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Abstract 

In this project, we aim to investigate the effectiveness of adversarial training on 
improving out-of-domain performance of question answering tasks. We fine-tune 
a pre-trained transformer model with a variety of adversarial training configura- 
tions. We then evaluate and compare the out-of-domain performance between the 
configurations. 
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2 Introduction 

In recent years, we have seen significant progress on natural language understanding problems. 
However, there is increasing research showing models’ performance degrade substantially beyond the 
training distribution. Investigating ways to improve model robustness is crucial for us to demonstrate 
models have generalized language understanding similar to humans and guarantee the their effective- 
ness when deployed in the real world. In this project, we investigate the effectiveness of adversarial 
training on improving model robustness for question answering (QA) tasks. We show that finetuning 
a pretrained transformer with adversarial examples generated with Fast Gradient Method (FGM) [1] 

using in-domain training data consistently improves the out-of-domain performance of the model. 

3 Related Work 

3.1 BERT 

BERT [2] is a stacked bidirectional Transformer encoder that is pretrained on Wikipedia and 
BooksCorpus, has given state-of-art results on a wide variety of NLP tasks. Models based on 
BERT and BERT variants are also shown to have better out-of-domain performance compared to 
other language models [3]. 

3.2 DistilBert 

DistilBert [4] is a BERT variant which reduced the parameters of the original BERT model by 40% 
while retaining 97% of its language understanding capabilities and being 60% faster by leveraging 
knowledge distilation [5] during pretraining. 
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3.3. Adversarial Training 

Adversarial Training is a data augmentation techniques in which neural networks are trained on gener- 
ated adversarial examples in addition to the training data. Fast Gradient Sign Method (FGSM) [6], the 

Fast Gradient Method (FGM) and Projected Gradient Descent (PGD) [7] are first proposed to perform 

adversarial attacks on neural networks; those methods are then employed to perform adversarial 
training. Adversarial Training is shown to produce models that are robust against adversarial attacks 
and significantly improve in-domain performance for tasks with limited training data [8]. 

4 Approach 

4.1 Task 

Our model will perform question answering tasks. The input include a paragraph and a question and 
the output is the start and end indices indicating the span of text containing the answer within the 
paragraph. An example of a question, paragraph and answer triplet is shown in Figure 1. 

  

Question: Why was Tesla returned to Gospic? 

Context paragraph: On 24 March 1879, Tesla was returned to Gospic under police guard 

for not having a residence permit. On 17 April 1879, Milutin Tesla died at the age of 60 after 

contracting an unspecified illness (although some sources say that he died of a stroke). During 

that year, Tesla taught a large class of students in his old school, Higher Real Gymnasium, in 

Gospic. 

Answer: not having a residence permit       
Figure 1: A example sample for performing question answering tasks 

4.2 Architecture 

We use DistilBert augmented with a dense classifier for answer span prediction as the model ar- 
chitecture. The Question Answering DistilBert implementation is provided by HuggingFaces [9] 
library. 

4.3 Training 

During fine-tuning, the pre-trained transformer is trained on both the original input samples and the 
generated adversarial input samples. The model is trained on original input samples with Cross- 
Entropy loss defined as follows where y; and si are ground truth probability distribution and predicted 
probability distribution respectively, C is the number of categories. 
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The model is trained on adversarial input samples using the following min-max loss where 6 represents 
the model parameters, x and y represents the input embedding and the corresponding target, rady 
represent some input perturbation in the perturbation space S. 

min E(e,y)~D | max L(@,2+ raat) 
Tadv& 

Intuitively, the loss tries to find a input perturbation to maximize the loss L and model parameters to 
minimize the perturbed loss simultaneously. 

We generate adversarial perturbation raga, using the FGM. Specifically, the adversarial perturbation is 
defined as follows where € is a hyperparameter. 

g = ViL(0,2,y)
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Intuitively, we point the input perturbation in the same direction as the input gradient respect to the 
loss we want to maximize. 

The overall architecture and the adversarial training process is shown in Figure 2. 
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Figure 2: Overall architecture and the adversarial training process of AT-BERT 
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The adversarial training process is implemented from scratch as a data augmentation step during 
training. 

4.4 Configurations 

4.4.1 Baseline 

The baseline model is a pretrained DistilBert for Question Answering finetuned using in-domain 

training data without any adversarial examples. 

4.4.2 Adversarial Ratio 

Adversarial Ratio denotes the ratio between original training samples and generated adversarial 
samples. We train models with 4 different adversarial ratios - 4-to-1, 2-to-1, 4-to-3 and 1-to-1. For 

each ratio, we randomly mix original samples and adversarial samples; new adversarial samples are 
generated for each epoch. 

4.4.3 Baseline Finetuning 

In addition to finetuning the pretrained DistilBert with adversarial training, we also investigate the 
effects of funetuning with adversarial training starting from the baseline model. 

4.4.4 Gradient Reuse 

To improve memory efficiency, instead of generating adversarial samples from randomly selected 
training samples, we reused the gradient produced by the current training sample for each training 
step. The resulting adversarial samples are no longer i.i.d and are strongly correlated to the original 
samples. However, this method reduce the computation cost and memory usage significantly. 

4.4.5 Ensemble 

We produce an ensemble model by performing majority voting using the top-3 models in terms of F1 
scores. The prediction of the model with the best F1 score are used for tie-breaking. 

5 Experiments 

5.1 Data 

The data is split between in-domain datasets containing Natural Questions [10], NewsQA [11] 
and SQuAD [12] and out-of-domain datasets containing RelationExtraction [13], DuoRC [14] and 

RACE [15]. The sizes of each dataset and the overall train, dev, test split in shown in Figure 3.



  

Dataset Question Source Passage Source ‘Train dev Test 
  

in-domain datasets 
  

  

  

SQuAD Crowdsourced Wikipedia 50000 10,507 - 

NewsQA Crowdsourced News articles 50000 4,212 - 

Natural Questions Search logs Wikipedia 50000 12,836 - 

oo-domain datasets 

DuoRC Crowdsourced Movie reviews 127 126 1248 

RACE Teachers Examinations 127 128 419 

RelationExtraction Synthetic Wikipedia 127 128 2693 
  

Figure 3: Dataset statistics 
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Figure 4: In-domain performance: Adversarial Ratio experiments (Left) with baseline (orange), 4-to-1 
(red), 2-to-1 (blue), 4-to-3 (magenta) and 1-to-1 (grey); Baseline Finetuning experiments (Right) with 

baseline (orange), 4-to-1 (green), 2-to-1 (red) and 4-to-3 (magenta) 

5.2 Evaluation method 

We measure both in-domain and out-of-domain performance quantitatively using Exact Match (EM) 
and F1 metrics. 

e Exact Match is a binary measure (i.e. true/false) of whether of model output (i.e. the 

answer span prediction) matches the ground truth exactly. 

precision-recall 
¢ F1 is the harmonic mean of precision and recall defined as 2 - =a . 

precision+recall 

5.3 Experimental details 

We used batch size of 16, learning rate of 3e-5 and the AdamW [16] optimizer across all of our 
experiments. All models are trained for 3 epochs and models finetuned from baseline are trained for 
2 epochs. 

5.4 Results 

5.4.1 In-domain Performance 

As shown in Figure 4, adversarial training did not degrade the in-domain performance across all 
experiments. The Fl and EM scores of adversarially trained models matched the scores of the 
baseline model throughout the training process. 

5.4.2 Adversarial Ratio 

As shown in Figure 5, 2-to-1, 4-to-3, and 1-to-1 adversarial training produced comparable performance 
while 4-to-1 adversarial training produced slightly worse performance. Increasing the adversarial 
ratio increases the training time proportionally.
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Figure 5: Out-of-domain performance for Adversarial Ratio experiments with baseline (orange), 
4-to-1 (red), 2-to-1 (blue), 4-to-3 (magenta) and 1-to-1 (grey) 
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Figure 6: Out-of-domain performance for Baseline Finetuning experiments with baseline (orange), 
2-to-1 baseline (blue), 4-to-1 (green), 2-to-1 (red) and 4-to-3 (magenta) 

5.4.3 Baseline Finetuning 

As shown in Figure 6, finetuning from baseline achieved slightly worse performance compared to 
finetuning from pretrained DistilBert with significantly lower training time. Baseline funetuning 
achieves similar performance across different adversarial ratios. 

5.4.4 Gradient Reuse 

As shown in Figure 7, reusing gradients produces lower performance than using generating adversarial 
samples from randomized selections. However, reusing gradients reduced the training time by 40%. 

5.4.5 Overview 

As shown in Fig 8, adversarially trained models consistently improve out-of-domain performance. 
Without using ensembles, 2-to-1 adversarial training produces the best out-of-domain performance. 
Ensembling the top-3 models improves the performance moderately even when the model architec- 
tures in the ensemble are identical. 

Our best model - Ensemble of three of our models with the highest F1 scores - ranked 3rd on the 
RobustQA test leaderboard with 61.307 F1 and 43.165 EM scores and ranked 8th on the RobustQA 
validation leaderboard with 52.893 F1 and 36.649 EM scores. This result exceeded our expectation 
since our approach did not alter the model architecture; in addition, we performed significantly better 
on the test set than the validation set which suggests our technique is robust to overfitting.
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Figure 7: Out-of-domain performance for Gradient Reuse experiments with randomized (blue) and 

reused (magenta) 
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Figure 8: Fl and EM scores across all experiments 

6 Analysis 

6.1 Quantitative Error Analysis 

As shown in Figure 9, we investigate the effects of answer length and context length on the perfor- 
mance of our model and the performance degradation moving from in-domain data to out of domain 
data for each category. The vast majority of in-domain (71%) and out-of-domain (93%) answer 
lengths are between 1 to 3 words, therefore the statistics for answer lengths greater than 3 could 
be unreliable. Nevertheless, the out-of-domain performance degrades greatly for answer lengths 
greater than 7 words. The vast majority of in-domain (74.5%) answer lengths are less than 200 words; 
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Figure 9: In-domain vs. Out-of-domain F1 scores by expected answer length (Left) and In-domain 
vs. Out-of-domain F1 scores by expected context length (Right)
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Figure 10: In-domain vs. Out-of-domain F1 scores by question type (Left) and In-domain vs. 

Out-of-domain EM scores by question type (Right) 

  
Question: At the 2013 CES, which item drew the most attention? 
Shortened Context Paragraph: Televisions were among the most talked about items at the 
2013 International Consumer Electronics Show last week in Las Vegas, Nevada. Some employed 
the most advanced technology ever. Some of the TVs used a new technology called Organic 
Light Emitting Diodes, or OLED. ... There was even a fork that tells you when you are eating 
too fast. Cars, smart-phones, tablet computers and PCs also made news. And a 27-inch table 

computer drew quite a bit of attention. CEA President Gary Shapiro says there was much to see 
but not nearly enough time to see it all. "You cannot see the show in the four days that you have. 
We have over 3200 different industries showing over 20,000 new products. It’s ly incredible." 
Answer: Televisions 
Prediction: a 27-inch table computer 
  

Question: What can be the best title of this passage? 
Shortened Context Paragraph: His name was Fleming, and he was a poor Scottish farmer. 
One day, while trying to make a living for his family, he heard a cry for help coming from a nearby 
bog. ... In time, Farmer Fleming’s son graduated from St. Mary’s Hospital Medical School 
in London, and went on to become known throughout the world as the noted Sir Alexander 

Fleming, the discoverer of penicillin. Years afterward, the nobleman’s son was stricken with 
pneumonia. What saved him? Penicillin. The name of the nobleman? Lord Randolph Churchill. 
His son’s name? Sir Winston Churchill. Someone once said, "What goes around, comes around." 

Answer: ‘What goes around, comes around’ 
Prediction: Sir Alexander Fleming,       

Figure 11: Error samples from the out-of-domain validation set 

however, 26.7% of out-of-domain samples has context greater than 600 words and 68.6% are less 
than 400 words. Overall, there is no reliable trend for out-of-domain performance degradation in 
terms of context length. 

As shown in Figure 10, we investigate the effects of question type on in-domain and out-of-domain 
performance. The sample categories are classified using substring matching (e.g., checking if ‘what’ 
is a substring of the question). Note there are very little ‘when’ questions in the out-of-domain 
validation set, therefore the statistics for ‘when’ questions could be unreliable. Overall ‘who’ 

questions experienced the greatest out-of-domain performance loss; it is possible that out-of-domain 
distribution of named entities are significantly different compared to the in-domain distribution. 

6.2 Qualitative Error Analysis 

Figure 11 highlights several common errors made by the ensemble model on the out-of-domain 
validation set. The model often pattern match the question with the context naively to produce 
the answer; in the first example, the model matched ‘most attention’ with ‘quite a bit of attention’ 

instead of ‘most talked about’. This category of mistakes require the model to recognize deeper 
semantic relationship over syntactic relationships. The model also fails at recognizing idioms and 
symbolic relationships in general; in the second example the model naively selected recurring entity 
‘Sir Alexander Fleming’ instead the idiomatic phrase “What goes around, comes around’.



7 Conclusion 

In this project, we demonstrated FGM-based adversarial training can significantly and consistently 
improve the out-of-domain performance of DistilBert in the domain of Question Answering. Our 
approach does not alter the model architecture and can be easily generalized to other domains. 
However, adversarial training does increase training time and memory requirement. 

In the future, we would like to evaluate alternative adversarial training methods such as Projected 
Gradient Descent (PGD), alternative models including BERT, RoBERTa [17] and ALBERT [18] and 

alternative domains including Token Classification and Sequence Classification. 
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