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Abstract 

Generalization is a major challenge across machine learning; Question Answering 
in Natural Language Processing is no different. Models often fail on data domains 
in which they were not trained. In this project, we compare two promising, though 
opposite, solutions to this problem: ensembling specialized models (a Mixture of 
Experts approach [1]) and penalizing specialization (Domain Adversarial Training 
[2]). We also study the supplementary effects of data augmentation [3, 4]. Our 
work suggests that Domain Adversarial Training is a more effective method at 
generalization in our setup. We submit our results to the class leaderboard where 
we place 10th in EM. 

1 Introduction 

While the field of Natural Language Processing has made huge advancements in the last decade, a 
remaining problem is the failure of models to generalize performance to datasets on which they were 
not trained. This failure may block models from being safely deployed, where all data will be new 
examples from potentially new distributions. 

In this project, we study two promising methods for improving domain adaptation, Domain Adver- 
sarial Training [2] and Mixture of Experts [1], in the context of a Question-Answering task from 

NLP. We study whether these methods improve generalization between the datasets trained and 
validated on (the in-domain data) and disjoint, completely unseen data (the out-of-domain datasets). 
We additionally study the effect of semantics-preserving syntactical Data Augmentation [3, 4] on the 
performance of these two methods. 

Our work suggests that Domain Adversarial Training is a marginally more effective method at 
generalization in our setup. We submit our results to the class leaderboard where we place 10th in 
EM and 12th in FI out of 57 at the time of submission. 

2 Related Work 

Typically, models assume that problem data is independent and identically distributed so that all test- 
time observations will follow the same distribution as train-time examples. However, data observed 
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at deployment — and even data from a similar dataset — can violate this assumption, a phenomenon 
called distribution shift. Recent work across all subfields of AI have found significant performance 
drops due to distribution shifts, suggesting that models learn spurious correlations unique to their 
train datasets, rather than invariant features they can leverage [5]. 

Recently, many methods have been proposed to handle distribution shift. A classic approach is to 
ensemble several “expert” models for prediction, each of which specializes in handling a certain 
distribution. The use of mixing multiple experts proved effective for Jacobs et al. in identifying and 
solving subtasks of spoken vowel recognition [1]. Out-of-domain question answering has a similar 
subtask structure in evaluating which trained domains the domain of a test question is most like. The 
corresponding expert models can then have the most weight in answering the given question. 

An opposite approach has focused on forcing a single model to learn domain-invariant features by 
discouraging model specialization. Sato et al. proposed Domain Adversarial Training (DAT), a 
successful adversarial training method specific for domain adaptation. In this method, the model 
is penalized during training for output representations that vary widely by domain. By promoting 
domain-independent output, the model should be able to better generalize during out-of-domain 
testing [2]. 

Another classical add-on is data augmentation, in which additional examples are synthesized and 
added to increases the diversity of training data. In NLP, valid augmentations should be semantics- 
preserving while modifying syntax [3, 4]. 

3 Approach 

We aim to compare the Mixture of Experts and the Domain Adversarial Training approaches, while 
also examining the ability of data augmentation to supplement both methods’ performance. We 
review our approach below. 

3.1 Data Augmentation 

Our goal is to use data augmentation to improve the algorithms’ performance on out-of-domain 
datasets. Augmenting data allows the model to be flexible with unseen data and to therefore generalize. 
Without augmentation, models tend to be somewhat brittle; they learn to memorize examples and not 
work as well on data with different syntax and vocabulary. 

Our approach for data augmentation is based on methods by Ribeiro et al. [3] and Sugiyama and 
Yoshinaga [4]. Riberio et al., who successfully implemented data augmentation on question answering 
applications, suggest augmenting the most common paraphrases that generate adverse predictions 
using synonym replacement. We attempted a version of this method by using word2vec through the 
Gensim package [6, 7], to find the words with the most similar embeddings to an original word we 
would like to replace in a question. However, we determined, as shown in Figure 1, that this method 
generates examples that are closely associated to the original word (e.g. ‘China’ — ‘Chinese’) but 
does not generate substantially different words, and simple synonym replacement may result in 
grammatically incorrect sentences. As a result, we use back-translation, a method implemented by 
Sugiyama and Yoshinaga. Given a (question, answer) data example, we translate the question using 
external APIs from English to either French, German, or Chinese and then back to English (Figure 4). 
French, German, and Chinese were chosen because they are well-resourced languages that provide 
acceptable translations based on manual inspection. We only translate questions because answers 
must match the exact wording of the original context. Usage of APIs implemented as inspired by 
reference sites [8]. 

3.2. Domain Adversarial Training 

One way to make a generalizable model is to learn domain-invariant features.We achieved this by 
implementing a domain adversarial training model based upon that of Sato et al. [2]. While they 
applied the technique to dependency parsing, we believe the domain-invariant learning will easily 
transfer to question answering. Additionally, where they used Bi-LSTMs, we use a transformer model 
in the form of Hugging Face’s DistilBERT [9], as transformers are often more effective in calculating 
attention scores. The primary idea is to penalize the model for having hidden states that can be used



  

Figure 1: Word2Vec most similar predictions. 

to identify the domain of the input. This forces the model to not depend on the input domain, which 
should allow it to better generalize to domains it has never seen before. 
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Figure 2: Diagram of domain adversarial training model. 

Figure 2 portrays the structure of our model. Like in the baseline, context-question pairs are inputted 
into Hugging Face’s DistilBertForQuestionAnswering, which is simply a DistiIBERT model with 
a linear classifier head for predicting start and end logits for the answer span. During training, the 
DistiIBERT model outputs not only for answer prediction but also for domain classification by the 
adversarial portion of the network, implemented as described by Sato et al. [2]. 

The transformer output first passes through a gradient reversal layer (GRL). In the forward pass, the 
GRL acts as an identity function. However, in the backward pass, the GRL multiplies the gradient by 
—X, where A is the GRL’s only parameter and is set to 0.5. controls the influence of the domain 
classification objective in training the transformer. In this way, the GRL allows the adversarial portion 
of the network to update to better classify the domain while the transformer updates to hide the 
domain from the domain classifier. The GRL is followed by a feed-forward multilayer perceptron 
and a simple softmax domain classifier. 

Once the DAT model has been trained on an in-domain dataset, it can be finetuned with an out-of- 

domain dataset. The adversarial portion of the network is not used in this scenario because different 
domains than the original training are used. 

3.3. Mixture of Experts 

A different approach to generalizability is to train multiple, specialized “expert” models instead 
of solely having one network. Jacobs et al. presented this idea for vowel discrimination in which 
each subnetwork specialized in a subtask of the problem [1], and a gating network mixed their 
outputs with normalizing constants. Here, we are taking a derivation of this method: we use 
one sub-network for each training domain, and a gating network that can appropriately determine 
for each example which expert should be used for the given examples. We use Hugging Face’s



DistilBertForQuestionAnswering [9] for each of the experts. For our model, the gating network is a 
Multilayer Perceptron (MLP), as suggested by the default project. Each of the experts are trained (or 
fine-tuned) separately on different datasets; the gating network is then trained to choose between the 
pre-trained experts. Figure 3 portrays the structure of the model; Table 1 shows the structure of the 
MLP. 
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Figure 3: Diagram of mixture of experts model. 

  

Table 1: Gate Network: A simple 2-layer Multilayer Perceptron to determine experts. Input size is 
the example size, which for our dataset is 384. 

The weights for the gating network are trained so that the expert with Max(>°> G(@input) E(®input)) 
is chosen as the expert to be used. Here, where E(x); is an expert and G(x) is the output of the 
gating network given the input x. The loss is also defined as the 5° G(input)E (input): of the 
expert chosen. 

4 Experiments 

Much of our pipeline code comes from the default RobustQA_ repository, at 
https://github.com/MurtyShikhar/robustqa. | We’ve clarified in the following sections what 
additional code we wrote. 

4.1 Data 

Our data consisted of three in-domain datasets (SQUAD [10], NewsQA [11], and NaturalQuestions 

[12]) and three out-of-domain datasets (DuoRC [13], RACE [14], and RelationExtraction [15]). Each 

dataset was further split into train, val, and (where appropriate) test subsets. See Table 2 for details of 
each split. 

In this report, we refer to dataset subsets by their category (in-domain or out-of-domain), split, and 
possibly specific dataset name and augmentation status. For example, indomain-train-aug refers 
to the train subset of the union of all augmented in-domain datasets. 

We implement back-translation as a data augmentation pre-processing step. Given a (question, 
answer) pair, we translate the question from English to French and then back to English. Due to 
query limits, we distribute the translation task across four different API services, ranked by frequency 
of use: Microsoft Bing Translator [16], Google Translate [17], Baidu Translate [18], and Yandex
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Table 2: Size of our dataset splits. Because of API limits, we were not able to augment each 
in-domain set fully. We removed a few duplicate questions (where the back-translated English 
question is identical to the original) from the out-of-domain train datasets. 

Translate [19]. We used our own implementation to use the API to back-translate existing examples 
and to integrate it into the train and validation datasets. 

We ran augmentation on the indomain-train and oodomain-train subsets. Due to API limits, 
we were not able to augment all 150,000 examples in the in-domain train subsets. 

To increase the size of our sparse oodomain dataset, we augmented all of our oodomain-train 
examples using French and additionally translated these examples to-and-from German and Chinese, 
increasing the size of each out-of-domain train split from 127 to around 1000. We additionally 
removed some duplicate questions (where the back-translated English question is identical to the 
original) from the out-of-domain train datasets. The exact sizes of our final datasets are given in 
Table 2. Example back-translation pairs are shown in Figure 4. 

4.2 Evaluation Method 

We evaluate each experiment using two standard metrics for question answering models: Exact Match 
(EM) scores and F1 scores. Exact Match is a binary score of whether or not the predicted answer is 
exactly the same as one of the gold standard answers. F1 is a harmonic mean of the precision and 
recall of the answer. 

We report performance for each experiment on indomain-val and oodomain-val. We select the 
best model based on the oodomain-val performance to submit to the leaderboard and additionally 
report that model’s oodomain-test performance. 

4.3 Experimental details 

Baseline Model. For our baseline, we use Hugging Face’s DistilBertForQuestionAnswering [20]. 
It consists of a pretrained DistiIBERT model with a span classification head on top. The loss is the 
cross-entropy of the start and end positions. We used the default hyperparameters specified by the 
starter repository: we used a batch size of 16, a learning rate of 7 = 3e-5, and we trained for 3 epochs 
on one seed. The baseline was trained on subset indomain-train and model selection was based 
on indomain-val. This model did not have access to augmented data. 

Original: {"question": "Who was the young woman who inherited the hotel?"} 

Back-translated: {"question": "Who was the young woman who inherited the hotel?"} 

Original: {"question": "what room number is investigated?"} 

Back-translated: {"“question": “What room number is being investigated?"} 

Original: {"question": “What was Jill's mother's face burned by?"} 

Back-translated: {"question": “How did Jill's mother's face burn?"} 

Figure 4: Back-translated examples



Domain Adversarial Training. We implement DAT ourselves based on the original paper [2]. For 
DAT models, we used a batch size of 16, a learning rate of 7 = 3e-05, and trained for 3 epochs on one 
seed. One DAT model was trained on indomain-train and the other on indomain-train-aug. 
Model selection was based on indomain-val. 

The DistilIBERT portion of each model was additionally finetuned using either oodomain-train or 
oodomain-train-aug for 3 epochs. Model selection was based on oodomain-val. 

Mixture of Experts. We experimented with two sets of experts to determine what approach would 
be most effective. Experts are based on DistilBERT models, we implemented the gating network, 
with design inspiration mention in the Approach section. 

1. Mixture of Out-of-Domain Experts. Yn the first mixture model, we trained three out- 
of-domain experts. First, we trained one baseline model (a DistilBERT trained on 
indomain-train) and then fine-tuned one expert per oodomain-train-aug dataset. This 
encourages each expert to specialize in an out-of-domain dataset, either Race, DuoRC, or 
RelationExtraction. The gating network is trained on oodomain-train-aug, i.e. the mix- 
ture model learns to weigh the experts in a way to maximize accuracy on the out-of-domain 
data. 

2. Mixture of In-Domain Experts. In the second mixture model, we trained three in-domain 
experts. Each expert was trained on exactly one indomain-train-aug dataset and was not 
fine-tuned on out-of-domain data. This encourages each expert to specialize in an in-domain 
dataset, either SQUAD, NewsQA, or Natural Questions. We experimented with training the 

gating network on indomain-train-aug versus oodomain-train-aug, i.e. whether the 
mixture model learns to weigh experts to maximize in-domain accuracy or out-of-domain 
accuracy. We expect the in-domain experts mixture model to be more challenging, though it 
better reflects situations where we have no out-of-domain data a priori. 

For all experts, we used a batch size of 16, a learning rate of 7 = 3e-5, and trained for 3 epochs 
on one seed to be consistent with our other models. Our out-of-domain experts were fine-tuned by 
training on oodomain-train-aug for 3 epochs with a learning rate of 7 = 3e-5. Additionally, our 
gating networks were trained for 3 epochs with a learning rate of 7 = 3e-5. We implement Mixture 
of Experts ourselves based on the original paper [1], with small design inspirations by Shazeer et al, 
Kang et al, and MLP tutorials [21][22][23]. 

4.4 Results 

The results from our three experiments are presented in Table 3. 

Domain Adversarial Training. Each Domain Adversarial Training model trained on the given in- 
domain dataset performed better than the baseline, while each DAT model trained on the augmented 
in-domain dataset did not perform as well. This may be because the adversarial portion of the network 
struggled to identify the domain of the augmented examples. The question in the input may have 
been one of the more useful factors in identifying the domain, so when it is changed by augmentation, 
the domain classifier would become less powerful, thereby mitigating its usefulness. 

It is reasonable, though, that finetuning models generally improved their performance. Finetuning 
took place without adversarial training, so the above issue would have no effect. Ultimately, our most 
successful model was adversarially trained on the given in-domain training set and finetuned on the 
augmented out-of-domain set. 

Mixture of Experts. None of our Mixture of Experts implementations reached the baseline level, 
though our Mixture of Out-of-Domain Experts was very close. The Mixture of In-Domain Experts 
performed significantly worse than the baseline. One reason why our Mixture of Out-of-Domain 
Experts may have had slightly lower, but very similar, results as compared to the baseline is the large 
size difference between indomain-train and each individual oodomain-train dataset. Because 
the fine-tuning datasets were so much smaller, it may be that our experts did not specialize enough, 
making the limited signal more detrimental than helpful. It seems like adding more data did not change 
the performance as the EM and FI scores when trained on indomain-train and oodomain-train 
are the same even though indomain-train is significantly bigger. Similarly, the low performance 
for the Mixture of In-Domain Experts may have been because training the experts on each of the 
datasets may have created different models, but not ones whose specialization was optimal for the



  

indomain-val | oodomain-val | oodomain-test 
  

  

  

  

  

  

Model EM Fl EM Fl EM Fl 

Baseline 55.07 | 70.95 | 33.25 | 48.43 - - 

DAT, no finetuning 54.68 | 70.63 | 35.08 | 50.21 - - 

DAT, finetuned on oodomain-train 55.20 | 70.75 | 34.82 | 49.80 - - 

DAT, finetuned on oodomain-train-aug | 55.22 | 70.74 | 35.34 | 50.50 | 42.385 | 60.525 

Augmented DAT, no finetuning 54.02 | 70.14 | 30.63 | 47.24 - - 
  

Augmented DAT, finetuned = on | 53.93 | 70.08 | 31.15 | 47.55 - - 
oodomain-train-aug 

MoE (out-of-domain experts), gated on | 55.01 | 70.88 | 32.46 | 47.87 - - 
oodomain-train-aug 

MoE (in-domain experts), gated on | 55.01 | 70.88 | 32.46 | 47.87 - - 
indomain-train-aug 

MoE (in-domain experts), gated on | 38.33 | 55.33 | 23.30) 36.31 - - 
oodomain-train-aug 

  

  

                    

Table 3: Quantitative results for each experiment. All numbers reflect one seed. Finetuning refers to an additional 
3 epochs of training on either oodomain-train or oodomain-train-augment. The “Augmented DAT” model 
refers to a DAT model trained on indomain-train-aug instead of indomain-train. The MoE “Out-of-Doman” 
experts refer to models trained for 3 epochs on indomain-train, and then fine-tuned for 3 epochs on an individaul 
oodomain-train-aug dataset, whereas the MoE “In-Domain” experts refer to models trained for 3 epochs on 
individual datasets of indomain-train. “Gated on” refers to which dataset the gate network was trained on. 

Question Answering task. Instead, the gating network was just choosing models that were trained 
effectively on 1/3 of the data each, harming performance. Another potential factor to consider is that 
batch size was 16, which means that examples that would have had different experts were aggregated 
under one expert, diluting the ability for each expert to specialize. 

Augmentation. Finally, we see that the augmentation of our oodomain-train data does provide a 
small boost to performance, approximately +0.52 EM between DAT fine-tuned on oodomain-train 
versus DAT fine-tuned on oodomain-train-aug. The effect of augmenting our indomain-train 
data is less clear, however. The Augmented DAT model (trained on indomain-train-aug) performs 
worse on our oodomain-val set than the standard DAT model (trained on indomain-train). 

5 Analysis 

For qualitative evaluation, we analyze a few examples (Question, Prediction, Ground Truth) to view 
in Tensorboard. There were various areas the models struggled. Questions phrased with synonyms 
could confuse the prediction. 

Model: Augmented DAT, finetuned on oodomain-train-aug 

Question: Whats the name of the English woman? 
Context: ...The CIA learns that its asset Tom Bishop (Brad Pitt) has been captured 
trying to free a Briton, Elizabeth Hadley (Catherine McCormack), from a People’s 
Liberation Army prison in Su Chou near Shanghai, China. Bishop is being ques- 
tioned under torture and will be executed in 24 hours unless the U.S. government 
claims him. If the CIA claims Bishop as an agent, they risk jeopardizing the 
trade agreement. Exacerbating Bishop’s situation is the fact that he was operating 
without permission from the Agency. Attempting to deal quickly with the situation, 
CIA executives call in Nathan Muir (Robert Redford), an aging mid-level case 
officer on his last day before retirement and the man who recruited Bishop... 
Answer: Elizabeth Hadley 
Prediction: Robert Redford



It seems that because Elizabeth Hadley is described at “a Briton” instead of “English,” the model 
was unable to identify her. Sometimes predictions were not an exact match but were actually more 
specific versions of the correct answer. This shows the imperfections of the EM scoring system. 

Model: Mixture of Experts, indomain-expert 
Question: Which location offers the most direct view into daily life in the ancient 
world? 
Context: ...For travellers who want to experience some of the history and mystery 
of the ancient world, here is a list of cool destinations for your next holiday. 
Angkor Wat, Cambodia Built in the 12th century, Angkor Wat (meaning "capital 
monastery") was a temple in the ancient Khmer capital city of Angkor. .... Pompeii, 
Italy When Mount Vesuvius erupted in 79 A.D., Pompeii was buried under many 
layers of ash, preserving the city exactly as it was when the volcano erupted. 
Because so many objects were preserved, scientists and visitors are able to better 
understand daily life in the ancient Roman Empire... 
Answer: Pompeii 
Prediction: Angkor Wat, Cambodia 

In the above example, we can see that the error is made likely because “Angkor Wat” is described as 
an “ancient” city, containing a key word in the question. While context clues, such as 79 A.D. shows 
the Pompeii also shows a view into the ancient world, this requires significant context clues from a 
wide range of sentences. Capturing this context is something our model needs to work on. 

6 Conclusion 

In this project, we compared Domain Adversarial Training with Mixture of Experts for increasing 
robustness in Question Answering. We found that Domain Adversarial Training is a more effective 
method at generalization in our setup, with a final out-of-domain EM score of 42.385 and FI score 
of 60.525. Though there still remains a significant gap between in-domain and out-of-domain 
performance, we learned through this work that clever methods may improve model robustness. 

Our work also suggests that data augmentation on small out-of-domain datasets gives a performance 
boost. We submitted our best model (using such augmentation) to the class leaderboard, where at the 
time of submission placed 10th in EM and 12th in F1 out of 57 submissions. 

The two primary limitations of our work are 

1. A lack of hyperparameter tuning — all reported experiments use the default learning rate. 
We did not tune learning rate for each experiment, though we did consider a learning rate 
one order of magnitude larger of 7 = 3e-4 for finetuning and observed worse performance. 
Additionally, the gradient reversal layer’s hyperparameter X was set to 0.5 for all experiments. 

2. All experiments were only repeated on one seed — it’s possible that the close performance 
between experiments, especially on indomain-val, could be due to chance. 

In addition, our implementation using Mixture of Experts suggests that experts need to have significant 
differences (beyond simply fine-tuning differently) and that training on subsets of data is ineffective. 
This suggests that we should let the experts determine how to specialize by also back-propagating on 
the experts when training the gating network. We would also experiment with different batch sizes to 
see if there is a change in performance in the MoE, or we would find a way to structure the network 
so that each example can processed individually by an expert even within a batch. 

In the future, we would like to correct these limitations and confirm the fairness of our comparisons. 
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