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Abstract 

The proliferation of pretrained Language Models such as BERT [1] and T5 [2] 
has been a key development is Natural Language Processing (NLP) over the past 
several years. In this work, we adapt a DistiIBERT [3] model, pretrained on masked 
language modeling (MLM), for the task of question answering (QA). We train the 
DistiIBERT model on a set of in-domain data and finetune it on a smaller set of out- 
of-domain (OOD) data, with the goal of developing a model that generalizes well 
to new datasets. We significantly alter the baseline model by adapting an auxiliary 
language modeling loss, adding an additional DistiIBERT layer, and undergoing 
training with sequential layer unfreezing. We find that adding an additional layer 
with sequential layer unfreezing offered the most improvement, producing a final 
model that achieved EM = 42.23 and F1 = 60.81 scores on the OOD test set. 

1 Introduction 

Within the field of Natural Language Processing (NLP), Question Answering (QA) is a challenging 
task often used as a benchmark for evaluating the quality of language models [4]. For QA tasks, 
models must read passages of text and answer questions about them. Specifically, given a context 
passage of text and a question to answer, QA models must choose a span of contiguous words within 
the passage that contains the answer to the question posed. This problem is challenging because 
models must accurately learn the meaning of both the context passage and the corresponding question, 
as well as the relationship between them. 

Furthermore, QA models are sensitive to the type of data they are trained on. Models trained on 
QA data from one source will suffer from deteriorated performance when evaluated on QA data 

from other sources [5]. The goal of this work is to create models that have improved capabilities for 
predicting QA spans for out-of-domain (OOD) data. 

This paper seeks to re-implement and improve upon models previously introduced for QA tasks. 
NLP models applied to specific tasks like QA often use pretrained language models as templates. 
These pretrained models are trained on large corpora for extensive periods of time, and serve as 
baselines from which finetuned models can be constructed. For this work, we start from a pretrained 
DistilBERT [3] model and finetune it for QA. We modify the DistiIBERT model in several significant 

ways, incorporating ideas from a variety of related work. Specifically, we adapt an auxiliary masked 
language modeling (MLM) loss, add an additional transformer layer, and include sequential layer 
unfreezing from [6]. Our work differs from [6] because their improvements for the QA task were 

originally implemented on an LSTM model, whereas we adapt their ideas for a DistiIBERT model. 
Furthermore, we experiment with span masking from [7] as the auxiliary loss, and additionally 
incorporate dynamic batch masking from [8]. In literature, both these techniques have been shown to 
improve performance on language modeling tasks. 

We perform independent experiments to validate the role of incorporating an MLM loss, an additional 
transformer layer, sequential layer unfreezing, and a span masking loss. We find that these methods 
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improve upon a baseline DistiIBERT model to different degrees, both separately and in combination. 
In addition, we analyze the outputs of these models to determine failure cases, and offer suggestions 
for further improvements. 

2 Related Work 

Transformer [9] models have significantly improved language model performance. By using self- 
attention as the primary method of relating different parts of textual input, transformer models 
effectively capture relationships between different parts of text, and have become popular tools 
for language modeling problems like QA. Furthermore, transformer models have been improving 
rapidly. Models like BERT [1], RoBERTa [8], and SpanBERT [7] improve transformer modeling 

incrementally by providing bidirectional language modeling, dynamic batch token masking, and 
span token masking, which have all been shown to improve language model performance. Likewise, 
DistiIBERT [3] is a lightweight version of BERT trained with knowledge distillation. These rapid 
improvements in transformer architecture and training can be leveraged simultaneously to improve 
QA model performance. 

Prior to transformer models, the most accurate language models were long short term memory 
(LSTM) networks [6]. One such model is SiATL [6], which applied pretrained LSTMs to OOD 

tasks. The creators of SiATL started with a pretrained LSTM, then incrementally improved it for 
various downstream tasks such as sentiment analysis and emotion detection. They improved upon the 
pretrained models by incorporating an auxiliary language modeling loss, adding an additional LSTM 
layer, and adopting sequential layer unfreezing. The auxiliary modeling loss was used to prevent the 
model from forgetting general features of language comprehension as it was finetuned on specific 
downstream tasks. The LSTM layer added parameters that the model could adjust for the new tasks. 
In addition, this new layer is used only for the target task rather than the auxiliary language modeling, 
thereby separating the target loss from the auxiliary loss and allowing the pretrained LSTM to retain 
general language modeling while also providing an addition to the architecture specific for the new 
application. Sequential layer unfreezing allowed the model to tune the new LSTM layer before 
adjusting the parameters and embedding layer of the pretrained model. Together, these improvements 
achieved a 5%-10% improvement over baseline models. 

In our work, we seek to combine the relatively simple but effective improvements demonstrated by 
SiATL with recent enhancements in transformer architectures. Although the improvements provided 
in the SiATL paper were used on LSTM models, they extend naturally to transformer models as well. 
Furthermore, since recent transformer architectures have been shown to improve general language 
modeling, we hope that by combining their improvements with the modifications shown in SiATL, 
we can generate more accurate models for OOD tasks. 

3 Approach 

3.1 Baseline 

We adapt a pretrained DistilIBERT [3] language model for the QA task proposed in the RobustQA 
Default CS224N final project. As a baseline, we use the model provided by the class, and train it 
on a QA task on a large corpus of QA data (datasets described below). As an additional step of 

model adjustment, we finetune this model on a smaller set of OOD training data, before evaluating 
on unseen OOD data. 

3.2 Improvements 

Auxiliary Loss: To improve on these baselines, we adapt methodologies first proposed by 
Chronopoulou et al. in their SiATL model [6], by Liu et al. in RoBERTa [8], and by Joshi et 

al. in SpanBERT [7]. From SiATL, we adapted the use of an auxiliary loss during QA training. We 
experiment with several types of auxiliary loss. The first auxiliary loss we used is a masked language 
modeling (MLM) loss. For the MLM loss, we follow the masking scheme originally proposed in 
BERT [1], in which we randomly select 15% of all tokens, of which we mask 80%, change 10% 

to other random tokens, and leave 10% unchanged. To implement MLM masking, we adapt some 
masking code from [8], and implement it in our codebase. We also compare MLM loss to span
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Figure 1: Architecture of modified DistiIBERT model developed for this project. The input consists 
of a context paragraph followed by the question posed for the QA task. The pretraiend DistilBERT 
transformer has 6 layers, and is used to predict masked tokens for the auxiliary loss. The output of 
the hidden layer of the new DistilBERT layer is used to predict QA span tokens for the QA loss. 

masking, in which we mask contiguous sequences ("spans") of text rather than individual tokens. It is 
hypothesized that span masks force the model to better learn semantic relationships over the entire 
input sequence, in order to fill in longer gaps of masked text. We experiment with different average 
span mask lengths, and follow the same distribution of masked vs. changed vs. unchanged tokens as 
presented above for MLM masking. To implement span masks, we develop our own code following 
the specifications provided in [7]. For both MLM and span masking, we only mask text tokens, and 

do not mask special tokens like [CLS], [SEP], and [PAD]. 

To incorporate the auxiliary loss, we follow the masking scheme proposed in ROBERTa [8]. RoBERTa 
differs from BERT in that all inputs are randomly re-masked at every epoch, instead of being masked 
once in pre-processing then used repeatedly over the training process. ROBERTa’s masking approach 
has been shown to improve model prediction results [8]. The model then predicts QA tokens and 
MLM tokens simultaneously from these masked inputs. Our final model includes some masking code 
adapted from RoBERTa, as well as our own code for implementing a combined loss function. The 
loss functions take the form 

Lea = log Pstart (i) ~~ log Pend (7) 

Lym = CrossEntropyLoss(§o, Yo) for yo € {masked tokens} 

Liotal = LQa + yLMimM 

where 7 is a hyperparameter that we decrease during training to bias the model toward focusing on 
QA loss in later epochs. During evaluation, only the QA loss function is used, and no token masking 

occurs. 

Sequential Layer Unfreezing with Additional QA Layer: 

Inspired by SiATL [6], we also add a new DistilBERT layer for QA modeling, and implement 
sequential layer unfreezing (SLU). For both these improvements, we implement our own modifications 
to the DistiIBERT codebase. The new DistilBERT layer is appended to the end of the pretrained 
transformer layer, and is randomly initialized with Xavier initialization [10]. With SLU, we specify 
which layers can have their parameters updated during each training epoch. For the first N’ epochs, 
we only allow parameter updates for the new DistilBERT layer. After N epochs, we allow the entire 
model to train. The full architecture of our model is shown in Figure 1. 

After training DistiIBERT on the in-domain dataset with the combined loss model, we finetune the 

model on the limited OOD data, and then evaluate the model. We also attempt other experiments, in 
which we sequentially use MLM loss followed by QA loss (without any data masking during QA loss 
training). Full details are presented below. We compare the results of these models to the baseline 
QA model provided by the class.



4 Experiments 

4.1 Data 

The datasets we use are provided by the CS224N teaching staff. Each input consists of a context- 
question pair, separated by [SEP] tokens. The answer to each question is located within the context. 
The context-question inputs have a maximum length of 384 tokens. 

The data are divided into two categories: QA in-domain and QA out-of-domain (OOD) data. Precise 

details about each dataset can be found from the original papers for each data source. The amount of 
data used from each data source is shown in the table below. 
  

  

  

  

  

Dataset Question Source Passage Source Train Dev Test 

in-domain datasets 

SQuAD [4] Crowdsourced Wikipedia 86,588 = 10,507 - 
NewsQA [11] Crowdsourced News articles 74,160 4,212 - 

Natural Questions [12] Search logs Wikipedia 104,071 12,836 - 

out-of-domain datasets 

DuoRC [13] Crowdsourced Movie reviews 127 126 1,248 

RACE [14] Teachers Examinations 127 128 419 

RelationExtraction [15] Synthetic Wikipedia 127 128 2,693 
  

4.2 Evaluation Method 

To assess the performance of our model, we use an evaluation method provided by the CS224N staff. 
The best performing models are determined by their exact match (EM) and F1 scores of QA span 
predictions. The EM score is a binary score that assesses whether the proposed start and stop tokens 
exactly match the true start and stop tokens for the data. The Fl score is a harmonic mean of the 
precision and recall for both the start and stop tokens. The models are evaluated on the OOD dev 
dataset, and the best model from this evaluation is selected for modeling on the OOD test dataset. 

4.3 Experimental Details 

General Implementation Details: Unless otherwise specified, the following implementation details 
and hyperparameters apply for all models listed below. Models were trained on in-domain data for 3 
epochs, then finetuned on OOD data for 10 epochs. Models used the Adam optimizer with a learning 
rate of 3e-5, and were trained with batch size = 16. During in-domain training, models were evaluated 
on the in-domain dev set every 2000 training steps, and the best-performing model was chosen as the 
starting model for OOD training. During OOD training, models were evaluated on the OOD dev set 
every 100 steps, and the best-performing model was chosen as the "final" model for each experiment. 
The baseline architecture used for this project, and upon which all modifications were made, is a 
6-layer DistiIBERT model adapted from HuggingFace [16]. 

Baselines: We begin with a pretrained DistilBertForQuestionAnswering [17] model. After 
training on the in-domain data, it is 1) directly evaluated on the OOD dev data (yielding the Baseline 
model), and 2) further finetuned on the OOD training data for 10 epochs (yielding model M). 

Stagewise Losses: As an intermediate step toward our auxiliary loss model, we first discretely 
finetune the "pretrained-base" DistiIBERT using DistilBertForMaskedLM [17] on the in-domain 
dataset for one epoch, then transfer the weights to a DistilBertForQuestionAnswering model 
and continue fine-tuning for 3 epochs on the QA task. Finally, we further finetune on the OOD dataset 
using only QA loss (yielding model M2). 

Auxiliary Masked Language Modeling Loss: Drawing from the DistiIBERT Hugging Face 
codebase [16], we implement our own auxiliary loss model that maintains masked language modeling 
(MLM) loss throughout in-domain training. When training with the MLM loss, we mask according 
to the scheme proposed in BERT [1], and described above. We keep always keep 3 tokens unchanged 
in the inputs: [CLS], [SEP], and [PAD]. We keep [CLS] and [SEP] tokens unchanged because we 
want to ensure the model learns the relationship between the question and context strings. We leave 
[PAD] unchanged since it has no semantic relationship to each input.



Because we use masking for the auxiliary loss on in-domain training, the inputs are also masked 
for the QA loss. This likely increases the difficulty for the model to converge to a minimal QA 
loss, but we hope that this decrease in QA accuracy is offset by an increase in general language 
modeling via the auxiliary loss. When using the auxiliary loss, the combined model loss function is 
Liotat = Lga + Lum. In our experiments, we gradually decrease the +y as we train the model. 

We modulate both the upper and lower limits of 7, as well as the rate at which it decreases. 

For OOD training, we do not mask any inputs, nor use an auxiliary loss. As such, the OOD training 
is only run on QA loss. The final model for this experiment, after OOD finetuning, is labeled M3. 

Span-Masking Auxiliary Loss: We found our experiments using an MLM loss to be successful, 
and decided to try alternative auxiliary losses. Given the success of SPANBert [7], we create a 
span-masking variant of M3. Following the methodology in SPANBert, we draw span lengths 
1 ~ Geom(p), i.i.d., with p = 0.20, and clip these lengths to a given maximum length (lja2). We 

then select a subset of the spans so as to mask no more than 15% of the input sequence plus the 
expected span length prior to clipping, and assign each span to a starting index drawn uniformly from 
the input. Given that span prediction may pose a more difficult task than individual token prediction, 
we experiment with varying lz for in-domain training (M4 and Ms), with lynaz = 1 assumed to 

correspond with our original auxiliary MLM model. These results are shown in Table 5. 

Sequential Layer Unfreezing (SLU) with Additional QA Layer: To implement sequentual layer 
unfreezing (SLU), we first add an additional transformer layer to the pretrained DistiIBERT model. 
This layer is added to the end of the pretrained DistiIBERT model, and takes as input the final hidden 
state of the last layer of the pretrained DistiIBERT model. The output of this layer is passed to a 
feedforward network (FFN) that predicts the QA span tokens. The new layer DistilBERT layer is 
initialized randomly with Xavier initialization. 

To investigate the effect of adding a new layer, we perform several experiments. First, we wanted to 
see whether the larger model could train as well as the 6-layer model on the same number of training 
steps. To test this, we allowed the combined model to train in-domain for 3 epochs, followed by 
OOD finetuning, yielding Mg. 

Next, we introduce sequential layer unfreezing. For the first 2 epochs of in-domain training, we only 
allow parameter updates to the newly initialized DistiIBERT layer and QA FEN, while keeping the 
pretrained layers frozen. Because the new DistilBERT layer is randomly initialized, we use the first 
2 epochs to allow this layer to converge to a local minimum in the loss landscape. At this point, 
we consider the new layer "trained", and then we train the entire model for 3 epochs, producing 
model M7. This experiment allows us to compare how a 7-layer DistiIBERT transformer to a 6-layer 
DistilBERT model (i.e. the baseline) when both are entirely unfrozen for 3 epochs of training. 

Combining Methods: We take our best auxiliary loss regimes based on validation set performance 
(M, and M;) and combine them with SLU (M7) over 5 epochs (yielding Mg and Mg). We train on 

the in-domain dataset for N = 2 epochs with the base layers frozen (and no masking or auxiliary 
loss), then unfreeze all layers and train for 3 epochs with masking and an auxiliary loss. We again 
decay + linearly from 2.0 to 0.5 for in-domain training over the 3 epochs of full-model training. 

Notably, when we incorporate the auxiliary loss with the SLU + extra layer architecture, we follow 
the scheme proposed in SiATL, and allow the additional layer to only predict the QA loss. More 
specifically, the auxiliary loss is predicted by the output of the pretrained, 6-layer model. The last 
hidden state of the 6-layer model is used as input to the new DistilBERT layer, and the output of this 
new layer is used to predict the QA span. The new layer does not impact the prediction of masked 
tokens. We hypothesize that separating the losses in this fashion allows the first 6 layers to maintain a 
general understanding of language, while allowing the new layer to carefully attend to the QA task. 

4.4 Results 

Based on evaluation upon the OOD dev set (Table 1, the best performing models were models that 
incorporated an MLM auxiliary loss on in-domain modeling (M3, F1 = 50.35, EM = 34.81), and the 
SLU model that underwent N = 2 epochs of frozen training, followed by 3 epochs of full-model 
training (M7, F1 = 50.36, EM = 35.34).



  

Method Description EM (dev) F1 (dev) 
  

Baseline In-Domain QA only (3 epochs) 31.68 47.10 

M, In-Domain QA (3) + OOD QA (10) 34.81 48.50 
Mp2 In-Domain MLM (1) + In-Domain QA (3) + OOD QA (10) 32.72 48.43 
M3 In-Domain [QA + MLM] (3) + OOD QA (10) 35.60 50.35 
Mz, In-Domain [QA + SM Imax = 2] (3) + OOD QA (10) 34.29 49.59 
Ms In-Domain [QA + SM Imax = 4] (3) + OOD QA (10) 34,29 48.32 
Me In-Domain [SLU N = 0, no Aux] (3) + OOD QA (10) 35.08 48.80 
M7, In-Domain [SLU N = 1, no Aux] (5) + OOD QA (10) 35.34 50.36 
Mg (M3 + Mz) + OOD QA (10) 33.51 48.72 
Mo (M4, + Mz) + OOD QA (10) 34.82 49.17   

Table 1: Model Iteration. Models 14; - Mo represent the addition of auxiliary loss and sequential 
layer unfreezing to our baseline, both individually and in combination. All scores are based on the 
OOD dev set. SM = Span Masking, Aux = Auxiliary Loss 

Comparing the Baseline model with //, we see that finetuning the model on OOD data significantly 
improves the both Fl and EM performance. As such, we incorporate OOD QA finetuning on all 
downstream models. This conclusion is supported by additional results comparing the performance 
of models on the OOD dev set before and after OOD finetuning (Tables 4 and 5 located in the 
Appendix). In most cases, incorporating OOD finetuning increased EM and F1 scores by 10% - 20% 
compared to only in-domain training. 

Furthermore, comparing M3 with M, convinced us that incorporating an auxiliary loss offers 
significant improvement on QA performance. Given the success of the MLM loss, we decided to 
incorporate a span loss, the results of which are shown in models M4 and M;. Unfortunately, the 
span loss models did not seem to perform as well as the MLM model, with results shown in Table 5 
located in the Appendix. We experimented with maximum span lengths of / = 1, 2, and 4, and found 
that the model with /=1 (i.e. MLM) performed best. We hypothesize that this is because the auxiliary 
span-masking loss differs significantly from the MLM loss upon which the DistiIBERT models were 
pretrained. The decreasing performance of models with longer span masks is shown in 5. While 
SPANBert sets [maz = 10 [7], it specifically pretrains on this objective over a much larger quantity 
of data than our in-domain training set. 

In addition, comparing M7 (a 7-layer model with 3 epochs of full training) to M; (a 6-layer model 
with 3 epochs of full training) demonstrated to us that including an extra layer with sequential layer 
unfreezing also provides significant improvement on the QA task. In our final tests, we combined 
our best auxiliary loss models with our best SLU models, yielding Mg and Mg. Although these final 
models incorporated benefits from both auxiliary loss models and SLU models, both Mg and Mg 
performed more poorly than either the best auxiliary loss models or best SLU models. In fact, Mg and 
Mg are comparable in performance Mj), which is simply the baseline model with OOD finetuning. 

Since models M3 and Mg performed best, we submitted those models for evaluation on the OOD 

test set. In addition, we submitted model Mg to investigate how the combined model performed on 
the OOD test set, and M; to determine the performance of the baseline model. The performance of 
these models on the test set is shown in Table 2. 

This table shows that based on F1 scores on the OOD test data, the SLU model without an auxiliary 
loss (/7) performed best, with F1=60.81 and EM=42.23. Surprisingly, 1/1, which is the baseline 
model of an unmodified DistiIBERT model trained on both in-domain and OOD data, performed best 
based on EM scores, and also had the second best FI score. We evaluated Mg twice on the test data, 

1) without any layer unfreezing during finetuning on the OOD data (model Mg), 2) with one epoch 
of training with only the additional DistiIBERT layer unfrozen, followed by 2 epochs of full model 
training (model Mj). Mg outperformed Mo, but failed to match performance of M7. This suggests 
that we were unable to successfully merge the best independent models together. Furthermore, that 
all models beside M7 performed strictly worse than 1 suggests that including an auxiliary loss does 
not improve model performance on the test set. We discuss possible reasons for failure below.



  

Method EM (test) F1 (test) 
  

M, 42.317 59.452 
M3 41.078 58.170 
M; 42.225 60.807 

Mg (9 epochs OOD) 41.170 57.876 
Mj (3 epochs SLU OOD, N = 1) 41.766 58.587 
  

Table 2: Test Submissions. EM and F1 scores of models making predictions on QA OOD test data. 

5 Analysis 

5.1 Error Analysis by Data Source and Question Type 

To understand why M7 scored particularly highly on the test set despite achieving lower scores than 
M3 on the dev set, we examine dev set performance on particular data sources and question types 

  

  

  

(e.g. questions starting with "Who...", "What...", etc.). These results are shown below in Table 3. 

% of Dev Set M, Mz M, Mo 

All Data 100% 31.94% 32.72% 30.37% 31.41% 
DuoRC 32.98% 25.40% 26.98% 30.16% 25.40% 
RACE 33.51% 20.31% 18.75% 17.97% 17.19% 

RelationExtraction 33.51% 50.00% 52.34% 42.97% 51.56% 

"Who..." 23.56% 25.56% 27.78% 33.33% 30.00% 
"What..." 40.84% 34.62% 37.18% 31.41% 33.97% 
"Which..." 12.04% 41.30% 26.09% 26.09% 26.09% 
"Where..." 6.28% 16.67% 33.33% 20.83% 16.67% 
  

Table 3: Model Accuracy on Different Data Sources and Question Types. Percent accuracy was 
determined by computing EM scores for comparing the model’s output to dev set answers, removing 
all punctuation. "When", "Why", and "How" questions are excluded due to scarcity in the dataset. 

Relative to our baseline model finetuned on the OOD training dataset (W/), all of our other models 

except for M7 improve the model’s performance on the RelationExtraction dataset. Interestingly, 7, 
which obtained the best test set performance of all of our submitted models, only achieves the best 
dev set accuracy on "Who" questions and the DuoRC dataset. While all data sources are represented 
evenly in the OOD training and dev datasets, the RelationExtraction and DuoRC datasets feature 
much more prominently in the OOD test dataset. Furthermore, when we examine the test data, we 
find that "Who" questions comprise 51% in the DuoRC dataset at, but feature at approximately 15% in 
other datasets. The auxiliary masking loss models appear to favor performance on RelationExtraction 
and "What" questions, and it is possible that relatively low DuoRC and "Who" results may have hurt 
their overall performance. We note some specific DuoRC examples in Table 7, in the Appendix. 

In particular, we observe a common pattern in many of our models in which the output answer span 
for certain questions is very large, even though the tokens at the ends of the span appear to reflect 
either the same answer or two conflicting responses. This indicates a sense of "indecisiveness" - the 
model has not fully learned that its start and end tokens should always encompass a single coherent 
response. M7 makes this type of mistake on "Who" questions in the dev dataset only 6.67% of the 
time, whereas this figure is at least 14% for both M3 and Mo. In general, the DuoRC dataset is 
unique in that it supplies a large number of question and answer pairs for a small number of long 
contexts. It is possible that the additional transformer layer helps the model retain more contextual 
information over the longer passage, while the auxiliary loss finetuning in Mg detracts from the 
process of building this contextual representation. This may have given M/7 a comparative advantage 
in test set performance. While its performance on the RelationExtraction dataset appears to decline 
in Table 3, this is largely explained by the observation that 7 prepends articles ("a", "the") to its 
answers at a much higher rate than the other models (for example, 5 times higher than M3). This 
may be further evidence that 1/7 preserves a more general grasp of context than the other models.



5.2 Out-of-Domain Fine-Tuning and Test Set Performance 

All of our models M1-Mg were obtained after 10 epochs of OOD finetuning. We initially believed this 
additional step was beneficial given the results of 14, and M3 on the dev set compared to the baseline. 
However, the final M7 model was chosen after only a single training step on the OOD training data, 
with the model decreasing in performance at later stages of finetuning. This suggests that additional 
training on the OOD dataset causes models to overfit to the OOD training data. Furthermore, it 
suggests that additional OOD finetuning is not strictly beneficial for model performance. As we 
selected models based on peak performance on the OOD dev set at regular intervals during OOD 
training, the final models had different levels of exposure to the OOD training set, and it is possible 
that this discrepancy resulted in some of our models exploiting correlations between training data and 
the dev set that do not generalize. The step and epoch of OOD finetuning at which each final model 
was chosen is shown in Table 6 of the Appendix. We believe this is also one possible reason why 
M, outperformed every model except M7 on the OOD test data set, despite having lower EM and 
F1 scores on the OOD dev set. Since all models except 4; had greater complexity than M;, it is 
possible that performance of models M3 and Mg on the OOD dev set simply meant that they were 
overfit to common aspects of the OOD training and dev data. 

Interestingly, the models that were trained with an auxiliary loss usually had relatively poor perfor- 
mance on the OOD dev set at the start of the OOD finetuning phase, but improved significantly in 
performance as OOD finetuning progressed (M3, M;). This suggests that these models may be able 
to gain more from the small OOD training set before overfitting relative to the dev set and suffering a 
decline in performance. However, the additional time required to attune these models to the OOD 
task also increases the risk of accidental overfitting relative to the test set. There appears to be a 
delicate balance between leveraging the auxiliary objective to increase the model’s potential to learn 
from the small OOD sample and possibly overfitting over too many training epochs. As evidence of 
this, we found that regularizing Mg by using SLU on the OOD fine-tuning step over only 3 epochs 
(M$) yielded a better test set result despite comparable peak performance on the dev set (Table 2). It 
is also possible that lowering the range of ¥ or training for more epochs over the same range would 
improve the performance of our auxiliary models, as our 1/3 model achieved its best single-shot 
OOD performance when finetuned in-domain for 4 epochs with y decreasing from 2.0 to 0.5 (see 
Table 4 in the Appendix). 

6 Conclusion 

For the task of QA on an OOD dataset, we have developed a model that improves over a pretrained 
DistiIBERT model. We sought to achieve improvements over the baseline by implementing the 
following suggestions proposed in SiATL [6]: implementing an auxiliary loss function, adding an 
extra DistiIBERT layer, and training with sequential layer unfreezing. To mask inputs with the 
MLM model, we incorporate a dynamic masking scheme proposed in ROBERTa [8]. In addition, 
we experiment with using a span mask instead of MLM, but find that an auxiliary MLM loss 
outperforms auxiliary span losses. Although all the changes above improved our models over a 
baseline model based on the OOD dev dataset, our best performing model on the test set used only an 
extra DistiIBERT layer with sequential layer unfreezing. This model achieved EM = 42.23 and F1 = 
60.81, placing us in the top 10% of the CS224N RobustQA Test leaderboard based on F1, and the top 
30% based on EM. 

Interestingly, when evaluating our final models on the OOD test data, we found that an unmodifed 
DistiIBERT model with 3 epochs of in-domain and 10 epochs of OOD training outperformed all 
other models except our best one. This suggests that adding an auxiliary loss improves performance 
on the OOD dev data without necessarily improving performance on the OOD test data. In addition, 
combining the auxiliary loss model with the additional layer+SLU also resulted in a model that 
performed worse than the additional layer+SLU model. In both cases, we believe this is because of 
insufficient tuning of auxiliary loss hyperparameters, resulting in an overfit on OOD training and dev 
data. Going forward, we would improve our models by performing additional hyperparameter tuning. 
For instance, we would to perform more experiments about varying the weight of the auxiliary loss 
relative to the QA loss. We would also seek to improve the reliability of the dev dataset results via 
methods such as random sampling or bootstrapping. Furthermore, since we believe that span masking 
as an auxiliary loss was less successful than MLM because of an insufficient amount of training, we 
would like to repeat our span masking experiments with many more epochs of in-domain training.
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8 Appendix 

  

  
Method EM(D) EM(ID+OOD) F1dD) F1(dD+O0OD) 

Mz - 2 epoch ID 31.68 34.03 46.42 49.32 
Msg - 3 epoch ID 29.58 35.60 46.19 50.35 
M3 - 4 epoch ID 34.55 34.82 49.59 49.76   

Table 4: Impact of Number of Epochs of In-Domain Fine-tuning with Auxiliary Loss on Dev 
Set Performance. We compare zero-shot and few-shot performance on the OOD dev dataset ("ID" = 
In-Domain fine-tuning only, "ID + OOD" = both). 

  

Method Imax EM(UD) EM(ID+O0OD) F1dD) F1dD+O0OD) 
  

Baseline / M, 0 31.68 34.81 47.10 48.50 
M3 1 29.58 35.60 46.19 50.35 
Ms 2 32.20 34.29 47.74 49.59 
Ms 4 31.41 34.29 46.01 48.32 
  

Table 5: Impact of Masked Span Length on Dev Set Performance. We use I,,,,, = 0 to refer to no 
masking and ly, = 1 to refer to random masking. We compare zero-shot and few-shot performance 
on the OOD dev dataset ("ID" = In-Domain fine-tuning only, "ID + OOD" = both). 

  

Method One-shot EM (dev) One-shot F1 (dev) OOD Peak Training Step 
  

Mm 32.46 47.44 100 (Epoch 2) 
Mo 31.41 47.23 100 (Epoch 2) 
M3 29.84 46.32 400 (Epoch 8) 
M 32.46 47.14 300 (Epoch 6) 
Ms 31.41 46.15 100 (Epoch 2) 
Mg 34.03 46.71 750 (Epoch 15) 
M, 35.34 50.19 0 (Epoch 0) 
Ms 29.06 46.83 600 (Epoch 12) 
Mo 32.98 47.29 400 (Epoch 8) 
Mi 33.25 47.27 140 (Epoch 2)   

Table 6: Performance at Start of OOD Fine-Tuning and Peak Location. "Peak Training Step" 
refers to the training step at which the best model was evaluated against the dev dataset and saved. 
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Question Correct | M3 M7, Mo 
Answer 

Who is Harry’s | his old | Ginger continues | Tonto Annie — died.Harry 
travelling com- | friend west with Harry. She picks up two young 
panion? Jacob claims she is 16, and hitchhikers, one of 

is running away from whom soon __ gets 
home to a commune another ride, while 

in Boulder.Harry and the other a girl named 
Ginger Ginger 

Who seeks | Stubby Stubby and Bunny Stubby The arrive in a small 
revenge from town in the pour- 
Chaco? ing rain, but dis- 

cover that it’s a ghost 
town. The following 
morning is bright and 
sunny. Bud 

What is the | National | National Gallery the National | National Gallery 
name of _ the | Gallery Gallery, 
place where London 
Young Man with 
a Skull can be 

found?           
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Table 7: Sample Answer Spans. Examples of answers proposed by the models M3, M7, and Mg on 
examples from the DuoRC (first two) and RelationExtraction (third) datasets. 

 


