
Extending BiDAF and QANet NLP on SQuAD 2.0

Stanford CS224N {Default} Project

Minakshi M S Mukherjee
Stanford University Stanford University

adaboost@stanford.edu suvasism@stanford.edu

Abstract

The goal for the project is to build an end to end neural network architecture for
the question answering system that captures the complex interaction of Machine
Comprehension (MC) between the context and the query. Our implementation is
motivated by the recent high performance models that involve attention mechanism.
We start with Bi-Directional Attention Flow (BIDAF) network as a baseline and

aim to improve the MC of answering a query about a given context paragraph by
making architectural changes to the baseline BiDAF model. QANet speeds up
reading comprehension by replacing RNNs with encoder blocks. QANet model
predicts the start and end indices of an answer or no answer from a context given a
query. We improved BiDAF model performance by adding character embedding
and modifying the attention mechanism. We also re-implemented the QANet to get
better performance. Our best BiDAF model achieved 63.22 EM and 67.08 F1 score
on validation set and QANet achieved 61.45 EM and 74.11 F1 score on validation

set.

1 Introduction

The Bidirectional Attention Flow (BiDAF) end-to-end model [1](Seo et al. 2017) employs a recurrent

architecture to process sequential inputs and uses an attention component to cope with long term
interactions. BiDAF is slow for both training and inference due to the model’s recurrent nature for
long texts. QANet model makes machine comprehension faster by removing the recurrent nature of
BiDAF model. Convolutions and self-attentions are building blocks of encoders that separately encode
the query and context. The interactions between context and question is learned by standard attentions.
[2](Xiong et al., 2016; Seo et al., 2016; Bahdanau et al., 2015). The resulting representation is again

encoded with recurrency-free encoder before finally decoding to the probability of each position
being the start or end of the answer span. Our motivation is to understand the limitation of QANet
against SQuAD 2.0 dataset and improve the QANet architecture [3].

2 Related Work

It has been a prime topic both in academia and in corporate world as how well can a model be
built such that the model can provide correct answer to a question from a given paragraph where
the answer is a span from the context. [1] BiDAF was one of the earlier models that captured
C2Q and Q2C attentions and presented a context representation to the Modeling layer that was
well conditioned on the question.The. model predicts the spans with highest pstarz and Pena. The

Coattention layer from Dynamic Coattention (DCN) [15] model improved BiDAF’s basic attention
by attending to the question and context simultaneously and finally by fusing both attentions. DCN
estimates the start and end points of the answer span multiple times, each time conditioned on its
previous estimates.Hence, the model is able to explore local maxima corresponding to multiple
plausible answers. R-Net [5] improved attention layer further by including a self-matching attention
that refines the representation by matching the context against itself, which effectively encodes
information from the whole passage. QANet took the language model to the next level by replacing

Stanford CS224N Natural Language Processing with Deep Learning

RNN with self-attention and convolution. It’s Encoder Block uses stacked convolutional sublayers
with depthwise-separable convolution to capture local dependencies in the input sequence. Later on
these transformer based language models became the norm as BERT and GPT models were released.
Also, neural machine comprehension and language models adopted the notion of pre-training a large
language model using a large corpus and acquired world knowledge which then can be fine-tuned
based on individual corpus.

3 BiDAF approach

3.1 Embedding

Baseline BiDAF uses only word-level embeddings. To handle OOV, we added character level
embeddings. We used 1D-CNN to find numeric representation of words by checking their char-level
compositions. We also experimented with 2D-CNN, but this turned out to be computationally
expensive and the batch size had to be reduced from 64 (default) to 16 on 1 gpu azure.
A word is represented by Ce R2*!, d is the height of the matrix and | is the word length. The
convolution filter (kernel) HeR¢*” of width w, will scan the word. H is randomly initialized and

adjusted during training. Then, we take max pool of the vector, f , Hadamard product of H and
its projection on C. Fig | and Fig 2 below demonstrate the process. We adopted our idea from
open-sourced TensorFlow BiDAF implementation Abadi et al., 2016.[14]. We decided to use Leaky
ReLU as it’s “mean activation” is close to 0 which makes training faster and it also fixes “dying
ReLU” [9]problem.

Many filter matrices (25-200) per width (1-7)

y{l] = maxtf[i]}
a _

Sxl el Sees
o1 | 12 15 |-08 15 |02 |o1 | 12 | 07

 |

02 |o1 2 |/62 0.2}03 |o2 | -13 | 01
|

0.2} 05/01 | 02 |-03|03 |-01| 10 | 03

 absurdity

absurdity

Figure 2: Summary scalars from different scanning
Figure 1: Char Representation. processes

3.2 Highway Network

Highway network [4] adjusts the contribution of the word embedding and the character embedding
steps. Since character embedding deals with OOV, highway network increases the 1D-CNN repre-
sentation. Now, we have obtained two sets of vector representations for words: one from the GloVe

(word provided in baseline) embedding and the other from 1D-CNN (character added) embedding.

These 2 representations are vertically concatenated. The concatenated embedding matrix(height d -
height of the word matrix and char matrix) from both context and query are passed to the Highway
Network as an input. We experimented with 1D-CNN instead of Linear (default) in the highway
network, this resulted in memory issues, so we reverted back to default Linear function. In highway
network, only a fraction of the input is subjected to transformation and rest is allowed to pass.
If y be the input to highway network, Wy and by be the affine transformations, the transformation
gate, t = o(Wry + b,), the carry gate will be 1 — t.
The highway network transforms the input to, z = t-g(Wx + by) +(1—-t)-y.
Highway network has 2 outputs, one for context of dimension (dXT), where T is the length of
context and another one for query (dX J), where J is the length of the query.

3.3. Contextual Embedding

The output of the highway network doesn’t take into account the contextual meaning of word. So
RNNEncoding implements the contextual embedding using the Long-Short-Term-Memory (LSTM)
sequences (default). The output of this layer will contain contextual information from words that
comes before it. Here the LSTM is bidirectional, this way each word is aware of it’s surroundings
in both forward and backward directions. To get performance advantage, we decided to use
bidirectional Gated Recurrent Unit cell (GRU) instead of LSTM. The output of this layer are 2
matrices, one for context and another for query.

3.4 BiDAF Attention

We have not made any changes in the BiDAFAttention class. The main function of this layer is
creation of similarity matrix S, a tall matrix of dimension (TxJ), corresponding to applying similarity
function to each column of the context and each column of query. The similarity matrix, S, serves
as input to Bidirectional attention which computes attention in two directions - the context attends
to the query (context-to-query) and the query attends to the context (query-to-context). The goal of
context-to-query step is to find out which Query words are most relevant to each Context word.

3.5 Self Attention

BiDAF attention module deals with question-aware context representation. The problem of this
representation is that it’s highly focused on the relation between context and question, but has limited
knowledge of the context itself, especially between parts of context. R-Net[5] inspired self-match
attention mechanism deals with context to context representation. We adopted the idea of self-
matching attention from R-Net where it directly matches the question-aware passage representation
against itself. It dynamically collects evidence from the whole passage for words in passage and
encodes the evidence relevant to the current passage word and its matching question information into
the passage representation. As per R-Net, our self-matching similarity has

c, =att(v?, vP), the attention pooling vector of the whole passage (v’’) and

he = BiGRU(hf._,, [up’, cz])

(We have used GRU[6] instead of RNN as in the original paper, because GRU is computationally
cheaper without any loss of performance)
We also consulted few other papers on self-attention[7] to implement Simple and Effective Multi-
Paragraph Reading Comprehension techniques using self-matching attention. We also took ideas
from the implementation: attention-is-all-you-need-pytorch [8].

Start End Output Layer

my Ma Pa

EL }-L}-U) 3 We have used BiGRU i 7] 4 4 4 Feae tear Modeling Layer

2 x — — architecture

Self- Matching Attention

| Q; lI a ||| gor Attention Flow

| I t u Layer

Query2Context and Context2Query

Attention

h, he hy Uy uy
Contextual

5 L] L] L] 5 L] Embed Layer

oO o Oo Word Embed

a o Oo o eave
wt XQ X3 xr Cm qs Character

Context Query | Embed Layer

Figure 3: Our Modified BiDAF architecture

4 QANet approach

In QANet, given a context C of length n, C = {cy,...,c, } and a query Q of length m, Q={q1,..., dm},
the output of span S = {c;, ci41, ..., i+; } from the original paragraph C is called answer. QANet
model contains five components: an embedding layer, an embedding encoder layer, a context-query
attention layer, a model encoder layer and an output layer, as shown in Figure 4. For both the
embedding and modeling encoders, QANet only uses convolutional and self-attention mechanism in
place of RNNs, which is used by BiDAF model. QANet model is much faster than BiDAF, as it can
process the input tokens in parallel.
We have summarized below our changes to QANet:

4.1 Input Embedding Layer

The embedding of each word w is obtained by concatenating its word embedding, p,; = 300-Dim
pretrained Glove word vectors (fixed during training) and character embedding. All the out-of-
vocabulary words are mapped to an < UNK > token trainable with random initialization. Each
character in character embedding is represented as a trainable vector of dimension pz = 200. In
QANet, unlike BiDAF, we decided that character embedding should use 2D-CNN to find numeric
representation of words by checking their char-level compositions. 2D-CNN has more parameters
than 1D-CNN and handles more features. We initialized the 2D-CNN with kaiming normal and used
relu activation.

Hence, each word is a concatenation of the embedding vectors for each of its characters. The length
of each word is either truncated or padded to 16. The output of a given word x from this layer is
the concatenation [2,,;7-] €R?'*??, where x,, and x, are the word embedding and the convolution
output of character embedding of x respectively. The concatenated embedding of word and char
representation is passed thru 1D-CNN before passed on to a two-layer highway network which is on
top of this representation and x is output of this layer.

QANet Encoder
C+)

Feedforward

if you want to
go deeper

—)

(Yuetal,, ICLR'18)

Figure 4: QANet framework. Figure 5: QANet Encoder.

4.2. Embedding Encoder Layer

Ref Figure 5, this layer is a stack of
[convolution — layer + self — attention — layer + feed — forward — layer].
We decided to use depthwise separable convolutions for the convolution block similar to [16]
Xception. The depthwise separable convolution is made of two operations: a depthwise convolution
and a pointwise convolution. The computational cost of the depthwise separable convolution is the
sum of the costs of the depthwise and pointwise operations. Compared to a normal convolution, it
offers a computation reduction.
The input of this layer is a vector of dimension p; + p2 = 500 for each individual word, which is
immediately mapped to kernel=7, filters d = 128 one-dimensional convolution layer and there are 3

of them in the block. The output of this layer is a also of dimension d = 128.
We used Multi-head attention mechanism in the self-attention layer. In this layer, for each position
of the query, we did a weighted sum of all the positions in the input based on similarity between the
query and the key as measured by the dot product. Each layer of the stack
[convolution — layer + self — attention — layer + feed — forward — layer]
is placed inside a residual block.

4.3 Highway

As explained in BiDAF’s Highway Network, in QANet we used 1D-convolution for the network.
This worked without any issues.

44 MultiHeadAttention

We closely followed homework4 and implemented multi-head attention.
Mathematically, self attention for input matrix (Q,K,V) is

Attention(Q, K,V) = softmax(QK™ //d;) , where d;, is the dimension of the key, ref: figure 6.
Q,K,V are essentially same and the attention is performed multiple times, then the output heads are

concatenated as the final output hidden state h. We took the picture from transformer, we have not
implemented scaled Dot-Product attention as shown in the diagram, figure 7.

Scaled Dot-Product
Attention

Figure 6: Encoder SelfAttention. Figure 7: Multihead Attention.

4.5 Context Query Attention Layer

Ref fig.4, A similarity between context C €R” and query QeR™ is calculated, the resulting similarity

matrix is, SER" *™. Each row of S is normalized by applyng softmax function, resulting matrix is S "
The context-query attention is computed as

A=S' « Q™ eR”*4, To compute the query-context attention a column normalization matrix, S " of S
is computed by softmax. The resulting matrix is

B=S'*S°T*CT.

4.6 Model Encoder Layer

Ref fig.5, Input at each position is [c, a, c * a, c * b] where a and b are the row of the attention matrix
A and B respectively. The layer parameters are the same as the Embedding Encoding layer and We
have reused the model Encoding layer mostly, except that the number of convolution layers is 2
within a block and the total number of blocks are 7.

4.7 Output Layer

Ref fig.4, SQUAD is labeled with a span in the context containing the answer. We have not changed
this layer. The probability of each position being start and end of an answer is calculated as:

p' = softmax(Wi[Mo, Mi]
p* = softmax(W2|Mo, Mo]
where Wj, W, are trainable variables and Mo, M1, M2 are the output of the model encoders from
bottom to top. The score of a span is the product of its start and end position probabilities. Finally, the
objective function is defined as the negative sum of the log probabilities of the predicted distributions
indexed by true start and end indices, averaged over all the training examples:

L(8) = —(1/N)EN [log(p!,) + log(p?2)]
where y} and y? are the ground truth of example i at the starting and ending position respectively , and
@ contains all the trainable variables. The proposed model can be customized to other comprehension
tasks, e.g. selecting from the candidate answers, by changing the output layers accordingly.

5 Experiments

5.1 Data

Stanford Question Answering Dataset (SQuAD) 2.0 [10] (Rajpurkar et al. 2016) is a reading
comprehension dataset consisting of questions posed by crowdworkers on a set of Wikipedia articles,
where the answers to every question is a segment of text, or span, from the corresponding reading
passage, or the question might be unanswered. The figure 3 and 4 below show the distribution of
different types of questions in SQUAD dataset.

What 85301

Who 14412

When 8720

@ What B Be/Do/etc. Which 8576

@ Who @ Whose
When Whom How many 7728

@ Which How 6832

ary Where 5635
@ How

B Where Why 2058

@ Why Be/Do/etc. 1926

Whose 510

Whom 494

Figure 9: SQuAD

Figure 8: SQuAD dataset question types distribution

SQuAD 2.0 has about 150k questions, unanswerable questions written adversarially by crowdworkers
to look similar to answerable ones. The typical length of a paragraph is 250 and question is 10 tokens.
SQuAD 2.0 is divided into train/dev and test sets.

5.2 Evaluation method

Experiments are evaluated on F1 score and Exact Match (EM) for the performance on the SQuAD

2.0 dataset. For BiDAF, we iterated our experiments on SQUAD 2.0 using a batch size of 64 on
NVIDIA NV6 GPU (6 vepus, 56 GiB memory). For QANet, we reduced our batch size to 16 in
order to iterate on NVIDIA NV6 GPU and it took significantly longer due to the reduced batch size.

5.3. Experimental details

We used pretrained GloVe vectors [11] 300- dimensional embeddings trained on the 840B Common

Crawl corpus. We experimented with a wide range of values for the hyperparameters: hidden state
size, learning rate, training time, decay rate and seed values. It was noticed in general, that model
performed very poorly for small values of learning rate. By lowering the decay rate, performance
degraded. Reduction of the dropout [12] probabilities and increase of hidden layers helped to improve
model performance. Our loss function was the sum of the negative loglikelihood (crossentropy) loss

for the start and end locations of the answer. During training, we averaged across the batch and used
the Adadelta [13] optimizer to minimize the loss.

We attempted few variation of self-attention and self-matching attention. One attempt was to pass the
output of self-attention to Modeling layer to refine the context vector further. Another attempt was
to add self-attention after Modeling layer, so the input was the refined context representation after
attention layer. Lastly, the self-matching attention per R-Net implementation, as explained earlier in
the Approach’ section. The self-matching attention implementation provided the best model. Our
BiDAF and QANet implementation results are presented below.

5.4 Results

Model(Baseline BiDAF + modification) Training Fi |em
Time

1.Baseline 10h 19m 4s 60.45 | 57.30 —M ai i,
(Ir=.5 , decay_rate = .999, drop_prob=.2, seed=224, tag: dev/eEM tag: deviF1 tag: dev/NLL
hidden_size =100)

2.Baseline + Char Embedding + Self Attention+GRU 18h 55m 20s 66.37 | 62.81

(Ir=.5 , decay_rate =.999, drop_prob=.2, seed=224,
hidden_size =100)

3.Baseline + Char Embedding + Self AttentiontGRU 21h 6m 55s 63.11 | 60.17

(Ir=.3 , decay_rate =.997, drop_prob=.3, seed=2321,
hidden_size =100)

4 Baseline + Char Embedding + Self Attention+GRU 22h 32m 47s 66.26 | 62.73

(Ir=.6 , decay_rate =.9999, drop_prob=.2, seed=224,
hidden_size =110) Figure 11: BiDAF results comparison

Figure 10: BiDAF experiments

'-b!, '=batch_size' | '—-decay',
default=16, type=int, default=0.9999, type=float,
help='mini-batch size (default: 32)') help="exponential moving average decay)

eater “chum head",
default=0.001, type=float, default=8, type-int,

Moe eee help="learning rate") help='attention num head")
Loading checkpoint: /home/minasm/suvasis/tools/stanford/checkpoints1/model_best.pth.tar ...
Checkpoint '/home/minasm/suvasis/tools/stanford/checkpoints1/model_best.pth.tar' (epoch 25) (best f1 74.11414733,
807817) (best em 61.45) (step 406026) loaded

"Sbetal, ‘=g]nodel"
default=2.8, type=float, default=128, type=int,
help='beta 1') help='model hidden size’)

Figure 12: QANet experiments

default=5.0, type=float,
help='global Norm gradient clipping rate')

default=0.999, type=float,
help='beta 2")

Figure 13: QANet parameters

¢ Fl and EM scores on the dev and test leaderboard
Since, we were able to run only one iteration of QANet due to batch size = 16 and limited
compute, we did not put our QANéet results to test leaderboard because the EM value in
QANet was lower than the EM value in our BiDAF best model.However, QANet result
showed a lot of promises for future improvements.

Dev LeaderBoard Model details (BiDAF Modification) Test Leaderboard Model details (BiIDAF Modification)
Baseline + Char Embedding + Self Attention+GRU 26h 48m 40s 67.08 | 63.22 " .
(Ir=.5 , decay_rate =,9999, char-embedding Baseline + Char Embedding + Self Attention+GRU 65.88 | 62.09

(Ir=.7 , decay_rate =.9999, drop_prob=.1 everywhere,
drop_prob=.05, drop_prob elsewhere = 0.1,seed=224, seed=224, hidden_size =200)
hidden_size =200)

Figure 14: Validation Leaderboard Figure 15: Test Leaderboard

6 Analysis

* Quantitative error analysis
We performed error analysis by looking at the answerability of questions. The baseline model
performed quite poorly on the unanswerable questions. After adding character embedding
to BiDAF,, it improved the performance of both question types approximately equally. By
adding a few fundamental changes to BiDAF, like self-matching attention and GRU, we
enhanced the model performance both from metrics perspective as well as computationally
as it improved the unanswerable performance significantly across the entire dev set, without
sacrificing the performance of answerable questions. One possible explanation for the
slightly worse performance on answerable questions might be that the baseline model is

biased for predicting an answer on border cases.
We also compared the performance of our model with baseline model by question type and
noticed that our model shows improvement across different question types. Even though
there are majority of ’what’ questions in the set, we observed the most improvement in ’who’
questions.

* Qualitative error analysis
Here are two examples of ’what’ and ’who’ questions where our model understood the
context really well and also applied relevant reasoning even though it was not a direct
question.

* Question: Economy, Energy and Tourism is one of the what?
Context: Subject Committees are established at the beginning of each parliamentary session, and again the members on each committee reflect the balance of
parties across Parliament. Typically each committee corresponds with one (or more) of the departments (or ministries) of the Scottish Government. The current
Subject Committees in the fourth Session are: Economy, Energy and Tourism; Education and Culture; Health and Sport; Justice; Local Government and
Regeneration; Rural Affairs, Climate Change and Environment; Welfare Reform; and Infrastructure and Capital Investment.
Answer: current Subject Committees
Prediction: N/A

Figure 16: What question
Question: Who increased British military resources in colonies?
Context: After the disastrous 1757 British campaigns (resulting in a failed expedition against Louisbourg and the Siege of Fort William Henry, which was followed by
Indian torture and massacres of British victims), the British government fell. William Pitt came to power and significantly increased British military resources in the
colonies at a time when France was unwilling to risk large convoys to aid the limited forces it had in New France. France concentrated its forces against Prussia and
its allies in the European theatre of the war. Between 1758 and 1760, the British military launched a campaign to capture the Colony of Canada. They succeeded in
capturing territory in surrounding colonies and ultimately Quebec. Though the British were later defeated at Sainte Foy in Quebec, the French ceded Canada in
accordance with the 1763 treaty.

+ Answer: William Pitt
* Prediction: William Pitt

Figure 17: Who question

* Qualitative Evaluation
Here are two instances where our model failed to predict and our model predicted the output
wrong.

Question: Which directive mentioned was created in 1994?
Context: Following the election of the UK Labour Party to government in 1997, the UK formally subscribed to the Agreement on Social Policy, which allowed it to be
included with minor amendments as the Social Chapter of the 1997 Treaty of Amsterdam. The UK subsequently adopted the main legislation previously agreed
under the Agreement on Social Policy, the 1994 Works Council Directive, which required workforce consultation in businesses, and the 1996 Parental Leave
Directive. In the 10 years following the 1997 Treaty of Amsterdam and adoption of the Social Chapter the European Union has undertaken policy initiatives in
various social policy areas, including labour and industry relations, equal opportunity, health and safety, public health, protection of children, the disabled and
elderly, poverty, migrant workers, education, training and youth
Answer: Works Council Directive
Prediction: N/A

Figure 18: Failed to predict
* Question: Who was Kaidu's grandfather?
* Context: Instability troubled the early years of Kublai Khan's reign. Ogedei's grandson Kaidu refused to submit to Kublai and threatened the western frontier of

Kublai’s domain. The hostile but weakened Song dynasty remained an obstacle in the south. Kublai secured the northeast border in 1259 by installing the hostage
prince Wonjong as the ruler of Korea, making it a Mongol tributary state. Kublai was also threatened by domestic unrest. Li Tan, the son-in-law of a powerful
official, instigated a revolt against Mongol rule in 1262. After successfully suppressing the revolt, Kublai curbed the influence of the Han Chinese advisers in his
court. He feared that his dependence on Chinese officials left him vulnerable to future revolts and defections to the Song.

* Answer: Ogedei
* Prediction: Li Tan

Figure 19: Predicted wrong

Ref Fig 18: By inspecting the key characteristics of the context it looks like, there was no
direct match of the word ’created’ in the answer span, hence the pstart and Pena indices

could not be found. We can definitely look into these edge cases and improve our embedding
and attention mechanism further.
Ref Fig 19: This is not a direct question and it requires some understanding in capturing
relationships like grandfather, son-in-law etc. So, embedding using dependency parser might
improve these use cases.

7 Conclusion

We have experimented with two completely different approaches, one using BiDAF and one using
QANet. Adding character-level embedding to the baseline model, and then implementing self-
matching attention layer, BiDAF performance improved. We also re-implemented QANet to check
the design advantages it has over BiDAF. We demonstrated that just by using QANet attention ideas
in BiDAF framework and by getting rid of RNN layers the model performance improved 20% for
FI score but the EM did not perform as well. Since QANet model works differently, we require
more time to understand the model and higher compute resources to iterate QANet model in order to
achieve better performance.

References

[1] Minjoon Seol, Aniruddha Kembhavi, Ali Farhadi, Hananneh Hajishirzi. Bi-Directional Attention
Flow for Machine Comprehension
[2] Minh-Thang Luong Hieu Pham Christopher D. Manning. Effective Approaches to Attention-based
Neural Machine Translation
[3] Adams Wei Yul, David Dohan2, Minh-Thang Luong. QANet: Combining Local Convolution
with global self-attention
[4] Rupesh Kumar Srivastava, Klaus Greff, Jurgen Schmidhuber. Highway Networks
[5] Natural Language Computing Group, Microsoft Research Asia. R-NET: Machine Learning
Comprehension with Self-matching Networks.
[6] Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, Ming Zhou. Gated Self-Matching Networks
for Reading Comprehension and Question Answering
[7] Christopher Clark, Matt Gardner. Simple and Effective Multi-Paragraph Reading Comprehension
[8] https://github.com/jadore80 1 120/attention-is-all-you-need-pytorch
[9] https://ai.stanford.edu/ amaas/papers/relu_hybrid_icm12013_final.pdf
[10] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for machine
comprehension of text. In Empirical Methods in Natural Language Processing (EMNLP), 2016
[11] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In EMNLP, volume 14, pp. 1532-43, 2014
[12] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov.

Dropout: A Simple Way to Prevent Neural Networks from Overfitting
[13] Matthew D. Zeiler. Adadelta: An Adaptive Learning Rate Method 2012
[14] https://github.com/allenai/bi-att-flow
[15] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604, 2016
[16] https://keras.io/api/applications/xception/

