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Abstract 

Domain generalization remains a major challenge for NLP systems. Our goal in this 
project is to build a question answering system that can adapt to new domains with 
very few training data from the target domain. We conduct experiments on three 
different techniques: 1) data augmentation, 2) task-adaptive pretraining (TAPT), 
and 3) multi-task finetuning. We find that while each individual approach improved 
out-of-domain question answering compared to the baseline DistiIBERT model, 
their combinations did not necessarily yield additional gains. Our best model 
implements data augmentation on both in-domain and out-of-domain train datasets 
with the DistiIBERT base model and achieved EM/F1 scores of 35.34/51.58 on 
the out-of-domain dev set and 42.32/60.17 on the held-out test set. We infer that 
we’ve comfortably met our goal of beating the baseline model’s performance as 
the baseline model achieved 32.98/48.14 on the out-of-domain dev set. 

1 Introduction 

Large-scale pretrained language models have obtained state-of-the-art results on a variety of NLP 
tasks in recent years. While pretraining on massive unlabeled datasets allows neural models to 
build general-purpose language representations that are useful for downstream tasks, it is uncertain 
whether models are learning rules and knowledge that can be generalized to other contexts or simply 
memorizing the data they were trained on. Reading comprehension is an important task that is at the 
heart of many practical applications; it is also a comprehensive way of evaluating whether a system 
truly “understands” a piece of text since many other NLP tasks such as sentiment classification, 
semantic relation extraction, and information retrieval can be reduced to question answering. 

It remains challenging to build a question answering (QA) system that generalizes well to a new 
target domain without similar training data. Building on previous work in this direction [1, 2, 3], 
we explore data augmentation, task-adaptive pretraining, and multi-task finetuning as well as the 
combination of these approaches to improve domain generalization. We implement both word-level 
augmentation through random inserts and synonym substitution and paragraph-level augmentation 
through back-translation. We augment 25 percent of our in-domain (ID) train data with word-level 
augmentation and triple the size of the out-of-domain (OOD) train data through back translation and 
word-level augmentation. This data augmentation combined with sorting the training data by context 
length resulted in a 7% performance gain on the OOD dev set. 

We also investigate the benefits of additional training using the mask language modeling (MLM) 
objective, whether during a separate pretraining phase or jointly with question answering during 
finetuning. We find that either continuing pretraining the baseline model on both ID and OOD train 
datasets or jointly optimizing the model for MLM and QA during finetuning improves OOD dev 
performance. However, MLM pretraining followed by multi-task finetuning performed worse than 
the baseline, possibly due to overfitting on the train data caused by the two-staged MLM training. In 
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the following sections, we provide a brief review of related work (§2), describe our approach (§3) and 
experiments (§4) in detail, and analyze why certain methods worked well while others did not (§5). 

2 Related Work 

One way to improve model robustness is through data augmentation. By creating small variances or 
perturbations in the train data, it encourages the model to learn more generalizable properties instead 
of brittle correlations. Wei and Zou (2019), for example, use word-level data augmentation techniques 
including random insertion, swaps, and synonym substitution to improve text classification [4]. 
Back-translation is another data augmentation technique borrowed from neural machine translation 
that has seen varying levels of success [1, 5]. In addition to data augmentation, the order of data on 
which the model is trained also matters. Text examples can vary greatly in difficulty, and training data 
is usually introduced in a completely random order or grouped by topic such as the SQUAD dataset 
[6]. Hacohen and Weinshall [7] employ a technique called Curriculum Learning based on the notion 
that models learn better by seeing easier examples before more difficult ones to improve learning 
outcomes. 

Pretraining general-purpose language representations is increasingly an integral part of building an 
effective NLP system, from pretrained word embeddings to entire pretrained Transformer-based 
models like BERT [8]. Recent work has shown that continued pretraining on an unlabeled training set 
for a given task is an effective approach for enhancing model performance on the target task [2, 9]. A 
related but different approach is multi-task learning where a system is trained to optimize on multiple 
tasks simultaneously. Inspired by recent applications of multi-task learning to NLP tasks [3, 10], we 
take a multi-task approach to finetuning by jointly optimizing the masked language modeling loss 
and question answering loss using two different architectures. 

3 Approach 

3.1 Baseline 

We finetune the DistiIBERT base model [11], a smaller and faster version of the original BERT model 

[8], for the standard extractive question answering task using all ID training data. This baseline model 
achieved EM = 32.98 and F'l = 48.14 on the out of OOD dev set. 

3.2 Word-Level Augmentation 

We adapt Wei and Zou’s implementation to randomly insert and substitute synonyms together. For 
15 percent of words in a given context, we replace a word with one of its synonyms and insert a 
synonym of a random word in the context at a random index. We use the NLTK package to import 
synonyms from WordNet and perform synonym substitution for non-stop words only. Further, we 
perform random swaps two times for each context so that some contexts are impacted more than 
others in contrast to our insertion and substitution technique in which augmentation is proportional to 
the number of words in the context, in order to make training more difficult. 

We tune these three techniques to augment 25 percent of each ID dataset and augment our entire 
OOD data in addition to including the original OOD data. 

3.3. Back-Translation 

We also explored back-translation with MarianMT, HuggingFace’s multilingual transformer using 
French and English [12], following the results in Colin Raffel’s lecture in which French and English 
back-translation achieved the highest score [13]. By setting maximum sequence length to 64, we 
were able to reduce preparation of training data to a reasonable time. 

We back-translate every question and answer in the OOD dataset and add this to the training data. 
Our training data contains triple the amount of the original OOD data: the original OOD sets, the 
word-level augmented sets and the back-translated sets.



3.4 Example Randomization and Curriculum Learning 

We sort the training data more systematically through “curriculum learning” during which training 
occurs in order of increasing difficulty of the examples. We implement this concept by using the 
length of contexts as a proxy for their difficulty in the entire training data [14]. 

3.5 Task-Adaptive Pretraining 

We further pretrain the DistiIBERT base model on the task-specific training data for question answer- 
ing. Unlike BERT [8], we omit next sentence prediction and only use the masked LM objective as 
the latter has been shown to be the more effective one [15]. We use HuggingFace’s implementation 
of the DistiIBERT model for masked language modeling. Furthermore, we experiment with masking 
15% of random word tokens and replacing them all with the [MASK] token, instead of the 80/10/10 
replacement split of [MASK] token, random words, and original words proposed in BERT [8]. All 
of the pretrained embedding and hidden layers of the Transformer encoder are then passed onto the 
DistilBERT model for question answering during task-specific finetuning. 

3.6 Multi-Task Finetuning 

We attempt two different ways of implementing the multi-task finetuning referenced in §2. For each 
of the models below we refer to the BERT-based MLM and QA models implemented by HuggingFace 
[11] but implement the combined architectures ourselves in two different ways. 

3.6.1 MLM-QA Model 

At each forward iteration, we propogate the hidden layer output of the DistilBert model through the 
MLM and QA model-specific layers and compute the MLM and QA losses. We illustrate the model 
architecture in Figure 1 (see Appendix). We take the sum of the losses as the total loss. At runtime 
we mask 15% of the input tokens at random in each batch, and pass through the appropriate labels for 
computing the MLM loss. 

Although this results in the masked inputs also being passed to the QA model, we reason that the QA 
model should still be able to learn as it sees the unmasked inputs (or differently masked inputs) at 
some point in time. We recognize, however, that this may mean the QA model learns more slowly or 
less effectively than if the inputs were unmasked. 

3.6.2 MLM-QA, Alternating Model 

We address the issue of feeding masked inputs to the QA model by creating a similar model that 
instead alternates between using MLM and QA layers between batches (MLM-QAIt); see Figure 2 in 
the Appendix. That is, at each odd-numbered forward iteration, we randomly mask the inputs, feed 
them through the DistilBert and MLM layers and compute the MLM loss; at each even-numbered 
forward iteration we do not mask the inputs and feed the inputs through the DistilBert and QA layers 
and compute the QA loss as normal. In addition to allowing us to feed unmasked inputs to the QA 
layers this reduces the overall time spent in computing masked inputs. This architecture has the 
disadvantage of not having the QA layers updated as often. 

4 Experiments 

4.1 Data 

We use three ID reading comprehension datasets, SQUAD [6], Natural Questions from Wikipedia [16], 

and NewsQA [17] and the three OOD datasets, DuoRC [18], RACE [19], and RelationExtraction 

[20], for training a question answering system. Our final model will be evaluated on test examples 
from three different out-of-domain datasets: DuoRC [18], RACE [19], and RelationExtraction [20]. 

4.2 Evaluation Method 

We evaluate our models using exact match (EM) and word-level F1 scores, which are common 

metrics for extractive question-answering tasks [21]. We choose the model that performs best across



the three out-of-domain validation sets. For our data augmentation experiments, we qualitatively 
analyze the text examples output to inform tuning. 

4.3 Experimental Details and Results 

We have kept the default hyperparameters with batch size of 16 and learning rate of 3e-05 to measure 
the effect of implementing the techniques outlined in §3 against the baseline. We train all our models 
for 3 epochs and compare to the baseline as well as each other. 

4.3.1 Data Augmentation 

We tried proportional swaps for three and ten percent of words, both of which resulted in decreased 
Fl and EM scores. We found a slight improvement when augmenting with two swaps per context 
regardless of context length, likely because too many swaps interrupt answer phrases or create too 
much noise. We also tested word-level augmentation for the entire ID dataset and included that with 
the original, doubling our ID data. While that performed well on one epoch, it was too costly to work 
with and tune given the size of the ID datasets. For this reason, we tried to augment on the word-level 
for 17 percent of words in a given context for 25 percent of contexts (ID Word-Level Augment in 
Table 1) and concentrate the remainder of our augmentation on the OOD datasets. 

  

  

ID Dev OD Dev 
Data Augmentation EM Fl EM Fl 

Baseline 55.12 71.05 32.98 48.14 
ID Word-Level Augment 55.07 70.95 33.25 48.43 
ID Curriculum Learning 54.57 70.89 34.03 49.06 

ID + OOD Back-Translate 54.09 70.51 31.41 48.78 
Combination 1 53.95 69.88 31.41 47.56 
Combination 2 52.1 68.31 30.37 47.17 
Combination 3 53.68 69.41 35.34 51.58 
  

Table 1: Testing Data Augmentation Techniques 

In order to increase the difficulty of learning and reduce the possibility of overfitting, we tried 
shuffling the ordering of the dataset which had little to no effect on our evaluation metrics. This led 
us to adopt another sorting method, curriculum learning, which proved to be more effective, as shown 
above. 

In addition to word-level augmentation, we first tried back-translation with the fairseq transformer 
[22] and nlpaug [23], both of which ran significantly slower than our ultimate choice, HuggingFace’s 
MarianMT model, due to their lack of ability for individual specifications of batch size and maximum 
sequence length. We tried to augment just a portion of the the ID dataset with back-translation, similar 
to our word-level augmentation process, but this proved to be too time-consuming. We proceeded 
to only back-translate the OOD dataset. Augmenting the entire OOD dataset improved the baseline 
slightly for Fl on the OOD and worsened the outcome for EM (ID + OOD Back-Translate). One 
possible reason for this is that the OOD datasets were very small in comparison to the ID datasets so 
their data might just be interpreted as noise and not meaningfully incorporated during training. 

Given the success of some of the individual data augmentation approaches, we further experimented 
with three different combinations. Combination | uses the original ID and OOD data, the OOD data 
with word-level augmentation, and the OOD data back-translated to more meaningfully incorporate 
the OOD data. This did not work in our favor, possibly because the OOD data was too difficult and 
noisy in comparison to the ID. We then tried Combination 2, which uses the two augmented versions 
of the OOD (without the original) plus augmentation on the ID dataset with random swapping on 
10 percent of words and insertion and substitution on 15 percent of words in a given context for 33 
percent of contexts with the entire training data sorted by context length. This also proved to perform 
worse possibly because of too much augmentation. In our final combination, we dialed back on ID 
augmentation, adding insertions/substitutions for 15 percent of the words as well as two random 
swaps in a given context for 25 percent of contexts, and incorporate the original OOD dataset as well



as the two augmented versions. We train on the entire augmented dataset sorted by length and see a 
huge boost in results and obtained EM/F1 scores of 42.317/60.166 on the test leaderboard. 

4.3.2 Task-Adaptive Pretraining 

We train the DistiIBERT model for masked language modeling on three variants of data: all ID train 
datasets, a single ID train dataset, and all ID train datasets plus all OOD train datasets. We train 

each variant for two epochs and use a learning rate of 5e-05 and set maximum sequence length to 
256 to speed up training. We observe that training the model for longer leads to overfitting, which 
makes the model perform worse on the validation data. In addition, we compare our simplified 
masking approach using 100% [MASK] tokens against the original BERT masking on the combined 
ID train dataset. As summarized in Table 7 in the appendix, masked LM loss decreased for all domain 
combinations after further pretraining. We focus on pretraining across all domains because prior work 
suggests that multi-domain training improves generalizability [1]. Since the original DistiIBERT 
model was not trained on news articles, we also experiment with pretraining only on NewsQA. 

  

ID Dev OD Dev 

EM Fl EM Fl 

Pretrained Model 1 54.21 70.2 31.41 47.92 

Pretrained Model 2 54.61 70.23 31.94 46.09 

Pretrained Model3 54.34 70.09 30.1 46.89 

Pretrained Model4 54.9 70.83 34.82 48.7 

  

  

Table 2: EM and FI on in-domain and out-of-domain validation for all models that were further 

pretrained. 

We observe that including the OOD training samples during pretraining boosted performance signifi- 
cantly, despite the fact that there were very few OOD training samples (around 1% of the number 
of ID samples). For models that were pretrained on the combined ID datasets, we see that using 
the 80/10/10 masking split proposed in BERT [8] (Pretrained Model 3) did worse on out-of-domain 
validation in terms of EM and only marginally better on F1 compared to the naive masking approach 
of replacing all masked tokens with [MASK] (Pretrained Model 2). Finally, pretraining on the 
NewsQA corpus (Pretrained Model 1) did no worse than training on all ID datasets and was six times 

faster due to the smaller size of the data; in fact, it performed better in terms of F1 on out-of-domain 

validation. This is not surprising as the baseline model was already trained on Wikipedia texts, the 
same source that the SQuAD and Natural Questions datasets are drawn from. This suggests that 
adding training data from a different distribution is more useful for generalizing the QA model to 
new domains. 

4.3.3 Multi-Task Finetuning and Combining Methods 

  

  

ID Dev OOD Dev OOD Test 

Model Data Augmentation EM Fl EM Fl EM Fl 

Baseline - 55.12 71.05 32.98 48.14 

Baseline Combination 3 53.68 69.41 35.34 51.58 42.317 60.166 

MLM-QA - 53.91 69.96 32.72 47.22 

MLM-QAIt - 53.62 69.87 37.17 51.42 41.491 59.32 

MLM-QA Combination 3 53.73 70.18 31.94 48.41 

MLM-QAIt Combination 3 53.78 70.41 31.94 47.25 41.881 59.671 

MLMPretrain — 54.52 70.17 29.06 46.55 

+ MLM-QAIt 
  

Table 3: Metrics from our main models. MLM-QAIt was submitted to the leaderboard under the 
name liliaalanaajaymee; Baseline with Combination 3 data augmentation was submitted to 
the leaderboard under the name witt. The MLM-QAIt ith Combination 3 data augmentation was 
submitted under the name combo_test.



In our experiments we observe that MLM-QAIt performed significantly better than the MLM-QA 
model. We initially thought that the MLM-QA model would outperform the MLM-QAIt model since 
it runs through the QA layers at each iteration and thus updates them doubly compared to MLM-QAIt, 
however the MLM-QA model actually performed worse than the baseline (MLM-QA EM 32.72, 

FM 47.22 on OOD validation; Baseline EM 32.98, FM 48.14). The MLM-QAIt model in contrast 

outperformed the baseline significantly (EM 37.17, FM 51.42). We suspect that the MLM-QA model 
performed worse because we feed masked inputs through the QA layers — we had previously thought 
that masking inputs through QA would not be consequential, and might actually benefit performance 
since it could be like another form of drop-out. The masking of inputs seems however to be the most 
likely explanation for why MLM-QA could not perform as well as the baseline model. 

As stated in §3.6.2, MLM-QAIt has the advantage over MLM-QA of not having to mask inputs on 
every run. Because of this, one might suspect that it would take MLM-QAIt twice the number of 
iterations as the baseline to converge. This appears to not be the case: MLM-QAIt was able to learn 
as quickly as the baseline model in terms of negative log-likelihood convergence. Jointly optimizing 
with the MLM task seems to complement the learning process for the QA task. 

Finally, we combine the MLM-QAIt architecture with our best-performing data augmentation methods 
(Combination 3) and best-performing MLM pretrained model (Pretrained Model 4), respectively. 
We keep the same hyperparameters in training so that we can isolate the effect of combining the 
systems. Both combinations performed worse than each standalone model on OOD dev. For 
MLMPretrain + MLM-QAIt, it is possible that additional training using masked language modeling 
during the multi-task finetuning stage led to overfitting; reduced training time for the QA task may 
also have contributed to the underperformance of MLM pretraining followed by MLM-QAIt. Data 
augmentation combined with MLM-QAIt also did not lead to further performance gains. We explore 
the reasons why in more detail in the next section. 

5 Analysis 

  

  Baseline predictions Data Augmentation predictions 

Yeong-mi (Doona Bae) Yeong-mi 
Franken and Van Gein Van Gein 
Seiji Hasumi Hasumi 
Deepika Padukone) Deepika Padukone 
Varano de’ Melegari, near Parma, Italy | Varano de’ Melegari 
Santa Rosa, California Santa Rosa     

Table 4: Examples where data augmentation is able to find an exact match to the answer while the 
baselineis unable to. 

We first consider why the augmented ID and OOD datasets perform so well against the baseline. 
Many of the predictions resemble those in Table 4 where the augmented version makes the correct 
prediction and the baseline does not. It seems that the augmented version is much better at parsing 
out the excess information, likely due to the increase of difficulty during training and also exposure 
to many possible forms in which out of domain answers can be presented, including synonyms, 
paraphrased versions from back-translation, and the original. 

We can find evidence to support our hypothesis about why MLM-QAIt outperforms MLM-QA upon 
inspecting the OOD validation predictions. In Table 5, we list examples where MLM-QAIt retreieved 
the exact answer while MLM-QA could not. In these examples, MLM-QAIt selects shorter phrases 
as the answer (examples 2 and 3) and is better at identifying the exact part of the phrase from which 
the answer should be derived (examples 1 and 3). Perhaps MLM-QA selects longer phrases because 
it can increase its recall by being more liberal with its predicted answer lengths in the absence of 
masked words. 

While we expected that combining the best performing data augmentation combination (Combination 
3) and MLM-QAIt architecture would yield even better results, the combined model did not do 

significantly better on the OOD validation set and did comparably well to the underlying models on 
the OOD test set. This system seems to output the first thing that could feasibly be the right answer,



normally if a key word in the question appears in the answer, without really understanding the context 
or considering that the correct answer may be later in the context. We include examples of this which 
occurs nearly whenever the best data augmentation model and the MLM-QA-AIt predict the exact 
correct answer, but the combined model does not (see Table 6). 

  

  

Question Context snippet MLM-QA MLM-QAIt 

pred. pred. 

Which kind of | ...Computers in United States have already | workers highly trained 
the following per- | begun to take the place of workers whose | whose tasks | professionals 
sons will be the | tasks are simple. The variety of jobs, done | are simple. 
first to be em-| only by humans in the past... increases | The variety 
ployed if comput- | ... We will be faced with mass unemploy- | of jobs, done 
ers continue to | ment for all but a handful of highly trained | only by 
develop? professionals... humans 

Which team is | Thatcher Szalay (born January 18, 1979) | NFL on the | Baltimore 
Thatcher Szalay | is an American football player of Hungar- | Baltimore Ravens 
a member of? ian origin who has previously played for | Ravens 

the NFL on the Baltimore Ravens, Seattle 

Seahawks, and the Bengals. 

What’s this pas- | The French Revolution broke out in | French French Revolu- 
sage about? 1789....0n July 14, 1789, they stormed and | National tion 

took the Bastille, where political prisoners | Day   were kept. Ever since that day, July 14 has 
been the French National Day. ...     
  

Table 5: Examples of question, context, predict answer tuples from the OOD validation set where 
MLM-QAIt retrieved the exact answer while MLM-QA could not. 

  

  

Question Context snippet Answer MLM-QAIt 
with data aug. 
pred. 

Who might block | Brazil already had the potential to develop. | Getulo Var- | Brazil already 
the development | The Brazilian Empire, Pedro I, abolished | gas had the poten- 
of Brazil? slavery ... Though Brazil always tried to tial to develop. 

Which subjects 
was the writer 
poor at? 

What is 

name of 

chromosome 

where you can 
find NKG2D? 

the 

the   

maintain democracy, it was failed several 
times by the dictatorship of Getulo Vargas. 

I was to .... teach them all subjects— 
including art, football, cricket and so on—-in 

turn at three different levels. Actually, I 
was depressed at the thought of teaching al- 
gebra and geometry-two subjects in which 
I had been rather weak at school. 

NKG2D is encoded by KLRK1 gene 
which is located in the NK-gene complex 
(NKC) situated on chromosome 6 in mice 

and chromosome 12 in humans.   
algebra and 
geometry 

chromosome 

12   

The Brazilian 

Empire 

art, football, 

cricket and so 

on 

chromosome 6 

  

Table 6: Examples of question, context, answer tuples from the OOD validation set where the 
combined model (MLM-QAIt with augmentation) was incorrect. In each of these it seems that the 

combined system identified just the first phrase or clause that could possibly be correct.



The combined model at times predicts the correct answer when other models do not. This, on average, 
occurs for shorter contexts. The average length of contexts where the combined model outperforms 
the others on the validation set is 1287.25; the average length of contexts in the validation set overall 
is 1781.58; the average length of contexts where the underlying systems are correct as opposed to the 
combined model is 2175.13. It is likely that this model performs better on shorter contexts because 
there is less likely to be an earlier sentence discussing similar words to those in the question that the 
model could mistake as the right answer. 

We suspect that the combined system was unable to learn to generalize to OOD because having the 
augmented data created too much noise, or created too much spurious data for the system to parse 
apart, given that the QA layers are passed through for fewer number of iterations than the original 
architecture. The MLM-QAIt model with the original input data seemed to be able to efficiently learn 
from the available data, and so perhaps using the various augmentation techniques resulted in too 
much noise to contribute to meaningful learning. 

6 Conclusion 

We tried many approaches in tackling the problem of producing a QA system that is robust to 
OOD samples. We found that simply augmenting the ID and OOD training samples available 
to us, specifically using insertions, substitutions, swaps and back-translations, boosted our model 
performance with just the baseline model architecture significantly. Further pretraining using the 
masked LM objective on the few OOD training samples also proved to be helpful for improving 
generalization. We also explored various model architectures in the realm of multi-task learning 
and found that jointly optimizing the QA loss with MLM loss allowed the model to generalize on 
the OOD samples significantly, confirming existing literature surrounding multi-task learning [3]. 
Hoping that these gains from data augmentation, adaptive pretraining, and multi-task learning would 
be additive, we tried combining the techniques but found that the sum of the techniques performed 
only slightly better and sometimes worse than the smaller underlying systems alone. 

There are many avenues for future work. For data augmentation, we currently sort by the length of 
contexts as a proxy for the difficulty of text samples, but future work could consider more nuanced 
measures of the difficulty of a textual example such as the usage of rare words and the scale of 
learning target [14]. Additionally, instead of generating three times the original OOD data through 
augmentation techniques, we could consider augmenting OOD datasets based on their proportion in 
the test set, to put greater weight on domains in which it may be more important to generalize well to. 
Finally, instead of randomly augmenting a portion of the ID contexts, we could attempt to augment 
only easier contexts or only more difficult contexts, as measured by the aforementioned metrics, to 
see if this improves overall training. 

The number of experiments we were able to conduct with pretraining was limited given its time- 
consuming nature. For future work, one may consider pretraining on the augmented OOD datasets, 
alone or combined with ID data, or explore other language modeling objectives that may be more 
beneficial for the downstream question answering ask. Future work could also be devoted to 
trying various hyperparameters generally, but especially for the combined MLM-QAIt with data 
augmentation system. If our hypothesis of MLM-QAIt not being able to handle the amount of noise 
generated by augmented data is correct, we could perhaps try various hyperparameters to produce a 
more suitable amount of augmented data for this model. 
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Appendix 

MLM_loss + QA_loss = total_loss 

Linear layer to produce start, 

end logits 

ZO 
Hidden states | 

   
Projector layer 
  

Vocab layer norm 
     GELU activation 

    

  
       Vocab transform layer 

DistilBert Transformer 

| 
randomly masked inputs 

  

Figure 1: Model architecture of the MLM-QA model. The MLM and QA layers each share the hidden 
states as input from the DistilBert base model. We then compute the loss as the sum of the respective 

model losses. Recall that the inputs are randomly masked before going through the DistilBert base. 

MLM_loss QA_loss 

Projector layer 
  

  

Dropout 

Vocab layer norm 

GELU activation Linear layer to produce start, 
end logits 

  

  

    Vocab transform layer 

_Trs—C:SCt 
A 

  
Hidden states Hidden states 

DistilBert Transformer DistilBert Transformer    
randomly masked inputs, not masked inputs, 

iter % 2 ==1 iter % 2==0 

Figure 2: Model architecture of the MLM-QAIt model. 
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Domain Mask LoistiiBERT LTAPT 
  

Pretrained Model 1 NewsQA 100% [MASK] 2.53 1.99 

Pretrained Model 2 SQuAD, NewsQA, Natural 100% [MASK] 2.15 1.49 
Questions 

Pretrained Model3 SQuAD, NewsQA, Natural 80/10/10 2.15 1.47 

Questions 
Pretrained Model 4 SQuAD, NewsQA, Natural 100% [MASK] 2.36 1.5 

Questions, DuoRC, RACE, 

RelationExtraction 
  

Table 7: Masked LM loss on the validation set for the DistiIBERT model before (£ pistiigerr) and 

after (Lr 4pr) additional pretraining. 
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