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Abstract 

The goal for the project is to build an end to end neural network architecture for 
the question answering system that captures the complex interaction of Machine 
Comprehension (MC) between the context and the query. Our implementation is 
motivated by the recent high performance models that involve attention mechanism. 
We start with Bi-Directional Attention Flow (BIDAF) network as a baseline and 

aim to improve the MC of answering a query about a given context paragraph by 
making architectural changes to the baseline BiDAF model. QANet speeds up 
reading comprehension by replacing RNNs with encoder blocks. QANet model 
predicts the start and end indices of an answer or no answer from a context given a 
query. We improved BiDAF model performance by adding character embedding 
and modifying the attention mechanism. We also re-implemented the QANet to get 
better performance. Our best BiDAF model achieved 63.22 EM and 67.08 F1 score 
on validation set and QANet achieved 61.45 EM and 74.11 F1 score on validation 

set. 

1 Introduction 

The Bidirectional Attention Flow (BiDAF) end-to-end model [1](Seo et al. 2017) employs a recurrent 

architecture to process sequential inputs and uses an attention component to cope with long term 
interactions. BiDAF is slow for both training and inference due to the model’s recurrent nature for 
long texts. QANet model makes machine comprehension faster by removing the recurrent nature of 
BiDAF model. Convolutions and self-attentions are building blocks of encoders that separately encode 
the query and context. The interactions between context and question is learned by standard attentions. 
[2](Xiong et al., 2016; Seo et al., 2016; Bahdanau et al., 2015). The resulting representation is again 

encoded with recurrency-free encoder before finally decoding to the probability of each position 
being the start or end of the answer span. Our motivation is to understand the limitation of QANet 
against SQuAD 2.0 dataset and improve the QANet architecture [3]. 

2 Related Work 

It has been a prime topic both in academia and in corporate world as how well can a model be 
built such that the model can provide correct answer to a question from a given paragraph where 
the answer is a span from the context. [1] BiDAF was one of the earlier models that captured 
C2Q and Q2C attentions and presented a context representation to the Modeling layer that was 
well conditioned on the question.The. model predicts the spans with highest pstarz and Pena. The 

Coattention layer from Dynamic Coattention (DCN) [15] model improved BiDAF’s basic attention 
by attending to the question and context simultaneously and finally by fusing both attentions. DCN 
estimates the start and end points of the answer span multiple times, each time conditioned on its 
previous estimates.Hence, the model is able to explore local maxima corresponding to multiple 
plausible answers. R-Net [5] improved attention layer further by including a self-matching attention 
that refines the representation by matching the context against itself, which effectively encodes 
information from the whole passage. QANet took the language model to the next level by replacing 
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RNN with self-attention and convolution. It’s Encoder Block uses stacked convolutional sublayers 
with depthwise-separable convolution to capture local dependencies in the input sequence. Later on 
these transformer based language models became the norm as BERT and GPT models were released. 
Also, neural machine comprehension and language models adopted the notion of pre-training a large 
language model using a large corpus and acquired world knowledge which then can be fine-tuned 
based on individual corpus. 

3 BiDAF approach 

3.1 Embedding 

Baseline BiDAF uses only word-level embeddings. To handle OOV, we added character level 
embeddings. We used 1D-CNN to find numeric representation of words by checking their char-level 
compositions. We also experimented with 2D-CNN, but this turned out to be computationally 
expensive and the batch size had to be reduced from 64 (default) to 16 on 1 gpu azure. 
A word is represented by Ce R2*!, d is the height of the matrix and | is the word length. The 
convolution filter (kernel) HeR¢*” of width w, will scan the word. H is randomly initialized and 

adjusted during training. Then, we take max pool of the vector, f , Hadamard product of H and 
its projection on C. Fig | and Fig 2 below demonstrate the process. We adopted our idea from 
open-sourced TensorFlow BiDAF implementation Abadi et al., 2016.[14]. We decided to use Leaky 
ReLU as it’s “mean activation” is close to 0 which makes training faster and it also fixes “dying 
ReLU” [9]problem. 
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Figure 2: Summary scalars from different scanning 
Figure 1: Char Representation. processes 

3.2 Highway Network 

Highway network [4] adjusts the contribution of the word embedding and the character embedding 
steps. Since character embedding deals with OOV, highway network increases the 1D-CNN repre- 
sentation. Now, we have obtained two sets of vector representations for words: one from the GloVe 

(word provided in baseline) embedding and the other from 1D-CNN (character added) embedding. 

These 2 representations are vertically concatenated. The concatenated embedding matrix( height d - 
height of the word matrix and char matrix) from both context and query are passed to the Highway 
Network as an input. We experimented with 1D-CNN instead of Linear (default) in the highway 
network, this resulted in memory issues, so we reverted back to default Linear function. In highway 
network, only a fraction of the input is subjected to transformation and rest is allowed to pass. 
If y be the input to highway network, Wy and by be the affine transformations, the transformation 
gate, t = o(Wry + b,), the carry gate will be 1 — t. 
The highway network transforms the input to, z = t-g(Wx + by) +(1—-t)-y. 
Highway network has 2 outputs, one for context of dimension (dXT), where T is the length of 
context and another one for query (dX J), where J is the length of the query.



3.3. Contextual Embedding 

The output of the highway network doesn’t take into account the contextual meaning of word. So 
RNNEncoding implements the contextual embedding using the Long-Short-Term-Memory (LSTM) 
sequences (default). The output of this layer will contain contextual information from words that 
comes before it. Here the LSTM is bidirectional, this way each word is aware of it’s surroundings 
in both forward and backward directions. To get performance advantage, we decided to use 
bidirectional Gated Recurrent Unit cell (GRU) instead of LSTM. The output of this layer are 2 
matrices, one for context and another for query. 

3.4 BiDAF Attention 

We have not made any changes in the BiDAFAttention class. The main function of this layer is 
creation of similarity matrix S, a tall matrix of dimension (TxJ), corresponding to applying similarity 
function to each column of the context and each column of query. The similarity matrix, S, serves 
as input to Bidirectional attention which computes attention in two directions - the context attends 
to the query (context-to-query) and the query attends to the context (query-to-context). The goal of 
context-to-query step is to find out which Query words are most relevant to each Context word. 

3.5 Self Attention 

BiDAF attention module deals with question-aware context representation. The problem of this 
representation is that it’s highly focused on the relation between context and question, but has limited 
knowledge of the context itself, especially between parts of context. R-Net[5] inspired self-match 
attention mechanism deals with context to context representation. We adopted the idea of self- 
matching attention from R-Net where it directly matches the question-aware passage representation 
against itself. It dynamically collects evidence from the whole passage for words in passage and 
encodes the evidence relevant to the current passage word and its matching question information into 
the passage representation. As per R-Net, our self-matching similarity has 

c, =att(v?, vP), the attention pooling vector of the whole passage (v’’) and 

he = BiGRU(hf._,, [up’, cz]) 

(We have used GRU[6] instead of RNN as in the original paper, because GRU is computationally 
cheaper without any loss of performance) 
We also consulted few other papers on self-attention[7] to implement Simple and Effective Multi- 
Paragraph Reading Comprehension techniques using self-matching attention. We also took ideas 
from the implementation: attention-is-all-you-need-pytorch [8]. 
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4 QANet approach 

In QANet, given a context C of length n, C = {cy,...,c, } and a query Q of length m, Q={q1,..., dm}, 
the output of span S = {c;, ci41, ..., i+; } from the original paragraph C is called answer. QANet 
model contains five components: an embedding layer, an embedding encoder layer, a context-query 
attention layer, a model encoder layer and an output layer, as shown in Figure 4. For both the 
embedding and modeling encoders, QANet only uses convolutional and self-attention mechanism in 
place of RNNs, which is used by BiDAF model. QANet model is much faster than BiDAF, as it can 
process the input tokens in parallel. 
We have summarized below our changes to QANet: 

4.1 Input Embedding Layer 

The embedding of each word w is obtained by concatenating its word embedding, p,; = 300-Dim 
pretrained Glove word vectors (fixed during training) and character embedding. All the out-of- 
vocabulary words are mapped to an < UNK > token trainable with random initialization. Each 
character in character embedding is represented as a trainable vector of dimension pz = 200. In 
QANet, unlike BiDAF, we decided that character embedding should use 2D-CNN to find numeric 
representation of words by checking their char-level compositions. 2D-CNN has more parameters 
than 1D-CNN and handles more features. We initialized the 2D-CNN with kaiming normal and used 
relu activation. 

Hence, each word is a concatenation of the embedding vectors for each of its characters. The length 
of each word is either truncated or padded to 16. The output of a given word x from this layer is 
the concatenation [2,,;7-] €R?'*??, where x,, and x, are the word embedding and the convolution 
output of character embedding of x respectively. The concatenated embedding of word and char 
representation is passed thru 1D-CNN before passed on to a two-layer highway network which is on 
top of this representation and x is output of this layer. 
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Figure 4: QANet framework. Figure 5: QANet Encoder. 

4.2. Embedding Encoder Layer 

Ref Figure 5, this layer is a stack of 
[convolution — layer + self — attention — layer + feed — forward — layer]. 
We decided to use depthwise separable convolutions for the convolution block similar to [16] 
Xception. The depthwise separable convolution is made of two operations: a depthwise convolution 
and a pointwise convolution. The computational cost of the depthwise separable convolution is the 
sum of the costs of the depthwise and pointwise operations. Compared to a normal convolution, it 
offers a computation reduction. 
The input of this layer is a vector of dimension p; + p2 = 500 for each individual word, which is 
immediately mapped to kernel=7, filters d = 128 one-dimensional convolution layer and there are 3



of them in the block. The output of this layer is a also of dimension d = 128. 
We used Multi-head attention mechanism in the self-attention layer. In this layer, for each position 
of the query, we did a weighted sum of all the positions in the input based on similarity between the 
query and the key as measured by the dot product. Each layer of the stack 
[convolution — layer + self — attention — layer + feed — forward — layer] 
is placed inside a residual block. 

4.3 Highway 

As explained in BiDAF’s Highway Network, in QANet we used 1D-convolution for the network. 
This worked without any issues. 

44 MultiHeadAttention 

We closely followed homework4 and implemented multi-head attention. 
Mathematically, self attention for input matrix (Q,K,V) is 

Attention(Q, K,V) = softmax(QK™ //d;) , where d;, is the dimension of the key, ref: figure 6. 
Q,K,V are essentially same and the attention is performed multiple times, then the output heads are 

concatenated as the final output hidden state h. We took the picture from transformer, we have not 
implemented scaled Dot-Product attention as shown in the diagram, figure 7. 

           

  

  

Scaled Dot-Product 
Attention   

  

  

Figure 6: Encoder SelfAttention. Figure 7: Multihead Attention. 

4.5 Context Query Attention Layer 

Ref fig.4, A similarity between context C €R” and query QeR™ is calculated, the resulting similarity 

matrix is, SER" *™. Each row of S is normalized by applyng softmax function, resulting matrix is S " 
The context-query attention is computed as 

A=S' « Q™ eR”*4, To compute the query-context attention a column normalization matrix, S " of S 
is computed by softmax. The resulting matrix is 

B=S'*S°T*CT. 

4.6 Model Encoder Layer 

Ref fig.5, Input at each position is [c, a, c * a, c * b] where a and b are the row of the attention matrix 
A and B respectively. The layer parameters are the same as the Embedding Encoding layer and We 
have reused the model Encoding layer mostly, except that the number of convolution layers is 2 
within a block and the total number of blocks are 7. 

4.7 Output Layer 

Ref fig.4, SQUAD is labeled with a span in the context containing the answer. We have not changed 
this layer. The probability of each position being start and end of an answer is calculated as:



p' = softmax(Wi[Mo, Mi] 
p* = softmax(W2|Mo, Mo] 
where Wj, W, are trainable variables and Mo, M1, M2 are the output of the model encoders from 
bottom to top. The score of a span is the product of its start and end position probabilities. Finally, the 
objective function is defined as the negative sum of the log probabilities of the predicted distributions 
indexed by true start and end indices, averaged over all the training examples: 

L(8) = —(1/N)EN [log(p!,) + log(p?2)] 
where y} and y? are the ground truth of example i at the starting and ending position respectively , and 
@ contains all the trainable variables. The proposed model can be customized to other comprehension 
tasks, e.g. selecting from the candidate answers, by changing the output layers accordingly. 

5 Experiments 

5.1 Data 

Stanford Question Answering Dataset (SQuAD) 2.0 [10] (Rajpurkar et al. 2016) is a reading 
comprehension dataset consisting of questions posed by crowdworkers on a set of Wikipedia articles, 
where the answers to every question is a segment of text, or span, from the corresponding reading 
passage, or the question might be unanswered. The figure 3 and 4 below show the distribution of 
different types of questions in SQUAD dataset. 
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Figure 9: SQuAD 

Figure 8: SQuAD dataset question types distribution 

SQuAD 2.0 has about 150k questions, unanswerable questions written adversarially by crowdworkers 
to look similar to answerable ones. The typical length of a paragraph is 250 and question is 10 tokens. 
SQuAD 2.0 is divided into train/dev and test sets. 

5.2 Evaluation method 

Experiments are evaluated on F1 score and Exact Match (EM) for the performance on the SQuAD 

2.0 dataset. For BiDAF, we iterated our experiments on SQUAD 2.0 using a batch size of 64 on 
NVIDIA NV6 GPU (6 vepus, 56 GiB memory). For QANet, we reduced our batch size to 16 in 
order to iterate on NVIDIA NV6 GPU and it took significantly longer due to the reduced batch size. 

5.3. Experimental details 

We used pretrained GloVe vectors [11] 300- dimensional embeddings trained on the 840B Common 

Crawl corpus. We experimented with a wide range of values for the hyperparameters: hidden state 
size, learning rate, training time, decay rate and seed values. It was noticed in general, that model 
performed very poorly for small values of learning rate. By lowering the decay rate, performance 
degraded. Reduction of the dropout [12] probabilities and increase of hidden layers helped to improve 
model performance. Our loss function was the sum of the negative loglikelihood (crossentropy) loss



for the start and end locations of the answer. During training, we averaged across the batch and used 
the Adadelta [13] optimizer to minimize the loss. 

We attempted few variation of self-attention and self-matching attention. One attempt was to pass the 
output of self-attention to Modeling layer to refine the context vector further. Another attempt was 
to add self-attention after Modeling layer, so the input was the refined context representation after 
attention layer. Lastly, the self-matching attention per R-Net implementation, as explained earlier in 
the Approach’ section. The self-matching attention implementation provided the best model. Our 
BiDAF and QANet implementation results are presented below. 

5.4 Results 

  

  

Model( Baseline BiDAF + modification) Training Fi |em 
Time 

1.Baseline 10h 19m 4s 60.45 | 57.30 —M ai i, 
(Ir=.5 , decay_rate = .999, drop_prob=.2, seed=224, tag: dev/eEM tag: deviF1 tag: dev/NLL 
hidden_size =100 ) 
  

2.Baseline + Char Embedding + Self Attention+GRU 18h 55m 20s 66.37 | 62.81 

(Ir=.5 , decay_rate =.999, drop_prob=.2, seed=224, 
hidden_size =100) 
  

3.Baseline + Char Embedding + Self AttentiontGRU 21h 6m 55s 63.11 | 60.17 

(Ir=.3 , decay_rate =.997, drop_prob=.3, seed=2321, 
hidden_size =100) 
  

4 Baseline + Char Embedding + Self Attention+GRU 22h 32m 47s 66.26 | 62.73 

(Ir=.6 , decay_rate =.9999, drop_prob=.2, seed=224, 
hidden_size =110)             Figure 11: BiDAF results comparison 

Figure 10: BiDAF experiments 
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Figure 12: QANet experiments 

default=5.0, type=float, 
help='global Norm gradient clipping rate') 

default=0.999, type=float, 
help='beta 2") 

Figure 13: QANet parameters 

¢ Fl and EM scores on the dev and test leaderboard 
Since, we were able to run only one iteration of QANet due to batch size = 16 and limited 
compute, we did not put our QANéet results to test leaderboard because the EM value in 
QANet was lower than the EM value in our BiDAF best model.However, QANet result 
showed a lot of promises for future improvements. 

  

  

  

Dev LeaderBoard Model details (BiDAF Modification) Test Leaderboard Model details (BiIDAF Modification) 
Baseline + Char Embedding + Self Attention+GRU 26h 48m 40s 67.08 | 63.22 " . 
(Ir=.5 , decay_rate =,9999, char-embedding Baseline + Char Embedding + Self Attention+GRU 65.88 | 62.09 

(Ir=.7 , decay_rate =.9999, drop_prob=.1 everywhere, 
drop_prob=.05, drop_prob elsewhere = 0.1,seed=224, seed=224, hidden_size =200) 
hidden_size =200)                         

Figure 14: Validation Leaderboard Figure 15: Test Leaderboard 

6 Analysis 

* Quantitative error analysis 
We performed error analysis by looking at the answerability of questions. The baseline model 
performed quite poorly on the unanswerable questions. After adding character embedding 
to BiDAF,, it improved the performance of both question types approximately equally. By 
adding a few fundamental changes to BiDAF, like self-matching attention and GRU, we 
enhanced the model performance both from metrics perspective as well as computationally 
as it improved the unanswerable performance significantly across the entire dev set, without 
sacrificing the performance of answerable questions. One possible explanation for the 
slightly worse performance on answerable questions might be that the baseline model is



biased for predicting an answer on border cases. 
We also compared the performance of our model with baseline model by question type and 
noticed that our model shows improvement across different question types. Even though 
there are majority of ’what’ questions in the set, we observed the most improvement in ’who’ 
questions. 

* Qualitative error analysis 
Here are two examples of ’what’ and ’who’ questions where our model understood the 
context really well and also applied relevant reasoning even though it was not a direct 
question. 

* Question: Economy, Energy and Tourism is one of the what? 
Context: Subject Committees are established at the beginning of each parliamentary session, and again the members on each committee reflect the balance of 
parties across Parliament. Typically each committee corresponds with one (or more) of the departments (or ministries) of the Scottish Government. The current 
Subject Committees in the fourth Session are: Economy, Energy and Tourism; Education and Culture; Health and Sport; Justice; Local Government and 
Regeneration; Rural Affairs, Climate Change and Environment; Welfare Reform; and Infrastructure and Capital Investment. 
Answer: current Subject Committees 
Prediction: N/A 

Figure 16: What question 
Question: Who increased British military resources in colonies? 
Context: After the disastrous 1757 British campaigns (resulting in a failed expedition against Louisbourg and the Siege of Fort William Henry, which was followed by 
Indian torture and massacres of British victims), the British government fell. William Pitt came to power and significantly increased British military resources in the 
colonies at a time when France was unwilling to risk large convoys to aid the limited forces it had in New France. France concentrated its forces against Prussia and 
its allies in the European theatre of the war. Between 1758 and 1760, the British military launched a campaign to capture the Colony of Canada. They succeeded in 
capturing territory in surrounding colonies and ultimately Quebec. Though the British were later defeated at Sainte Foy in Quebec, the French ceded Canada in 
accordance with the 1763 treaty. 

+ Answer: William Pitt 
* Prediction: William Pitt 

Figure 17: Who question 

* Qualitative Evaluation 
Here are two instances where our model failed to predict and our model predicted the output 
wrong. 

Question: Which directive mentioned was created in 1994? 
Context: Following the election of the UK Labour Party to government in 1997, the UK formally subscribed to the Agreement on Social Policy, which allowed it to be 
included with minor amendments as the Social Chapter of the 1997 Treaty of Amsterdam. The UK subsequently adopted the main legislation previously agreed 
under the Agreement on Social Policy, the 1994 Works Council Directive, which required workforce consultation in businesses, and the 1996 Parental Leave 
Directive. In the 10 years following the 1997 Treaty of Amsterdam and adoption of the Social Chapter the European Union has undertaken policy initiatives in 
various social policy areas, including labour and industry relations, equal opportunity, health and safety, public health, protection of children, the disabled and 
elderly, poverty, migrant workers, education, training and youth 
Answer: Works Council Directive 
Prediction: N/A 

Figure 18: Failed to predict 
* Question: Who was Kaidu's grandfather? 
* Context: Instability troubled the early years of Kublai Khan's reign. Ogedei's grandson Kaidu refused to submit to Kublai and threatened the western frontier of 

Kublai’s domain. The hostile but weakened Song dynasty remained an obstacle in the south. Kublai secured the northeast border in 1259 by installing the hostage 
prince Wonjong as the ruler of Korea, making it a Mongol tributary state. Kublai was also threatened by domestic unrest. Li Tan, the son-in-law of a powerful 
official, instigated a revolt against Mongol rule in 1262. After successfully suppressing the revolt, Kublai curbed the influence of the Han Chinese advisers in his 
court. He feared that his dependence on Chinese officials left him vulnerable to future revolts and defections to the Song. 

* Answer: Ogedei 
* Prediction: Li Tan 

Figure 19: Predicted wrong 

Ref Fig 18: By inspecting the key characteristics of the context it looks like, there was no 
direct match of the word ’created’ in the answer span, hence the pstart and Pena indices 

could not be found. We can definitely look into these edge cases and improve our embedding 
and attention mechanism further. 
Ref Fig 19: This is not a direct question and it requires some understanding in capturing 
relationships like grandfather, son-in-law etc. So, embedding using dependency parser might 
improve these use cases. 

7 Conclusion 

We have experimented with two completely different approaches, one using BiDAF and one using 
QANet. Adding character-level embedding to the baseline model, and then implementing self- 
matching attention layer, BiDAF performance improved. We also re-implemented QANet to check 
the design advantages it has over BiDAF. We demonstrated that just by using QANet attention ideas 
in BiDAF framework and by getting rid of RNN layers the model performance improved 20% for 
FI score but the EM did not perform as well. Since QANet model works differently, we require 
more time to understand the model and higher compute resources to iterate QANet model in order to 
achieve better performance.
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