
Improving Out-of-Domain Question Answering with
Auxiliary Loss and Sequential Layer Unfreezing

Stanford CS224N Default Project (Robust QA Track)

Kai E. Okada Jason Z. Qin
Department of Statistics Department of Chemical Engineering

Stanford University Stanford University
kaiokada@stanford.edu jzqin@stanford.edu

Abstract

The proliferation of pretrained Language Models such as BERT [1] and T5 [2]
has been a key development is Natural Language Processing (NLP) over the past
several years. In this work, we adapt a DistiIBERT [3] model, pretrained on masked
language modeling (MLM), for the task of question answering (QA). We train the
DistiIBERT model on a set of in-domain data and finetune it on a smaller set of out-
of-domain (OOD) data, with the goal of developing a model that generalizes well
to new datasets. We significantly alter the baseline model by adapting an auxiliary
language modeling loss, adding an additional DistiIBERT layer, and undergoing
training with sequential layer unfreezing. We find that adding an additional layer
with sequential layer unfreezing offered the most improvement, producing a final
model that achieved EM = 42.23 and F1 = 60.81 scores on the OOD test set.

1 Introduction

Within the field of Natural Language Processing (NLP), Question Answering (QA) is a challenging
task often used as a benchmark for evaluating the quality of language models [4]. For QA tasks,
models must read passages of text and answer questions about them. Specifically, given a context
passage of text and a question to answer, QA models must choose a span of contiguous words within
the passage that contains the answer to the question posed. This problem is challenging because
models must accurately learn the meaning of both the context passage and the corresponding question,
as well as the relationship between them.

Furthermore, QA models are sensitive to the type of data they are trained on. Models trained on
QA data from one source will suffer from deteriorated performance when evaluated on QA data

from other sources [5]. The goal of this work is to create models that have improved capabilities for
predicting QA spans for out-of-domain (OOD) data.

This paper seeks to re-implement and improve upon models previously introduced for QA tasks.
NLP models applied to specific tasks like QA often use pretrained language models as templates.
These pretrained models are trained on large corpora for extensive periods of time, and serve as
baselines from which finetuned models can be constructed. For this work, we start from a pretrained
DistilBERT [3] model and finetune it for QA. We modify the DistiIBERT model in several significant

ways, incorporating ideas from a variety of related work. Specifically, we adapt an auxiliary masked
language modeling (MLM) loss, add an additional transformer layer, and include sequential layer
unfreezing from [6]. Our work differs from [6] because their improvements for the QA task were

originally implemented on an LSTM model, whereas we adapt their ideas for a DistiIBERT model.
Furthermore, we experiment with span masking from [7] as the auxiliary loss, and additionally
incorporate dynamic batch masking from [8]. In literature, both these techniques have been shown to
improve performance on language modeling tasks.

We perform independent experiments to validate the role of incorporating an MLM loss, an additional
transformer layer, sequential layer unfreezing, and a span masking loss. We find that these methods

Stanford CS224N Natural Language Processing with Deep Learning

improve upon a baseline DistiIBERT model to different degrees, both separately and in combination.
In addition, we analyze the outputs of these models to determine failure cases, and offer suggestions
for further improvements.

2 Related Work

Transformer [9] models have significantly improved language model performance. By using self-
attention as the primary method of relating different parts of textual input, transformer models
effectively capture relationships between different parts of text, and have become popular tools
for language modeling problems like QA. Furthermore, transformer models have been improving
rapidly. Models like BERT [1], RoBERTa [8], and SpanBERT [7] improve transformer modeling

incrementally by providing bidirectional language modeling, dynamic batch token masking, and
span token masking, which have all been shown to improve language model performance. Likewise,
DistiIBERT [3] is a lightweight version of BERT trained with knowledge distillation. These rapid
improvements in transformer architecture and training can be leveraged simultaneously to improve
QA model performance.

Prior to transformer models, the most accurate language models were long short term memory
(LSTM) networks [6]. One such model is SiATL [6], which applied pretrained LSTMs to OOD

tasks. The creators of SiATL started with a pretrained LSTM, then incrementally improved it for
various downstream tasks such as sentiment analysis and emotion detection. They improved upon the
pretrained models by incorporating an auxiliary language modeling loss, adding an additional LSTM
layer, and adopting sequential layer unfreezing. The auxiliary modeling loss was used to prevent the
model from forgetting general features of language comprehension as it was finetuned on specific
downstream tasks. The LSTM layer added parameters that the model could adjust for the new tasks.
In addition, this new layer is used only for the target task rather than the auxiliary language modeling,
thereby separating the target loss from the auxiliary loss and allowing the pretrained LSTM to retain
general language modeling while also providing an addition to the architecture specific for the new
application. Sequential layer unfreezing allowed the model to tune the new LSTM layer before
adjusting the parameters and embedding layer of the pretrained model. Together, these improvements
achieved a 5%-10% improvement over baseline models.

In our work, we seek to combine the relatively simple but effective improvements demonstrated by
SiATL with recent enhancements in transformer architectures. Although the improvements provided
in the SiATL paper were used on LSTM models, they extend naturally to transformer models as well.
Furthermore, since recent transformer architectures have been shown to improve general language
modeling, we hope that by combining their improvements with the modifications shown in SiATL,
we can generate more accurate models for OOD tasks.

3 Approach

3.1 Baseline

We adapt a pretrained DistilIBERT [3] language model for the QA task proposed in the RobustQA
Default CS224N final project. As a baseline, we use the model provided by the class, and train it
on a QA task on a large corpus of QA data (datasets described below). As an additional step of

model adjustment, we finetune this model on a smaller set of OOD training data, before evaluating
on unseen OOD data.

3.2 Improvements

Auxiliary Loss: To improve on these baselines, we adapt methodologies first proposed by
Chronopoulou et al. in their SiATL model [6], by Liu et al. in RoBERTa [8], and by Joshi et

al. in SpanBERT [7]. From SiATL, we adapted the use of an auxiliary loss during QA training. We
experiment with several types of auxiliary loss. The first auxiliary loss we used is a masked language
modeling (MLM) loss. For the MLM loss, we follow the masking scheme originally proposed in
BERT [1], in which we randomly select 15% of all tokens, of which we mask 80%, change 10%

to other random tokens, and leave 10% unchanged. To implement MLM masking, we adapt some
masking code from [8], and implement it in our codebase. We also compare MLM loss to span

Question Answer Auxiliary Language
Span Loss Modeling Loss

| ———_ New DistiIBERT

Layer

ficusi] .. [.. | [i [| [seer DT] [tseP) | cpap) |

\ J J
Y

Question (Randomly Masked) Context (Randomly Masked)

Figure 1: Architecture of modified DistiIBERT model developed for this project. The input consists
of a context paragraph followed by the question posed for the QA task. The pretraiend DistilBERT
transformer has 6 layers, and is used to predict masked tokens for the auxiliary loss. The output of
the hidden layer of the new DistilBERT layer is used to predict QA span tokens for the QA loss.

masking, in which we mask contiguous sequences ("spans") of text rather than individual tokens. It is
hypothesized that span masks force the model to better learn semantic relationships over the entire
input sequence, in order to fill in longer gaps of masked text. We experiment with different average
span mask lengths, and follow the same distribution of masked vs. changed vs. unchanged tokens as
presented above for MLM masking. To implement span masks, we develop our own code following
the specifications provided in [7]. For both MLM and span masking, we only mask text tokens, and

do not mask special tokens like [CLS], [SEP], and [PAD].

To incorporate the auxiliary loss, we follow the masking scheme proposed in ROBERTa [8]. RoBERTa
differs from BERT in that all inputs are randomly re-masked at every epoch, instead of being masked
once in pre-processing then used repeatedly over the training process. ROBERTa’s masking approach
has been shown to improve model prediction results [8]. The model then predicts QA tokens and
MLM tokens simultaneously from these masked inputs. Our final model includes some masking code
adapted from RoBERTa, as well as our own code for implementing a combined loss function. The
loss functions take the form

Lea = log Pstart (i) ~~ log Pend (7)

Lym = CrossEntropyLoss(§o, Yo) for yo € {masked tokens}

Liotal = LQa + yLMimM

where 7 is a hyperparameter that we decrease during training to bias the model toward focusing on
QA loss in later epochs. During evaluation, only the QA loss function is used, and no token masking

occurs.

Sequential Layer Unfreezing with Additional QA Layer:

Inspired by SiATL [6], we also add a new DistilBERT layer for QA modeling, and implement
sequential layer unfreezing (SLU). For both these improvements, we implement our own modifications
to the DistiIBERT codebase. The new DistilBERT layer is appended to the end of the pretrained
transformer layer, and is randomly initialized with Xavier initialization [10]. With SLU, we specify
which layers can have their parameters updated during each training epoch. For the first N’ epochs,
we only allow parameter updates for the new DistilBERT layer. After N epochs, we allow the entire
model to train. The full architecture of our model is shown in Figure 1.

After training DistiIBERT on the in-domain dataset with the combined loss model, we finetune the

model on the limited OOD data, and then evaluate the model. We also attempt other experiments, in
which we sequentially use MLM loss followed by QA loss (without any data masking during QA loss
training). Full details are presented below. We compare the results of these models to the baseline
QA model provided by the class.

4 Experiments

4.1 Data

The datasets we use are provided by the CS224N teaching staff. Each input consists of a context-
question pair, separated by [SEP] tokens. The answer to each question is located within the context.
The context-question inputs have a maximum length of 384 tokens.

The data are divided into two categories: QA in-domain and QA out-of-domain (OOD) data. Precise

details about each dataset can be found from the original papers for each data source. The amount of
data used from each data source is shown in the table below.

Dataset Question Source Passage Source Train Dev Test

in-domain datasets

SQuAD [4] Crowdsourced Wikipedia 86,588 = 10,507 -
NewsQA [11] Crowdsourced News articles 74,160 4,212 -

Natural Questions [12] Search logs Wikipedia 104,071 12,836 -

out-of-domain datasets

DuoRC [13] Crowdsourced Movie reviews 127 126 1,248

RACE [14] Teachers Examinations 127 128 419

RelationExtraction [15] Synthetic Wikipedia 127 128 2,693

4.2 Evaluation Method

To assess the performance of our model, we use an evaluation method provided by the CS224N staff.
The best performing models are determined by their exact match (EM) and F1 scores of QA span
predictions. The EM score is a binary score that assesses whether the proposed start and stop tokens
exactly match the true start and stop tokens for the data. The Fl score is a harmonic mean of the
precision and recall for both the start and stop tokens. The models are evaluated on the OOD dev
dataset, and the best model from this evaluation is selected for modeling on the OOD test dataset.

4.3 Experimental Details

General Implementation Details: Unless otherwise specified, the following implementation details
and hyperparameters apply for all models listed below. Models were trained on in-domain data for 3
epochs, then finetuned on OOD data for 10 epochs. Models used the Adam optimizer with a learning
rate of 3e-5, and were trained with batch size = 16. During in-domain training, models were evaluated
on the in-domain dev set every 2000 training steps, and the best-performing model was chosen as the
starting model for OOD training. During OOD training, models were evaluated on the OOD dev set
every 100 steps, and the best-performing model was chosen as the "final" model for each experiment.
The baseline architecture used for this project, and upon which all modifications were made, is a
6-layer DistiIBERT model adapted from HuggingFace [16].

Baselines: We begin with a pretrained DistilBertForQuestionAnswering [17] model. After
training on the in-domain data, it is 1) directly evaluated on the OOD dev data (yielding the Baseline
model), and 2) further finetuned on the OOD training data for 10 epochs (yielding model M).

Stagewise Losses: As an intermediate step toward our auxiliary loss model, we first discretely
finetune the "pretrained-base" DistiIBERT using DistilBertForMaskedLM [17] on the in-domain
dataset for one epoch, then transfer the weights to a DistilBertForQuestionAnswering model
and continue fine-tuning for 3 epochs on the QA task. Finally, we further finetune on the OOD dataset
using only QA loss (yielding model M2).

Auxiliary Masked Language Modeling Loss: Drawing from the DistiIBERT Hugging Face
codebase [16], we implement our own auxiliary loss model that maintains masked language modeling
(MLM) loss throughout in-domain training. When training with the MLM loss, we mask according
to the scheme proposed in BERT [1], and described above. We keep always keep 3 tokens unchanged
in the inputs: [CLS], [SEP], and [PAD]. We keep [CLS] and [SEP] tokens unchanged because we
want to ensure the model learns the relationship between the question and context strings. We leave
[PAD] unchanged since it has no semantic relationship to each input.

Because we use masking for the auxiliary loss on in-domain training, the inputs are also masked
for the QA loss. This likely increases the difficulty for the model to converge to a minimal QA
loss, but we hope that this decrease in QA accuracy is offset by an increase in general language
modeling via the auxiliary loss. When using the auxiliary loss, the combined model loss function is
Liotat = Lga + Lum. In our experiments, we gradually decrease the +y as we train the model.

We modulate both the upper and lower limits of 7, as well as the rate at which it decreases.

For OOD training, we do not mask any inputs, nor use an auxiliary loss. As such, the OOD training
is only run on QA loss. The final model for this experiment, after OOD finetuning, is labeled M3.

Span-Masking Auxiliary Loss: We found our experiments using an MLM loss to be successful,
and decided to try alternative auxiliary losses. Given the success of SPANBert [7], we create a
span-masking variant of M3. Following the methodology in SPANBert, we draw span lengths
1 ~ Geom(p), i.i.d., with p = 0.20, and clip these lengths to a given maximum length (lja2). We

then select a subset of the spans so as to mask no more than 15% of the input sequence plus the
expected span length prior to clipping, and assign each span to a starting index drawn uniformly from
the input. Given that span prediction may pose a more difficult task than individual token prediction,
we experiment with varying lz for in-domain training (M4 and Ms), with lynaz = 1 assumed to

correspond with our original auxiliary MLM model. These results are shown in Table 5.

Sequential Layer Unfreezing (SLU) with Additional QA Layer: To implement sequentual layer
unfreezing (SLU), we first add an additional transformer layer to the pretrained DistiIBERT model.
This layer is added to the end of the pretrained DistiIBERT model, and takes as input the final hidden
state of the last layer of the pretrained DistiIBERT model. The output of this layer is passed to a
feedforward network (FFN) that predicts the QA span tokens. The new layer DistilBERT layer is
initialized randomly with Xavier initialization.

To investigate the effect of adding a new layer, we perform several experiments. First, we wanted to
see whether the larger model could train as well as the 6-layer model on the same number of training
steps. To test this, we allowed the combined model to train in-domain for 3 epochs, followed by
OOD finetuning, yielding Mg.

Next, we introduce sequential layer unfreezing. For the first 2 epochs of in-domain training, we only
allow parameter updates to the newly initialized DistiIBERT layer and QA FEN, while keeping the
pretrained layers frozen. Because the new DistilBERT layer is randomly initialized, we use the first
2 epochs to allow this layer to converge to a local minimum in the loss landscape. At this point,
we consider the new layer "trained", and then we train the entire model for 3 epochs, producing
model M7. This experiment allows us to compare how a 7-layer DistiIBERT transformer to a 6-layer
DistilBERT model (i.e. the baseline) when both are entirely unfrozen for 3 epochs of training.

Combining Methods: We take our best auxiliary loss regimes based on validation set performance
(M, and M;) and combine them with SLU (M7) over 5 epochs (yielding Mg and Mg). We train on

the in-domain dataset for N = 2 epochs with the base layers frozen (and no masking or auxiliary
loss), then unfreeze all layers and train for 3 epochs with masking and an auxiliary loss. We again
decay + linearly from 2.0 to 0.5 for in-domain training over the 3 epochs of full-model training.

Notably, when we incorporate the auxiliary loss with the SLU + extra layer architecture, we follow
the scheme proposed in SiATL, and allow the additional layer to only predict the QA loss. More
specifically, the auxiliary loss is predicted by the output of the pretrained, 6-layer model. The last
hidden state of the 6-layer model is used as input to the new DistilBERT layer, and the output of this
new layer is used to predict the QA span. The new layer does not impact the prediction of masked
tokens. We hypothesize that separating the losses in this fashion allows the first 6 layers to maintain a
general understanding of language, while allowing the new layer to carefully attend to the QA task.

4.4 Results

Based on evaluation upon the OOD dev set (Table 1, the best performing models were models that
incorporated an MLM auxiliary loss on in-domain modeling (M3, F1 = 50.35, EM = 34.81), and the
SLU model that underwent N = 2 epochs of frozen training, followed by 3 epochs of full-model
training (M7, F1 = 50.36, EM = 35.34).

Method Description EM (dev) F1 (dev)

Baseline In-Domain QA only (3 epochs) 31.68 47.10

M, In-Domain QA (3) + OOD QA (10) 34.81 48.50
Mp2 In-Domain MLM (1) + In-Domain QA (3) + OOD QA (10) 32.72 48.43
M3 In-Domain [QA + MLM] (3) + OOD QA (10) 35.60 50.35
Mz, In-Domain [QA + SM Imax = 2] (3) + OOD QA (10) 34.29 49.59
Ms In-Domain [QA + SM Imax = 4] (3) + OOD QA (10) 34,29 48.32
Me In-Domain [SLU N = 0, no Aux] (3) + OOD QA (10) 35.08 48.80
M7, In-Domain [SLU N = 1, no Aux] (5) + OOD QA (10) 35.34 50.36
Mg (M3 + Mz) + OOD QA (10) 33.51 48.72
Mo (M4, + Mz) + OOD QA (10) 34.82 49.17

Table 1: Model Iteration. Models 14; - Mo represent the addition of auxiliary loss and sequential
layer unfreezing to our baseline, both individually and in combination. All scores are based on the
OOD dev set. SM = Span Masking, Aux = Auxiliary Loss

Comparing the Baseline model with //, we see that finetuning the model on OOD data significantly
improves the both Fl and EM performance. As such, we incorporate OOD QA finetuning on all
downstream models. This conclusion is supported by additional results comparing the performance
of models on the OOD dev set before and after OOD finetuning (Tables 4 and 5 located in the
Appendix). In most cases, incorporating OOD finetuning increased EM and F1 scores by 10% - 20%
compared to only in-domain training.

Furthermore, comparing M3 with M, convinced us that incorporating an auxiliary loss offers
significant improvement on QA performance. Given the success of the MLM loss, we decided to
incorporate a span loss, the results of which are shown in models M4 and M;. Unfortunately, the
span loss models did not seem to perform as well as the MLM model, with results shown in Table 5
located in the Appendix. We experimented with maximum span lengths of / = 1, 2, and 4, and found
that the model with /=1 (i.e. MLM) performed best. We hypothesize that this is because the auxiliary
span-masking loss differs significantly from the MLM loss upon which the DistiIBERT models were
pretrained. The decreasing performance of models with longer span masks is shown in 5. While
SPANBert sets [maz = 10 [7], it specifically pretrains on this objective over a much larger quantity
of data than our in-domain training set.

In addition, comparing M7 (a 7-layer model with 3 epochs of full training) to M; (a 6-layer model
with 3 epochs of full training) demonstrated to us that including an extra layer with sequential layer
unfreezing also provides significant improvement on the QA task. In our final tests, we combined
our best auxiliary loss models with our best SLU models, yielding Mg and Mg. Although these final
models incorporated benefits from both auxiliary loss models and SLU models, both Mg and Mg
performed more poorly than either the best auxiliary loss models or best SLU models. In fact, Mg and
Mg are comparable in performance Mj), which is simply the baseline model with OOD finetuning.

Since models M3 and Mg performed best, we submitted those models for evaluation on the OOD

test set. In addition, we submitted model Mg to investigate how the combined model performed on
the OOD test set, and M; to determine the performance of the baseline model. The performance of
these models on the test set is shown in Table 2.

This table shows that based on F1 scores on the OOD test data, the SLU model without an auxiliary
loss (/7) performed best, with F1=60.81 and EM=42.23. Surprisingly, 1/1, which is the baseline
model of an unmodified DistiIBERT model trained on both in-domain and OOD data, performed best
based on EM scores, and also had the second best FI score. We evaluated Mg twice on the test data,

1) without any layer unfreezing during finetuning on the OOD data (model Mg), 2) with one epoch
of training with only the additional DistiIBERT layer unfrozen, followed by 2 epochs of full model
training (model Mj). Mg outperformed Mo, but failed to match performance of M7. This suggests
that we were unable to successfully merge the best independent models together. Furthermore, that
all models beside M7 performed strictly worse than 1 suggests that including an auxiliary loss does
not improve model performance on the test set. We discuss possible reasons for failure below.

Method EM (test) F1 (test)

M, 42.317 59.452
M3 41.078 58.170
M; 42.225 60.807

Mg (9 epochs OOD) 41.170 57.876
Mj (3 epochs SLU OOD, N = 1) 41.766 58.587

Table 2: Test Submissions. EM and F1 scores of models making predictions on QA OOD test data.

5 Analysis

5.1 Error Analysis by Data Source and Question Type

To understand why M7 scored particularly highly on the test set despite achieving lower scores than
M3 on the dev set, we examine dev set performance on particular data sources and question types

(e.g. questions starting with "Who...", "What...", etc.). These results are shown below in Table 3.

% of Dev Set M, Mz M, Mo

All Data 100% 31.94% 32.72% 30.37% 31.41%
DuoRC 32.98% 25.40% 26.98% 30.16% 25.40%
RACE 33.51% 20.31% 18.75% 17.97% 17.19%

RelationExtraction 33.51% 50.00% 52.34% 42.97% 51.56%

"Who..." 23.56% 25.56% 27.78% 33.33% 30.00%
"What..." 40.84% 34.62% 37.18% 31.41% 33.97%
"Which..." 12.04% 41.30% 26.09% 26.09% 26.09%
"Where..." 6.28% 16.67% 33.33% 20.83% 16.67%

Table 3: Model Accuracy on Different Data Sources and Question Types. Percent accuracy was
determined by computing EM scores for comparing the model’s output to dev set answers, removing
all punctuation. "When", "Why", and "How" questions are excluded due to scarcity in the dataset.

Relative to our baseline model finetuned on the OOD training dataset (W/), all of our other models

except for M7 improve the model’s performance on the RelationExtraction dataset. Interestingly, 7,
which obtained the best test set performance of all of our submitted models, only achieves the best
dev set accuracy on "Who" questions and the DuoRC dataset. While all data sources are represented
evenly in the OOD training and dev datasets, the RelationExtraction and DuoRC datasets feature
much more prominently in the OOD test dataset. Furthermore, when we examine the test data, we
find that "Who" questions comprise 51% in the DuoRC dataset at, but feature at approximately 15% in
other datasets. The auxiliary masking loss models appear to favor performance on RelationExtraction
and "What" questions, and it is possible that relatively low DuoRC and "Who" results may have hurt
their overall performance. We note some specific DuoRC examples in Table 7, in the Appendix.

In particular, we observe a common pattern in many of our models in which the output answer span
for certain questions is very large, even though the tokens at the ends of the span appear to reflect
either the same answer or two conflicting responses. This indicates a sense of "indecisiveness" - the
model has not fully learned that its start and end tokens should always encompass a single coherent
response. M7 makes this type of mistake on "Who" questions in the dev dataset only 6.67% of the
time, whereas this figure is at least 14% for both M3 and Mo. In general, the DuoRC dataset is
unique in that it supplies a large number of question and answer pairs for a small number of long
contexts. It is possible that the additional transformer layer helps the model retain more contextual
information over the longer passage, while the auxiliary loss finetuning in Mg detracts from the
process of building this contextual representation. This may have given M/7 a comparative advantage
in test set performance. While its performance on the RelationExtraction dataset appears to decline
in Table 3, this is largely explained by the observation that 7 prepends articles ("a", "the") to its
answers at a much higher rate than the other models (for example, 5 times higher than M3). This
may be further evidence that 1/7 preserves a more general grasp of context than the other models.

5.2 Out-of-Domain Fine-Tuning and Test Set Performance

All of our models M1-Mg were obtained after 10 epochs of OOD finetuning. We initially believed this
additional step was beneficial given the results of 14, and M3 on the dev set compared to the baseline.
However, the final M7 model was chosen after only a single training step on the OOD training data,
with the model decreasing in performance at later stages of finetuning. This suggests that additional
training on the OOD dataset causes models to overfit to the OOD training data. Furthermore, it
suggests that additional OOD finetuning is not strictly beneficial for model performance. As we
selected models based on peak performance on the OOD dev set at regular intervals during OOD
training, the final models had different levels of exposure to the OOD training set, and it is possible
that this discrepancy resulted in some of our models exploiting correlations between training data and
the dev set that do not generalize. The step and epoch of OOD finetuning at which each final model
was chosen is shown in Table 6 of the Appendix. We believe this is also one possible reason why
M, outperformed every model except M7 on the OOD test data set, despite having lower EM and
F1 scores on the OOD dev set. Since all models except 4; had greater complexity than M;, it is
possible that performance of models M3 and Mg on the OOD dev set simply meant that they were
overfit to common aspects of the OOD training and dev data.

Interestingly, the models that were trained with an auxiliary loss usually had relatively poor perfor-
mance on the OOD dev set at the start of the OOD finetuning phase, but improved significantly in
performance as OOD finetuning progressed (M3, M;). This suggests that these models may be able
to gain more from the small OOD training set before overfitting relative to the dev set and suffering a
decline in performance. However, the additional time required to attune these models to the OOD
task also increases the risk of accidental overfitting relative to the test set. There appears to be a
delicate balance between leveraging the auxiliary objective to increase the model’s potential to learn
from the small OOD sample and possibly overfitting over too many training epochs. As evidence of
this, we found that regularizing Mg by using SLU on the OOD fine-tuning step over only 3 epochs
(M$) yielded a better test set result despite comparable peak performance on the dev set (Table 2). It
is also possible that lowering the range of ¥ or training for more epochs over the same range would
improve the performance of our auxiliary models, as our 1/3 model achieved its best single-shot
OOD performance when finetuned in-domain for 4 epochs with y decreasing from 2.0 to 0.5 (see
Table 4 in the Appendix).

6 Conclusion

For the task of QA on an OOD dataset, we have developed a model that improves over a pretrained
DistiIBERT model. We sought to achieve improvements over the baseline by implementing the
following suggestions proposed in SiATL [6]: implementing an auxiliary loss function, adding an
extra DistiIBERT layer, and training with sequential layer unfreezing. To mask inputs with the
MLM model, we incorporate a dynamic masking scheme proposed in ROBERTa [8]. In addition,
we experiment with using a span mask instead of MLM, but find that an auxiliary MLM loss
outperforms auxiliary span losses. Although all the changes above improved our models over a
baseline model based on the OOD dev dataset, our best performing model on the test set used only an
extra DistiIBERT layer with sequential layer unfreezing. This model achieved EM = 42.23 and F1 =
60.81, placing us in the top 10% of the CS224N RobustQA Test leaderboard based on F1, and the top
30% based on EM.

Interestingly, when evaluating our final models on the OOD test data, we found that an unmodifed
DistiIBERT model with 3 epochs of in-domain and 10 epochs of OOD training outperformed all
other models except our best one. This suggests that adding an auxiliary loss improves performance
on the OOD dev data without necessarily improving performance on the OOD test data. In addition,
combining the auxiliary loss model with the additional layer+SLU also resulted in a model that
performed worse than the additional layer+SLU model. In both cases, we believe this is because of
insufficient tuning of auxiliary loss hyperparameters, resulting in an overfit on OOD training and dev
data. Going forward, we would improve our models by performing additional hyperparameter tuning.
For instance, we would to perform more experiments about varying the weight of the auxiliary loss
relative to the QA loss. We would also seek to improve the reliability of the dev dataset results via
methods such as random sampling or bootstrapping. Furthermore, since we believe that span masking
as an auxiliary loss was less successful than MLM because of an insufficient amount of training, we
would like to repeat our span masking experiments with many more epochs of in-domain training.

7 Acknowledgements

Overall, we found this project to be a great learning experience, and thank the teaching staff for the
hard work they put into setting up the default project. We look forward to using the skills we have
learned and implementing them in practice!

References

[1]

[2 “

[3 “
4

[4 S
y

[5]

[6 =

[7 w
s

[8 “
4

[9 —

[10]

[11]

[12]

[13]

[14]

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,

Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer, 2020.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version

of bert: smaller, faster, cheaper and lighter. In arXiv preprint arXiv: 1910.01108, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+
questions for machine comprehension of text. In CoRR, abs/1606.05250, 2016.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eunsol Choi, and Dangi Chen. MRQA

2019 shared task: Evaluating generalization in reading comprehension. CoRR, abs/1910.09753,
2019.

Alexandra Chronopoulou, Christos Baziotis, and Alexandros Potamianos. An embarrassingly
simple approach for transfer learning from pretrained language models. In Association for
Computational Linguistics (ACL), 2019.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy.

Spanbert: Improving pre-training by representing and predicting spans, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike

Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. In arXiv preprint arXiv:1907.11692, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pages 249-256, Chia Laguna Resort, Sardinia, Italy, 13-15 May
2010. JMLR Workshop and Conference Proceedings.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bach-

man, and Kaheer Suleman. Newsqa: A machine comprehension dataset. In Association for
Computational Linguistics (ACL), 2017.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh,

Chris Alberti, Danielle Epstein, [lia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee,

Kristina N. Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc

Le, , and Slav Petrov. Natural questions: a benchmark for question answering research. In
Association for Computational Linguistics (ACL), 2019.

Amrita Saha, Rahul Aralikatte, Mitesh M. Khapra, , and Karthik Sankaranarayanan. Duorc:

Towards complex language understanding with paraphrased reading comprehension. In Associ-
ation for Computational Linguistics (ACL), 2018.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, , and Eduard Hovy. Race: Large-scale

reading comprehension dataset from examinations. In Empirical Methods in Natural Language
Processing (EMNLP), 2017.

[15] Omer Levy, Minjoon Seo, Eunsol Choi, , and Luke Zettlemoyer. Zero-shot relation extraction
via reading comprehension. In Association for Computational Linguistics (ACL), 2017.

[16] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony

Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,

Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain

Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers:
State-of-the-art natural language processing, 2020.

[17] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony

Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,

Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain

Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-

art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, October 2020.

8 Appendix

Method EM(D) EM(ID+OOD) F1dD) F1(dD+O0OD)

Mz - 2 epoch ID 31.68 34.03 46.42 49.32
Msg - 3 epoch ID 29.58 35.60 46.19 50.35
M3 - 4 epoch ID 34.55 34.82 49.59 49.76

Table 4: Impact of Number of Epochs of In-Domain Fine-tuning with Auxiliary Loss on Dev
Set Performance. We compare zero-shot and few-shot performance on the OOD dev dataset ("ID" =
In-Domain fine-tuning only, "ID + OOD" = both).

Method Imax EM(UD) EM(ID+O0OD) F1dD) F1dD+O0OD)

Baseline / M, 0 31.68 34.81 47.10 48.50
M3 1 29.58 35.60 46.19 50.35
Ms 2 32.20 34.29 47.74 49.59
Ms 4 31.41 34.29 46.01 48.32

Table 5: Impact of Masked Span Length on Dev Set Performance. We use I,,,,, = 0 to refer to no
masking and ly, = 1 to refer to random masking. We compare zero-shot and few-shot performance
on the OOD dev dataset ("ID" = In-Domain fine-tuning only, "ID + OOD" = both).

Method One-shot EM (dev) One-shot F1 (dev) OOD Peak Training Step

Mm 32.46 47.44 100 (Epoch 2)
Mo 31.41 47.23 100 (Epoch 2)
M3 29.84 46.32 400 (Epoch 8)
M 32.46 47.14 300 (Epoch 6)
Ms 31.41 46.15 100 (Epoch 2)
Mg 34.03 46.71 750 (Epoch 15)
M, 35.34 50.19 0 (Epoch 0)
Ms 29.06 46.83 600 (Epoch 12)
Mo 32.98 47.29 400 (Epoch 8)
Mi 33.25 47.27 140 (Epoch 2)

Table 6: Performance at Start of OOD Fine-Tuning and Peak Location. "Peak Training Step"
refers to the training step at which the best model was evaluated against the dev dataset and saved.

10

Question Correct | M3 M7, Mo
Answer

Who is Harry’s | his old | Ginger continues | Tonto Annie — died.Harry
travelling com- | friend west with Harry. She picks up two young
panion? Jacob claims she is 16, and hitchhikers, one of

is running away from whom soon __ gets
home to a commune another ride, while

in Boulder.Harry and the other a girl named
Ginger Ginger

Who seeks | Stubby Stubby and Bunny Stubby The arrive in a small
revenge from town in the pour-
Chaco? ing rain, but dis-

cover that it’s a ghost
town. The following
morning is bright and
sunny. Bud

What is the | National | National Gallery the National | National Gallery
name of _ the | Gallery Gallery,
place where London
Young Man with
a Skull can be

found?

11

Table 7: Sample Answer Spans. Examples of answers proposed by the models M3, M7, and Mg on
examples from the DuoRC (first two) and RelationExtraction (third) datasets.

