors from the baseline model, but concatenates an additional 
character-level word embedding onto the end of each word embedding. Let e; represent the embedding 
for word 2, given a GloVe vector g; and a character-level embedding c;: 

es = [95 ci] 

Following Kim, we started with generic character vectors and used a convolutional neural network 
(CNN) to generate vectors c; for each word in the input text [7]. Specifically, we used kernels of 
size 2, 3 and 4 to convolve over the input text. The rationale behind this kernel size choice was 
to capture important sub-word strings like prefixes and suffixes. After applying each of these 3 
single-dimensional convolution layers, we used a ReLU activation function and "max-over-time" 
pooling [8] to produce a single scalar value from each kernel size. Therefore, a character-level 
embedding for a single word, c;, has length 3. 

After concatenation, we followed Seo et al. in applying a dropout layer and the passing the combined 
embedding through a Highway Network [6]. 

2. Coattention 

Coattention uses a dual-level attention calculation to compute attention between the context and 
question representations: after the standard context-question and question-context attentions are 
calculated, a weighted sum is taken using the two attentions. To implement a coattention layer in 
place of the baseline bidirectional attention layer, we followed Xiong et al. [9]. 

We began by applying a linear layer to the question representation g € R®°"*", applying a tanh 
nonlinearity to the result, which we will refer to as g’ € R@°"*". Then we concatenated randomly- 
initialized sentinel vectors onto the question and context representations to get q’ € Re"+!*" and 
c € R&er+1xh This allowed a word in the context to attend to none of the words in the question and 
vice-versa. 

Next, we computed an affinity matrix between the context and question: cq’? = A € Relen+txalen+1 
Computing the softmax distribution over columns of A produced weights a which were multiplied 
with the question q’ for context-question attention a. Likewise, computing the softmax distribution



over rows of A produced weights 3 which were multiplied with the context c for question-context 
attention b. The context-question weights a were then multiplied with b to produce a second-level 
attention s. 

Finally, the last dimension of s was concatenated with the last dimension of a to produce a series 
[s1; a1], --; [Sclen} @cten], where [Scien; Gclen] € R?”, which was fed into a bidirectional LSTM with 
dropout to produce the coattention output. 

3. QANet-Based Model. 

The QANet architecture is taken from Xiong et al. [3]. Specific to our implementation is the use of 
the character embeddings described in part 1, the reuse of the provided BiDAF Attention module from 
the baseline model, the use of a single linear layer with a Rectified Linear Unit (ReLU) activation for 

the output of the encoder block and a custom output layer for the SQUAD 2.0 task. 
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Encoder Block 

Shown in green on the diagram above, the encoder block is a critical part of the QANet. Following 
Vaswani et al., positional encodings are added to the input x [10]. Specifically, we based our 
implementation of positional encodings on a PyTorch implementation in a tutorial for sequence- 
to-sequence modeling using Transformers [11], only making modifications to get the positional 
encodings to work well with Pytorch cuda Tensors. 

x is then passed through a series of n 1D convolution layers, each with a fixed kernel size of 7. Each 
convolution layer is preceded by layer normalization [12]. At the end of each convolution layer, the 
convolution output is added to x such that « = Conv(Layernorm(s)) + 2. 

After n loops through the convolution layer, layer normalization is applied again and the encoder 
block moves on to a Multi-Head Self-Attention layer, again inspired by Vaswani et al. [10], with a 
fixed 10 heads. We initially experimented with our own implementation of Multi-Head Self-Attention, 
however we encountered memory issues due to the size of the matrix multiplication involved. For 
greater memory efficiency, we therefore decided to use PyTorch’s nn.MultiheadAttention function 
(PyTorch v1.3.0). This assumes that the number of heads is a factor of the hidden layer size, therefore 

the hidden layer size must be a multiple of 10 (for most tests, we used 100). 

The attention output SelfAttention(Layernorm()) is again added to the previous state x. Finally, 
layer normalization is applied one last time, the attention output is fed into a simple linear layer with 
a ReLU activation function, and the linear layer output is added to the previous state. 

Overall Model 

Overall, the model begins by passing the context and question embeddings separately through encoder 
blocks with n = 4 convolutional layers each. Unlike Yu et al., we fed the encoded outputs into a



BiDAF attention layer, which was reused unmodified from the starter code. The BiDAF attention 
output is then passed sequentially through 3 model encoder stacks, which we will label as Stack 1, 
Stack 2 and Stack 3. Despite the labels, these 3 stacks share the same parameters. Each stack consists 
of 7 sequential encoder blocks. Each encoder block has n = 2 convolutional layers. The Stack 1 and 
Stack 2 outputs are concatenated to form a start representation, and the Stack 1 and Stack 3 outputs 
to form an end reprsentation. Both concatenations occur over the hidden-size dimension, so that the 
concatenated result has effectively doubled its hidden size. Finally, the start and end representations 
are fed into an output layer. The output layer applies a linear transformation to each, collapsing 
the hidden size to size 1 using weight matrices of dimension W,, W2 € R™4¢"-size.1_ The softmax 
distribution is then computed over the context-length dimension, resulting in probability distributions 
for the start token and end token. 

4 Experiments 

4.1 Data 

We used the provided CS224n SQuAD IID train, dev and test datasets in our project. These sets 
are taken from the publicly available SQUAD dataset [2], however we complied with the project 
guidelines in solely using the provided sets to ensure a level playing field for comparing models. 

Specifically, the provided datasets consist of labelled question-context-answer groupings. In each 
case, the context is an excerpt from a Wikipedia article, the question is a human-generated question 
based on the article and the answer is a human-labelled section of the context that answers the context. 
The goal of our model is to predict the answer based on the question and the context. Importantly, the 
gold /correct answer will always be a segment of text in the context. Therefore there is no language 
modelling component to the task: our model simply has to predict a start and end position of the 
answer in the context. In some cases, the question is unanswerable: the correct answer in this case is 
"N/A". 

4.2 Evaluation method 

We used all the following quantitative metrics when evaluating on the dev set. 

¢ NLL: Sum of Negative Log-Likelihood Loss for the start and end location probability 
distributions, Ps¢ar¢ and Peng. For instance, if the correct (gold) start location is s and the 

true end location is e: 

NLL=-— log (Dstart(S)) _ log (Dena(e)) 

tp 
tp+fp 
  ¢ F1: Harmonic mean of Precision ( 

answers. 
) and Recall Ca for words in the predicted 

¢ EM: Exact Match. Proportion of predicted answers that precisely match the gold answer, 
word for word. EM is a less forgiving metric than F1, hence scores are always lower. 

e AvNA: Answer vs No Answer. This metric treats SQUAD 2.0 as a binary classification 
task between answerable and non-answerable questions. Therefore, this metric provides the 
answer/no-answer classification accuracy. 

Qualitatively, we also considered the convergence behavior of our models and used Tensorboard to 
look directly at predicted answers from excerpts of the dev set. 

Evaluation on the test set focused solely on EM and F1 scores. 

4.3 Experimental details 

Initially, we ran the baseline BIDAF model with the learning rate of 0.5, and it took about eleven 
hours to train. The results were quite impressive, and so we began with modifications to this model. 

For the character embeddings, which used a one-dimensional convolutional neural network, training 
took approximately the same time as the baseline model to train and results were very similar to the 
baseline.



A slightly more complicated effort to implement our own coattention layer in place of the standard 
BiDAF attention followed. The resulting model took marginally longer to train versus the baseline 
model, but performed significantly worse. 

In order to get better results, and to experiment with a much more comprehensive restructuring of the 
model, we decided to implement the QANet architecture. Initially, the model seemed to be running 
on our local machines, but it was producing a host of device conversion errors on our VMs. Therefore, 
we spent a lot of time adding ".cuda()" and ".cpu()" to effectively convert our various parameters to 
the GPU and back. 

However, this led to several memory issues as CUDA was overflowing due to the memory-intensive 
matrix multiplication operations in our self-attention module. Therefore, we decided to update 
our Pytorch version from 1.0.0 to 1.3.0, which includes a library implementation of multi-head 
self-attention. Using the Pytorch version of multi-head self-attention helped bring our model back on 
track and we were able to start training. 

We started with a small hidden layer size of 40 and the initial learning rate of 0.5, but gradually pushed 
the hidden layer size to 50 in order to get better dev set results. In order to make the training faster, 
we decreased the number of encoder blocks from 7 (the suggested number in the QANet paper [3]) to 

4. However, we still did not get satisfactory outcomes. The model was consistently predicting "N/A’ 
for every question. Thus all the dev metrics were staying constant throughout training. Therefore, we 
concluded that we had to make some changes to our parameters. 

However, increasing the number of parameters was leading to memory overflow errors. Therefore, 
we halved the batch size from 64 to 32, ramped up the hidden layer size to 100, increased the number 
of encoder blocks back to the recommended number of 7 and increased the learning rate to 0.8. 

We then found that training was consistently stopping during dev set evaluation at 200,000 iterations 
due to the OS killing the process, even when we tried reducing the size of the model. We were able to 
resolve this issue by cutting down the number of workers to 0 on the dev set data loader. At last, we 
were able to train the QANet with our desired hyperparameters. 

4.4 Results 

The results are definitely not what we expected. We expected a significant increase in the performance 
of the models once we changed over to a QANet model, but that did not happen. This was despite 
initial indications on TensorBoard, seen below, which indicated that NLL, Fl, EM, and AVNA were 

better for BiDAF with character embeddings up to around 15 epochs. 
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Ultimately, however, the character embeddings faltered at 30 epochs, ending up slightly below 
the baseline model in performance on the dev set. However, the character embeddings performed 
relatively well on the test set, demonstrating the potential of this method for improved out-of-domain 
performance. The use of the coattention layer in place of the baseline BiDAF layer failed to offer any 
improvements, and performed particularly poorly when combined with the character embeddings. The



QANet, due to consistent issues with training and prediction of unanswerable questions, performed 
the worst by a large margin. 

uation 

  

uation 

  

5 Analysis 

For our character embeddings, the mixed results are likely the result of our decision to add just 
3 convolutional layers, with kernel sizes ranging from 2 to 4 characters. This resulted in a very 
small dimension character embedding output, did not result in any notable improvements when 
concatenated onto the word embedding. Ultimately, the use of the extra character embeddings even 
resulted in a slight decrease in performance after the full 30 epochs, perhaps because, with very few 
convolutional layers and a small embedding size, the character embeddings were potentially noisy. A 
larger character embedding size, closer in size to the word embeddings, might address this, at the 
expense of additional training cost. 

Notably, however, our character embeddings achieved slightly higher F1 scores on the test set than 
on the dev set. This seems to indicate that the character embeddings were somewhat successful 
in helping the model generalize outside of the training and dev sets. This is in keeping with the 
theoretical promise of character embeddings to capture sub-word meanings, allowing the model to 
cope better with out-of-domain words. 

The use of coattention as a direct replacement for the BiDAF attention brought losses in all evaluation 
metrics versus the baseline model. The particularly strong reduction for coattention with character 
embeddings may be an exacerbation of the effects described in the previous paragraph. The coattention 
models, however, despite their additional complexity and their use of a bidirectional LSTM on their 
output, were only marginally slower in training when compared to the baseline model. 

As discussed in Experiments, the QANet consistently suffered from its tendency to excessively 
classify questions as unanswerable. This was revealed by analysis of excerpts of text from the dev 
set, which were consistently being labelled N/A even after may epochs of training. In comparison, 
the BiDAF model, after an initial period of always predicting N/A to rapidly reduce the loss function, 
learned to start predicting real answers after just a few epochs. This made the QANet a very difficult 
model to train, and we were not able to find a satisfactory set of hyperparameters and a suitable 
training process to enable this model architecture to break out of its tendency to make N/A predictions. 
As noted in our Related Work section, the unproven nature of the QANet model on the SQuAD 2.0 

task brought risks. Ultimately, with our given time and computational resources, we were not able to 
successfully adapt this model to the newer dataset with its unanswerable questions. 

6 Conclusion 

Our work has provided many learnings about which models are and are not successful on SQUAD 
2.0. Firstly, we demonstrated both the potential and the limitations of low-dimension character 
embeddings. Though quick to train, this approach yielded mixed results. We believe this technique 
might be improved with the use of a greater number of convolutional layers to produce larger 
embeddings, though this would inevitably come at the expense of training cost. We also demonstrated 
that the replacement of a BiDAF attention with a Coattention layer, although surprisingly fast to train, 
did not produce satisfactory results.



As far as the QANet model architecture is concerned, we learned that far greater changes would be 
necessary to achieve top-level results on the SQUAD 2.0 task. As expected, this Transformer-inspired 
model was very memory-intensive to train, and a great deal of work was necessary merely to begin 
training. More surprising were the poor results that followed training. Slow training and a tendency 
to always classify questions as unanswerable were the downfall of QANet on the SQuAD 2.0 task. 

One potential response to these problems can be found in Aubet et al.’s Enhanced Question Answer 
Network (EQuANt) [13], which is optimized for the SQUAD 2.0 task. The EQuANt features 

an "Answerability Probability Block" that outputs the probability that a question is answerable 
independently from the base QANet’s start and end probability distribution outputs (which are 
retained). Unfortunately, we did not discover this model in time to implement it for this project. 

In conclusion, the BiDAF model with character embeddings was our best-performing model, but we 
believe that there remains significant room for improvement both with the character embeddings and 
with the QANet model on the SQUAD 2.0 task. 
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