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Abstract 

In this project, we built a robust question answering system called ALP-Net to 
do few-shot learning on out-of-domain data by adapting 4 different approaches, 
including domain-agnostic adversarial training, meta learning, data augmentation, 
and a new introduced answer length penalty. In our experiments, we found that 
adversarial training, data augmentation, and answer length penalty effectively 
improve the model performance on the out-of-domain datasets. Our best model 
achieved 60.962 F1 and 43.005 EM score on out-of-domain datasets test data. 

1 Introduction 

Deep learning has been very successful in natural language processing tasks in recent years. Among all 
the NLP tasks, Question Answering (QA) is especially challenging because it requires understanding 
on the relations between contexts and questions. It’s more challenging for modern QA systems to 
generalize well on out-of-domain data. Many QA models could outperform human on a specific 
dataset [1], but fail on other unseen dataset [2]. This limits the application of the QA systems. 

Thus, we built a robust question-answering system ALP-Net that can generalize well to out-of-domain 
data with few training examples. Our approaches include Domain-agnostic Adversarial Training, 
which helps model learn domain-invariant features; A new proposed Answer Length Penalty, which 
controls the answer length generated from the model and can greatly improve the answer exact match; 
Data Augmentation, which generated more augmented examples for oo-domain data; and lastly Meta 
Learning, which is experimented but no competitive results thus not included in the final model. Our 
experiments shows that with the combination of adversarial learning, answer length penalty, and data 
augmentation, we can achieve a competitive results of 60.962 F1 and 43.005 EM on out-of-domain 
test set. 

2 Related Work 

Pretrained Language Model has been proved to be very successful in various NLP tasks, including 
question answering. Models like GPT [3], BERT [4] and recent GPT-3 [5] are all large-scale 

pretrained language models, and they achieved state-of-the-art results on various NLP tasks including 
question answering. Among these pretrained models, DistilBERT [6] is a small, fast, cheap, and light 
Transformer model based on the BERT architecture, which is trained on large corpora by predicting 
the randomly masked tokens. Knowledge distillation is performed during the pre-training phase to 
reduce the size of a BERT model. It is a lightweight model that has great performance on various 
NLP tasks including question answering. 

Question Answering is an important and difficult NLP task from both research perspective and 
practical perspective. There are several possible sources of the data including Wikipedia, QA 
communities, knowledge bases. There are also multiple types of tasks, including machine reading 
comprehension [7], answer selection [8], knowledge base [9]. 
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Data Augmentation prevents the model to learn brittle correlation from the dataset by generating 
new training data from the existing training data. Approaches include words synonym replacement 
[10], BAE[11] G.e. replace tokens by masking a portion of the text and using BERT to generate 

alternatives for the masked tokens), and SEAs [12] which are semantic-preserving perturbations that 
induce changes of model prediction to augment the training data. 

Meta Learning mitigates the issue of generalizing a model that favors high-resource tasks and can 
be used as a good initialization for training and fine-tuning on low-resource datasets (i.e. fewshot 
learning) [13]. Recent works have attempted to apply meta learning to NLP tasks such that the model 
can achieve good results across domains with few-shot learning. Qian and Yu applied model-agnostic 
meta-learning (MAML) that generates dialogs in different domains with a few samples [14]; Bansal 
et al. applied optimization-based meta-learning that adapts to unseen natural language classification 
tasks with a few examples [15]. 

Adversarial Training is originally proposed in image generation field with Generative Adversarial 
Network (GAN) [16]. Then the concept of adversarial learning was adapted for domain generalization. 

Specifically adversarial training aims to train a domain discriminator and use the discriminator to 
encourage model to learn domain-invariant hidden features. Domain-Adversarial Neural Network [? 
] first applied adversarial training for domain generalization. Domain-agnostic Question-Answering 
[17] applied this approach on Question Answering and achieved good results. However, the previous 
work focused on zero-shot learning, while in this work we will explore how to effectively use 
adversarial training with few-shot training data on out-of-domain datasets. 

3 Approach 

Our model is shown in Figure 1. The system is built on top of DistilBertForQuestionAnswering from 
transformers library [18]. On top of that, we implemented a domain discriminator to help the QA 
model learn domain invariant features. During training, the discriminator is optimized to classify 
the domains of the data, while QA model is optimized to let the discriminator predict each domain 
equally. We also noticed that more than 95% of the answers are shorter than 6 words, while the 
prediction results contain more than 12% long answers. Based on this observation, we introduced 
an answer length penalty loss which computes an extra loss if the predicted answer is longer than 
a given hyperparameter kjengtn, to encourage model generates shorter answers. At last, to further 

improve the model robustness , we augmented the out-of-domain training data by randomly replacing 
words with synonyms. 
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Figure 1: Model Architecture



3.1 Adversarial Training 

Making sure deep models have domain invariant hidden layers is an efficient way to help model 
generalize to out-of-domain datasets [17]. Inspired by GAN [16] and domain-agnostic question 
answering [17], we implemented a domain discriminator on top of the last hidden layer of DistilIBERT 
model output to encourage the base model to learn domain-agnostic hidden features. 

We formulate the adversarial training as follows: A discriminator D is trained to minimize the 
cross-entropy loss as of equation (1), where / is domain category and h is the hidden representation of 
the last layer of DistiIBERT; At the same time, the QA system is optimized to maximize the entropy 

of Pz (u | n\)) with an extra loss Lady. 
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In our implementation, we computes the discriminator loss Laq, using the Kullback-Leibler (BL) 

divergence between the uniform distribution over K domains and the discriminator’s prediction logits. 
The discriminator loss is combined into the original QA loss after multiplied by a hyperparameter 
Aadv With formula Lo 4 + AadvLadv- 

The domain discrimintor itself is a feed forward neural network with 3 hidden layers, predicting the log 
probability for each domain using log softmax at the end. Unlike domain-agnostic question answering 
[17], which only uses the last layer embedding at CLS word position as input to discriminator, we 
propose to use the whole last layer embeddings of DistilBERT as input to the discriminator. The 
intuition is that, since the output for question answering is computed based on the last layer embedding 
at each position, we need to make sure not only the embedding at CLS position is domain-agnostic, 
but the entire last layer embeddings should be domain-agnostic. This change will increases the 
discriminator input size and the amount of computation by length. nten¢- To reduce the computation 
complexity, we reduce the size of discriminator hidden layer to 1/16 of the original size. Also, similar 
to GAN’s algorithm [16], we choose to update the discriminator kagy times for each batch in QA 

system to allow better convergence in the discriminator. Experiments show that both improvement 
make the discriminator works better. 

3.2 Answer Length Penalty 

After diving into the question answering datasets, we found that a large amount of the answers are 
relatively short. Especially on out-of-domain datasets duorc, race, and relation extraction, only 0.7%, 
6.25% , 0% of the answers exceed 6 words long respectively. However, in the prediction of the 
baseline model on out-of-domain data, more than 12% answers are longer than 6 words. Thus we 
introduced two penalties based on answer length to encourage the model to generate shorter answers: 
Answer Length Penalty and Brevity Penalty. 

Answer Length Penalty Answer length penalty aims at generating higher loss for long answers. 
It takes the predicted logits for start position psiar_ and end position peng as input (both with 

shape [sequence_length, 1]), where Dstart(t) / Dstart(t) represents the probability of the answer 
starting / ending at position 7. For each starting position 7, we consider all end positions beyond 
the range [7,7 + Kiength| as invalid positions, as these positions either cannot form a valid answer 

with starting position 2, or will form a answer longer than the given length threshold kjyengtn. We 

sum up the Peng of each invalid ending position as loss Cyengen,; for starting position 7. The final 

loss Liength is computed by a weighted sum for Lyengtn,; based on the probability pstare. The 

formal computation of Liengtn is shown in equation (2). In the formula, mask_matriz(Kiength) iS 

a pre-computed matrix with shape sequence_length * sequence_length where, for each column 
i, mask_matriaz|i : i+ kiength + 1,7] = 0 and other values are 1. We add Liengtn to the QA loss 
using formula La 4 + AlengthLiength- Our experiments show that after adding the answer length 

penalty loss with kjengtn = 6, the percentage of answers that exceed 6 words dropped from 12.79% 

to 11.5%. Implementation details can be found at [19]. 

Liength = sum(diagonal (pstart * Pena * mask_matria (Ktength))) (2)



Brevity Penalty Inspired by the brevity penalty (BP) of BLEU [20], we introduced another penalty 
on length by multiplying the loss when the predicted answer is longer than the actual answer. The 
formula is shown in formula (3). Brevity penalty multiply the QA loss when the generated answers 
are long by a maximum of e, and only takes effect when the generated answer is longer. Experiments 
shows that this loss can also reduce the percent of answers exceed 6 from 12.79% to 12.36%. 

lengthgotden 
Loa. = exp 1 = —— 
“ ( lengthpredicted 

x Loa (3) 

3.3. Data augmentation 

To further improve the robustness of our model on out-of-domain datasets, we augmented the 
existing training data on out-of-domain training datasets, by applying the word synonym replacement 
augmenter from an existing data augmentation tool named nlpaug [21]. Specifically, we extract the 
contexts, questions, starting indices of each answer, and answer texts from the out-of-domain datasets 

(i.e. race, duorc, relation extraction). Then, we use nlpaug to replace some words in each context 
with different synonyms, formats, or forms. At last, we adjust the starting indices of answers and the 
answer texts accordingly with our algorithm. Specifically for every context, we replace 1 word at 
minimum and 30 words at maximum, each word with a probability 0.3 to be replaced. Our code is 
available on Github [22]. A sample data augmentation is shown in Table 1. 

  

Original Text Schweik is dragged down to the cellar where he is savagely beaten with 
heavy chains, tortured with quicklime acid. 
  

Augmented Text Schweik is dragged down to the basement where he is viciously flap 
with heavy chains, tortured with quicklime acid. 
  

Table 1: Sample text augmented by synonym replacement and word addition. 

3.4 Meta Learning 

Meta learning is also one of the algorithm that can help the model generalize across datasets. We 
implemented meta learning and experimented on it. The algorithm conducts the following procedure: 
For each epoch, we sample a batch of datasets with probability proportional to their sizes (PPS), train 
different versions of the DistilBert model with Adversarial Training on each on them to obtain six 
different sets of model parameters, and perform a variant of Reptile MetaUpdate step to update the 
meta-learning parameters as introduced below. This algorithm is available as MetaLearningTrainer 
class on Github [23]. 

Data: Pretrained DistilBert model parameters 0,,¢train, in-domain and out-of-domain datasets 

Result: Meta-Learning parameters Omctq that can be applied to the input DistilBert model 
for iin range num_epochs do 

Sample a batch of datasets {T;} with probabilities proportional to their sizes; 
for each T; do 

Compute 6; = 0; — ax gradient loss on k samples; (9; is the parameter of the base 
model for this dataset) 

end 
Update meta-learning parameters by Oneta =U - 8) X Ometa + 3X the average of all 6;; 

Propagate @nerq to 6; for all datasets; 

end 
Algorithm 1: Meta Learning Algorithm



4 Experiments 

4.1 Data 

Our data contains 3 in-domain reading comprehensive datasets (Natural Questions [24], NewsQA [25] 

and SQuAD [1]) and 3 out-of-domain datasets (RelationExtraction [26], DuoRC [27], RACE [28]). 

Each in-domain training dataset contains 50k training examples. The number of examples in each 
validation dataset ranges from 4k to 12k. Each out-of-domain dataset has 127 training examples, 127 
validation examples, and a few thousands of unseen testing examples. Details are presented in Table 
Dis 

  

Dataset Question Passage Source Train Val Test 
Source 
  

in-domain datasets 
  

  

  

SQuAD [1] Crowdsourced Wikipedia 50000 10,507 - 
NewsQA [25] Crowdsourced News articles 50000 4,212 - 

Natural Questions [24] Search logs Wikipedia 50000 12,836 - 

oo-domain datasets 

DuoRC [27] Crowdsourced Movie reviews 127 126 1248 

RACE [28] Teachers Examinations 127 128 419 

RelationExtraction [26] Synthetic Wikipedia 127 128 2693 
  

Table 2: Statistics for datasets used for building the QA system for this project.[29] 

4.2 Evaluation method 

For evaluation, we use two metrics, Exact Match (EM) score and F1 score. We validate our model 

using the EM and F1 score on out-of-domain validation datasets, and report the EM and F1 scores on 
the test set of out-of-domain data. 

4.3 Experimental details 

We trained our model on a combination of in-domain training datasets, out-of-domain training 
datasets, and augmented out-of-domain training datasets. All the following hyper-parameters are 
the best hyper-parameters searched using grid search by training on out-domain training data and 
evaluating on out-domain data (results available in Appendix). 

For the QA model, we initialize the pretrained DistiIBERT model using "distilbert-base-uncased" [18], 

set batch size to 16, apply AdamW with learning rate 3e — 5 as optimizer, and train 3 epochs in total. 
For the domain discriminator, we set learning rate to 3e — 5 and Aq, to le — 2. The discriminator 

structure is a 3-layer feed forward network with hidden layer size 48. We udpate discriminator by 10 
gradient steps for every batch. For the answer length penalty, we set the kjengin to 6, and Ajengen to 1. 

In data augmentation, for every context, we replace | word at minimum and 30 words at maximum, 
each word with a probability 0.3 to be replaced. For our best result we augmented each out-of-domain 
dataset 20 times. The data augmentation code and the full model implementation is available on 
Github [22][19]. Meta learning is trained separately and not integrated into the final model for quality 
reasons. The learning rate for meta-learning parameters is le-2; learning rate for base model is 3e-5; 
the number of meta-learning epochs is 2400; the number of datasets in a batch is 3; the number of 
samples trained in each dataset is 3. 

4.4 Results 

Our best result on the out-of-domain test dataset achives F1 60.962 and EM 43.005. The final model 
combined the improvement of adversarial learning, answer length penalty, and data augmentation. 
We also conducted experiments on potential improvements separately to understand the contribution 
of each approaches. The detailed results are shown in Table 3.



  

Model/Results (EM/F1) oo-domain val oo-domain test in-domain val 
  

  

  

  

  

  

Baseline 33.25/48.43 55.07/70.95 
Baseline + oodomain data 34.29/50.75 53.82/70.06 

Meta Learning 16.23/24.96 13.73/23.22 

Domain Discriminator use CLS embedding 34.82/50.98 54.54/70.49 
Domain Discriminator use full embedding 34.55/51.72 54.74/70.41 

Answer length Penalty 36.39/50.97 53.76/69.89 
Brevity Penalty 35.86/50.97 53.76/69.89 

Data Augmentation 35.08/50.64 53.76/69.5 
Domain Discriminator + Augmentation 34.55/51.72 54.74/70.42 
Answer Length Penalty + Augmentation 34.82/52.66 41.28/60.653 54.32/70.46 

Final model 36.13/51.51 43.005/60.962 — 53.86/70.06 
  

Table 3: Validation set results for all the approaches separately and combined. 

In general, data augmentation effectively improves F1; answer length penalty and brevity penalty 
improves EM by a large margin; while domain discriminator only slightly improves the result. Meta 
learning does not work well in our experiments. 

Answer length penalty and brevity penalty contributed big EM improvement (35 to 36.39), this result 
is interesting as both of the loss penalty are original in our work. But we do observe a decent decrease 
in the long answers portion with our answer length penalties, which supported our results. While 
we were expecting bigger improvements from domain discriminator and meta learning, domain 
discriminator only slightly improves the model on out-of-domain datasets (EM 34.29 to 34.82), and 
the meta-learning does not improve the model. We believe the reason is that for domain discriminator, 
the domain-specific knowledge on the out-of-domain datasets potentially can improve performance; 
for meta learning, it is hard to learn a general knowledge that could be applied to new domains. 
Furthermore, we see great improvements on F1 using word synonym data-augmentation (51.72 to 
52.66), where we believe that augmented context and answers provided more examples to help model 
figure out the position of the answer. Although it maybe still hard to figure out the exact match 
(answer could also be augmented), more augmented examples could help on approximate match. 

5 Analysis 

5.1 Adversarial Learning 

Adversarial learning with domain discriminator only slightly improves the result on out-of-domain 
datasets, while it was shown to be very effective for zero-shot learning in domain-agnostic question- 
answering [17]. To analyze this, we first want to make sure that QA model did contains domain 

specific features if not trained with Lay; second, we want to make sure our discriminator structure is 

able to classify domains accurately. As shown in Figure 2, when we set Aady to 0, the discriminator 

loss can be very close to 0, and domain classification precision close to 100%. This means that the last 
hidden layer of baseline model indeed contains domain specific features when trained without Laay. 

On the other hand, enabling adversarial learning can actually make the features domain-agnostic. 
As shown in Figure 2, when we enable adversarial training, the discriminator loss decreases in 
the beginning, but increases quickly and stays at a high level during the entire training. We see 
similar patterns regardless of the discriminator hidden layer size, whether the discriminator using 
full embedding or only CLS embedding, or how many discriminator update steps. We think it is a 
evidence that the last DistilBERT layer of the QA system won’t have any domain specific features 
with adversarial training enabled. 

We believe the oo-domain training data makes adversarial learning less useful. In domain-agnostic 
question-answering [17], the validation is done on dataset unseen at training time, thus domain- 
agnostic features from in-domain data is helpful. However, in our task, including out-of-domain
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Figure 2: Discriminator loss (left) and Lagy of QA system (right) with Aga» as 0 (lower orange line) 

and le-2 (higher pink line). 

training data largely improved baseline results (improved EM from 33.25 to 34.29). That could 
mean allowing model to keep domain-specific features on oo-domain data could be beneficial to 
the results. One of the fix could be only do £4, back-propagation for in-domain datasets, and skip 
for out-domain datasets. In that way the model will be able to learn domain-agnostic features from 
in-domain data, while keeping domain-specific knowledge from out-domain datasets. 

5.2 Answer length penalty 

Experiments show the new proposed answer length penalty and brevity penalty have been very effec- 
tive in improving both performance. We think it is because these penalties successfully encouraged 
model to generate shorter answers. To confirm this theory, we counted the number of words longer 
than 6 generated by each model on out-of-domain validation set in Table 4. The results show that 
both penalties can reduce the percentage of long answers. One example answer predicted by the 
baseline model is "vote annoys the other jurors, especially Juror 7 (Jack Warden", while the model 
with answer length penalty generated "Jack Warden" for the same question. These shorter answers 
effectively increase the chance for exact match. In fact, none of the models without answer length 
penalty can achieve EM more than 35.08, while with length penalty the model can easily achieve EM 
over 36. 

As a conclusion, we believe that answer length penalty can be effectively generalized to Question- 
answering datasets with mostly short answers or long answers, but the limitation is that it requires 
prior knowledge on the length distribution. 

  

  

  

  

Model Percentage of answers > 6 words 

Baseline + oodomain data 12.79% 

Brevity Penalty 12.36% 
Answer Length Penalty 11.5% 
ALP + BP 10.97% 

Golden 6.25%/0%/0.7% (race/relation/duorc) 
  

Table 4: Persentage of long answers generated by each model on oo-domain validation set. 

5.3 Data augmentation 

Our experiments show that EM/F1 scores for the out-of-domain datasets are improved after augmented 
out-of-domain training dataset is applied. This could be explained by the nature of our model: Given 
the context and the question as input, the model needs to predict start and end positions of the answer. 
By augmenting each training example, both the answer and the start and end positions of the answer 
are very likely to be changed, thus preventing the model from making predictions directly based on 
the occurrence of certain words or remembering the positions of the answers. 

Another observation is that the improvement on F1 scores is larger than the improvement on EM 
scores. This could also be caused by the changing start and end positions of the answers in the 
augmented data. For a specific training example and its augmented example, the questions are the 
same and the contexts are almost the same for both of them, while the start and end positions of the



answers can vary adequately. This could slightly impact the predictions of our model so that the 
predictions could be a few words away from an exact match. A few examples are shown in Table 5. 

  

Question Prediction True Answer 
  

Celebrations for Spring Festival in in 1980 1980 
the UK started in . 
  

What is the writer’s attitude toward It seems that a little creative little creative madness is 

madness? madness is good good for us all 
  

Table 5: Sample prediction and true answer comparison. 

5.4 Meta Learning 

Meta learning didn’t perform well in our experiment. In the original paper [13], there is not quite a 
domain shift between the training datasets and the target datasets, as both contain textual similarity 
and relation classification tasks. The semantic embedding could be a general knowledge that is 
shared among different datasets, leading to success of the meta learning approach. However, from our 
experiments, the in-domain and out-of-domain datasets seem not to have such a general knowledge 
to be shared, as our meta learning model does not perform as well as the baseline model. As shown 
in Figure 3, we first trained a pretrained DistiIBERT model with learning rate 3e-5 on both the 
in-domain and out-of-domain datasets, where the training loss decreased to | after 22k iterations; 

in comparison, we then applied our meta learning approach on the same pretrained model with the 
same learning rate, where the training loss decreased to 3 with lower decreasing rate and much larger 
oscillation after 22k iterations. 

Besides, the experiment result shows that our meta learning model does not favor high-resource 
datasets comparing to transfer learning, as suggested by Gu et al. [30]. Yet finetuning on the 
parameters derived from the meta learning approach seems not to provide better results. 

et 
Figure 3: Train losses of the baseline model (blue) and the meta learning approach (orange). 
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6 Conclusion 

In this project, we combined adversarial training, meta learning, data augmentation, and an original 
answer length penalty to built a robust fewshot question-answering system ALP-Net. We achieved 
60.962 F1 and 43.005 EM on oo-domain testset. Our analysis demonstrated that answer length penalty 
is very effective in improving EM as most of the answers in datasets are short; data augmentation 
with word synonym replacement can effectively increase F1 score; domain adversarial training only 
has slight improvement when we have oo-domain training data; and meta learning does not perform 
well in our cross-domain question answering task despite its previous success in tasks such as natural 
language classification. The limitation of our work is that answer length penalty requires prior 
knowledge on answer length distribution. With more time, we would like to further explore the use 
cases and improvement of the proposed answer length penalty and brevity penalty as they are very 
effective in the experiments, it will be interesting to see if they can be a common approach for QA.
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Hyperparameter value F1(o0- EM(oo- discriminator 

  

  

  

  

  

  

  

domain) domain) precision 

repeat oodomain data (repeat times) 1 24.62 15.97 

3 24.28 15.45 
5 27.03 18.85 
10 27.14 18.06 
20 29.17 18.59 
50 28.65 17.28 

length loss k (ambda = 1) 1 24.07 15.45 

3 24.07 15.71 
5 24.26 15.71 
6 24.62 15.97 
7 24.51 15.71 
10 24.21 15.45 
1000 23.63 14.4 

length loss lambda (k = 7) 10 22.73 14.66 

5 23.8 15.45 
1 24.51 15.71 
5.00E-01 23.77 14.92 
1.00E-01 23.62 14.66 
1.00E-02 23.41 14.66 
0 23.42 14.66 

adv lambda 1 4.47 0 57 

1.00E-01 21.25 13.61 44.38 
1.00E-02 25.1 16.23 85.16 
1.00E-03 23.54 15.18 97.36 
0 23.4 14.92 97.09 

adv steps (lambda = le-2) 50 21.89 12.57 83.91 

10 25.1 16.23 85.16 
5 22.46 13.09 88.49 
3 23.51 14.66 89.04 
1 23.02 14.66 96.26 
0 22.24 14.14 15.53 

full adv vs CLS adv CLS adv 22.33 13.35 94.87 
full adv 23.91 15.18 95.28 

bp loss vs length loss bp loss 24.65 14.92 
length loss 23.91 15.18 
bp loss + 24.72 15.97 
length loss 
  

Table 6: Grid Search Result Table 
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