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Abstract 

In this project, we investigated QANet [1] - an end-to-end, non-recurrent model 
that is based on the use of convolutions and self-attention. Our first goal was 
to reimplement the QANet model from scratch and compare its performance to 
that of our baseline BiDAF [2] - a model that relies on recurrent neural networks 

with attention. Both of the QA answering systems were tested on SQUAD 2.0 
(the Stanford Question Answering Dataset) which includes both questions that 

are answerable given a context and questions that are not answerable given the 
context. Finally, after evaluation of our "vanilla" QANet and investigation of 
related work, we implemented an extended model called EQuANT [3]. The model 

adds an additional output to explicitly predict the answerability of a question 
given the context. Our best model (QANet with tuned hyperparameters) achieves 
F1 = 57.56 and EM = 54.66 on the developmental set, and F'l = 56.76 and 
EM = 53.34 on the test set. 

1 Introduction 

Question answering and machine reading comprehension tasks have been receiving growing interest in 
the last five years. As a result, neural models have been making large strides in terms of performance 
on large, open-domain datasets. These architectures are split into two approaches: PCE (Pre-trained 
Contextual Embeddings) methods and non-PCE methods. Examples of the former include ELMo 
and Bert, while examples of the latter are BiDAF and QANet (models we investigate in the paper). 

Built by Yu et al. [1], the original QANet was able to achieve a state-of-the-art performance on 
SQuAD 1.0. They were able to gain this performance boost over previous models like our baseline 
BiDAF by replacing the use of recurrent neural networks with convolutions and self-attention that 
boosted speed and efficiency. However, QANet was not tested on a dataset with unanswerable 
questions like SQUAD 2.0. We wanted to investigate the performance of QANet in this novel territory. 

Thus, the focus on this project was to first reimplement QANet, then evaluate its performance against 
our baseline BiDAF on SQuAD 2.0, and finally explore ways to extend and improve its architecture. 
Once we had constructed our QANet model, which was faithful to the original implementation in 
terms of layers, convolution blocks, and hyperparameters, we decided to explore an extension of the 
model called EQUANT [3] that would compute answerability separately from the probabilities of 
the span. Finally, we analyzed our model outputs in order to gain intuition about their architecture, 
understand when and why they were succeeding or failing, and suggest possible improvements to our 
implementation. 
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2 Related Work 

A particularly successful RNN-based question answering model is the Bidirectional Attention Flow 
(BiDAF) model by Seo et al [2]. An ensemble model based on this architecture was able to gain 

state-of-the-art performance in 2016. However, a disadvantage of this model is its heavy use of RNNs 
that hinders the ability to parallelize computations. This is the baseline that we use as our main point 
of comparison for our non-recurrent models. It is important to note that the original BiDAF model’s 
EM and F1 scores are based off of the SQUAD 1.0 dataset, not SQUAD 2.0. 

The QANet model by Yu et al. [1] that we implemented borrows ideas from NMT in the Transformer 

architecture. Particularly, the embedding and model encoders discard RNNs and uses a combination 
of convolutions and self-attention in order to both model local features and process global interactions. 
QANet was estimated to train 4 times faster than BiDAF and evaluate 7 times faster, meaning that 
data augmentation could be used to process more training data than BiDAF. Like the BiDAF model, 
the original paper bases their scores off of the SQUAD 1.0 dataset. 

With the release of the SQUAD 2.0 dataset introducing unanswerable questions, the EQUANT model 
by Aubet et al. [3] focuses on answerability as an extension of the QANet model. This model imple- 
ments an answerability module on top of the QANet architecture that outputs a probability score that 
is used to determine the model’s confidence in outputting its answer. Having this mechanism in place 
in their EQUANT model increased the EM and F1 scores from their vanilla QANet implementation. 

3 Approach 

We began our project by implementing the QANet model as described in the Yu et al. paper [1] from 
scratch. The high-level structure of our model contains an input embedding layer, embedding encoder 
layer, context-query attention layer, model encoder layer, and output layer. 
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Figure 1: Diagram of QANet architecture, single encoder block sublayer structure shown on right 

The Input Embedding Layer obtains the embedding of each word of the context and query passed 
in by concatenating its word embedding and character embedding. We then leverage the two-layer 
highway network from the BiDAF baseline to pass the embedding through and generate the output. 

The Embedding Encoder Layer is built through the following building block, which uses depthwise 
separable convolution layers and an 8 headed self-attention layer: 

(convolution-layer x # + self-attention-layer + feed-forward-layer).



This layer consists of 1 encoder block consisting of 4 convolution layers with kernel size 7, and each 
operation in the block is placed inside a residual block, for which the output is 

f (layernorm(a)) + x 

given an input x and an operation f. At the beginning of the layer, a positional encoding is added to 
the input as defined by Vaswani et al. [4]. The code for the implementation of this positional encoder 
is taken from the PyTorch documentation. We also use stochastic depth layer dropout [5] in this and 
the Model Encoder layer between the convolution sublayers where sublayer / has survival probability 

pi=1-—(1/L)(1 — pr) 

where L is the last layer and py, = 0.9. 

The Context-Query Attention Layer is identical to that of the BiDAF model, for which we leverage 
the existing code of the baseline and incorporate it directly into our model. 

For the Model Encoder Layer, the overall structure is made up of the same encoder building block as 
that of the Embedding Encoder Layer. One layer is composed of 7 stacked encoder blocks, each with 
2 convolution layers with kernel size 5. There are 3 overall repetitions of this whole layer, with each 
output passed into the Output Layer. 

Finally, in the Output Layer, the three model encoder outputs are used to compute the start probabilities 
and the end probabilities as follows: 

Pstart = softmax(W; [Mo, M;]), Pena = softmax(W2 [Mo, M))). 

The start index is selected as the index corresponding to the max probability in the start probability 
vector, and the end index is then selected as the index corresponding to max probability in the end 
probability vector. Notably, SQuAD 2.0 introduces unanswerable questions, so the output answers 
are filtered based on the joint probability of the start and end probability vectors. 

We then redesigned the goal for a multi-task learning setting to explicitly predict the answerability 
probability in addition to the answer span. To predict the answerability of a question given the context, 
we extended our vanilla QANet model by adapting the answerability module from EQuANT [3]. This 
module aims to generate a score for each answer start-end probability pair that determines whether or 
not the model should output an answer based on a confidence threshold. 
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Figure 2: EQuANT architecture builds on QANet by adding a third flow for output from the first 
model encoder block consisting of 2 encoder blocks, 3 fully connected layers and pooling to reduce 
the dimension to a scalar, and a final output through a sigmoid



This module is implemented from scratch in the same way as described in EQUANT. The first output 
of the Model Encoder Layer is passed through 2 encoder blocks and 3 feed-forward layers that 
decrease the hidden size down to 1. Taking the mean across the sequence length dimension and 
squeezing the size | dimensions, we are left with an answerability score of size 1. This score is 
compared to a threshold of p = 0.5, where the prediction is outputted if it exceeds the threshold, and 
not given otherwise. Additionally, we adjust the calculation of the training loss to the given function 

(0) = = y- [cico$?) + 3 (ci wt?) + £400) ] 

where po is the answerability probability, 6 is the ground truth, p; and pg is the start-word and end- 

word probability, and £;(p;) for 7 = 1, 2,3 is the cross entropy loss associated with answerability, 
start-word and end-word predictions respectively. 

Lastly, the baseline model that we compare our model’s performance to is the provided BiDAF model 
implementation from https://github.com/mingg¢g/squad.git which is based on the paper by Seo et al. 

4 Experiments 

4.1 Data 

As previously mentioned, we trained our models on the SQUAD 2.0 dataset. This is in contrast 
to the original QANet model which was trained on SQUAD 1.0 dataset, which did not have any 
unanswerable questions. SQUAD 2.0 features data points that each contain a context, question, and 
answer. The context (which have been truncated to 400 tokens) has been extracted from Wikipedia. 
The answers to the questions are either unanswerable or a span of the context. The original SQUAD 

2.0 dataset has a train/dev/test split of 129941/595 1/5915 examples [6]. 

Roughly 33% of the questions in the train set are unanswerable, while roughly 52% of the questions 

in the dev set are unanswerable [6]. We performed exploratory data analysis to understand our data in 
more detail and uncover more information about SQUAD 2.0 as shown in Figure 3. 
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Figure 3: Analysis of SQUAD 2.0 Dataset



We found that the question types are mainly whx type, heavily biased towards what questions. The 
lengths of the contexts were particularly important as Transformer-based architectures are relatively 
poor at modelling long-range dependencies. However, as the lengths were primarily in the 50-200 
word range, we decided against implementing Transformer XL [7] features. 

Finally, analyzing sample question-answer pairs in the dev set revealed that there were a number 
of errors in the ground truth. For example, we found a number of illogical/incorrect question and 
answer pairs: 

1. Question: What is the force equivalent of torque compared to angular momentum? The 
answer did not include "momentum", the right answer. 

2. Question: What are there no longer limitations on since 1990? The question is improper in 
its phrasing. 

4.2 Evaluation method 

In order to evaluate our models, we used EM (Exact Match) and FI scores. EM is a measure of 

whether the model prediction span exactly matches the ground truth span. On the other hand, F1 
is the harmonic mean of recall and precision; recall is the number of right words divided by the 
number of ground truth words, while precision is the number of right words divided by the number of 
predicted words. Additionally, we record AvNA scores in our results. AVNA is a measure of whether 
is model is answering answerable questions and not answering unanswerable ones. 

4.3 Experimental details 

4.3.1 Implementation of QANet 

We began by adapting the model described in the Yu et al. paper [1] with the same parameters, as 
laid out in the approach section of this report. With our first run, we ran into an issue of exploding 
gradients. After training for a few batches, the NLL would quickly shoot up to around 10!° and then 
to NaN after a few more batches. Our first attempt to fix this issue was to implement a scheduler 
that would start the learning rate at 0.0 and increase it to the default learning rate of 0.05 in the first 
1000 steps, and then maintain a constant learning rate for the remainder of training. Although this 
decreased the degree of exploding gradients with an NLL of around 108, the problem of having an 
NaN loss persisted. We eventually traced the issue back to the fixed learning rate, which we decreased 
from 0.5 to 0.001. This solved our issue, giving us a single digit loss with the first few seconds of 
training. 

Another issue we ran into shortly after was that the standard NC6 GPU that we used to perform some 
experiments did not have enough memory to allow for a batch size of 32 given our implementation. 
In order to allow for the model to train without terminating due to insufficient RAM, we reduced 
the batch size from 32 to 16, which reduced the training speed to approximately 90 minutes per 
epoch. At this point, we were able to have our first full run, for which we ended up with the following 
hyper-parameters. We used an Adam optimizer with 8; = 0.8, G2 = 0.999, = 107, and a learning 
rate of 0.001. For dropout, we used an inter-layer dropout rate of 0.1 as well as different dropout 
layers for our word and character embeddings with dropout rates of 0.1 and 0.05 respectively. 

We let the model run for 12 epochs, but we observed that although the training loss curve looked 
reasonable, the EM and F1 scores constantly declined from each evaluation step to the next. After 
taking several deep dives into our code, we reasoned that we may have been masking the multi-head 
self attention layer in our encoder block incorrectly. After fixing this issue, we also added stochastic 
layer depth in our encoder block [5] to increase regularization between the convolution layers of the 
encoder block as described in our approach section. Lastly, we upgraded our GPU to a NC6 v3 GPU, 
which increased our training speed by a factor of 3, giving us roughly 30 minutes per epoch. We 
ended up with a baseline QANet model that trained correctly and did indeed increase EM and F1 
scores as it trained for more and more epochs. However, we did see some overfitting in the dev NLL 
loss, which led to our experimentation with hyper-parameter tuning.



4.3.2 Hyper-parameter Tuning 

  

We systematically explored hyper-parameter settings of our model to improve performance. Specifi- 
cally, we investigated how the performance of the QANet architecture changed by varying the number 
of heads used in multiheaded attention, the dimension of representation for character embeddings, 
and the hidden size used in the majority of the model. We were interested in the effect on evaluation 
metrics and on training speed and memory efficiency. Notably, we could only run our hyperparameter 
experiments for 5 epochs (which is why the EM, F1, and AvNA scores are low). 

4.3.3 Answerability Extension: Implementation of EQUANT 

After running our hyper-parameter experiments, we built an additional layer on top of our QANet 
paper based off of the answerability module described in the EQUANT model by Aubet et al [3]. The 
implementation details are described in our approach section, along with how we modified the loss 
function to incorporate our answerability scores. In order to check our scores against the threshold 
of p = 0.5, we implemented a custom discretize function based on the baseline function provided 
in utils.py. We performed a full run with this model using 96 as our character embedding size 
instead of 128 in order to follow the lead of Aubet et al. paper [3], as well as the hidden size as 96 in 
a similar vein. However, after training our model for 15 epochs, we found that the EM and FI scores 
were worse than our original QANet implementation. 

4.4 Results 

  

The table above summarize our results on the SQuAD test set. In Figures 8 and 7, we also see 
the longitudinal dev set performance for all three models. As our QANet model outperformed 
out EQuANT, we submitted an F1 score of 56.74 and EM score of 53.34 to the IID Squad Track 

leaderboard. Notably, our test set scores were lower than our dev set scores: we achieved a F1 score 
of 57.56 and EM score of 54.66 on the dev set. The difference in the performance could be attributed 
to the natural variance in scores because the dev set is much smaller than the test set because of the 
differences in data distribution. 

5 Analysis 

5.1 Initial Decrease in Dev Performance 

We observed in the initial <150k training steps of QANet that the Fl and EM scores drop despite 
decreasing loss. The textual predictions on the dev set during this period reveal that the model initially 
chose to optimize by only predicting "no answer" since roughly half of the data is unanswerable 
yielding around 50% AvNA. 

A similar experiment with low evaluation steps showed that the EQUANT model yielded single digit 
metrics on the dev set initially. While the traditional QANet architecture yields only probabilities for 
the answer span, the EQUANT architecture explicitly provides an answerability probability. A model 
with untrained parameters will yield near random outputs, notably resulting in an approximately 
uniform distribution across the context for the span selection and randomly predicting answerability.



As such, while the QANet architecture will initially struggle to find start and end probabilities that 
exceed the dynamically selected threshold and therefore predict "no answer" frequently, EQUANT 
will effectively randomly predict that a question is answerable given the context and therefore select 
an effectively random span from the context as the answer leading to drastically worsened F1 and 
EM scores. 

5.2 Memory and Processing Efficiency 

The purported benefit of the QANet architecture is the replacement of recurrent blocks with convolu- 
tional blocks for encoding. While recurrent blocks operate sequentially, convolutional blocks do not 
feature the inherent dependence on previous state and are therefore more readily parallelizable for 
efficient processing. The increase in performance would allow for more data to be processed given 
the same compute resources and time. However, our implementation of QANet runs considerably 
slower than the baseline BiDAF. We consider two potential explanations and avenues for improving 
performance relative to BiDAF. 

Firstly, the BiDAF code uses packed sequences when processing the data. Batching examples for 
simultaneous training allows for more efficient processing on parallelized systems like a GPU, though 
doing so with sequences of variable length poses a representational challenge. As such, sequences are 
padded to the maximum sequence length in the batch, allowing contiguous memory to be transferred 
to the GPU. However, this means that the kernels on the GPU may process large quantities of 
factitious "pad" data resulting in wasted computation. As such, packing the sequence after transfer to 
the GPU prevents computation on the pad data, yielding improved performance. In comparison, our 
implementation directly processes the padded data yielding sub-optimal performance, so packing the 
padded sequences before passing the data through our layers may improve performance. 

Secondly, while training various models, we monitored our GPU utilization and observed that while it 
occasionally spiked to near full utilization, it would quickly drop such that our average utilization was 
65% (Figure 4). This suggests that our implementation was not compute bound on the system, but 
rather potentially memory bandwidth bound. Therefore, more frugal use of memory transfers on the 
GPU system may improve performance. One solution to loosen the memory bottleneck could be to 
use more in-place operations, though doing so would require careful analysis as our implementation 
of residual connections, for example, leverage the use of reassigning references for more manageable 
code and would break with in-place operations. Additionally, fusing the kernels defined by our layers 
together and utilizing shared memory on SMs to reduce transfers to and from memory would improve 
GPU utilization given that the training is bandwidth bound, though doing so would require developing 
custom low-level kernels. 

Reducing memory usage overall would also yield improvement. Specifically, by reducing RAM 
usage, training could be performed with a larger batch size, since we observed that training with a 
batch size greater than 16 would quickly lead to memory usage that exceeded the capabilities of our 
system. 

5.3. Data Augmentation 

These optimizations for faster and more efficient training enable the augmentation of training 
data given the same compute and time resources. One notable example of this would be using 
backtranslated data where examples are translated into a series of target languages before being 
translated back into the source language. This backtranslation method increases the syntactical 
variation in examples and augments the training data. While performing backtranslation with data- 
rich language pairs such as English-French are common, the potential linguistic connections of these 
languages may limit the introduced variation. As such, using linguistically dissimilar languages 
such as English to a non-Romance language may yield increased variety. Other data augmentation 
techniques may be applied such as replacing tokens based on thesaurus synonyms or a nearest 
neighbor by word embeddings. 

5.4 Architectural Improvements 

Our model uses BiDAF Attention Flow instead of Dynamic Coattention Network. While both involve 
two-way attention between the context and the question, DCN involves a second-level attention



computation - i.e., attending over representations that are themselves attention outputs. However, 
we were discouraged of pursuing DCN as a possible extension because of the original QANet paper 
[1] that mentions that the use of DCN over BiDAF Attention Flow does not increase performance 

significantly. 

We instead consider two ways to improve the output layer. Firstly, the EQUANT answerability module 
outputs a probability estimate that is then thresholded statically to determine the answerability of 
the question given the context. Though the threshold may be tuned post training to optimize F1 (or 
any metric) on the dev set, this static thresholding method is inflexible compared to the baseline 
answerability prediction. Consider the predicted span probabilities obtained from the softmax 
function of a short unanswerable example and a those of a long answerable sequence. Based on these 
values alone, we may artificially see uniformly higher probabilities in the first example while lower 
(though not uniform) values in the second. Since the answerability output is derived from the first 
model encoder, the result may incorporate these artificial differences into the output. One avenue for 
exploration may be to dynamically select the threshold based on the distribution of span probabilities. 
Another possible exploration could be in incorporating sequence length as an explicit feature in the 
answerability block to mitigate differences introduced by the sequence length. 

Secondly, the span output prediction yields two probability distributions that are independently created 
from the model encoder layer. Instead, probabilities for the start index may be computed directly and 
probabilities for the end index may be computed conditionally on the start vector. This formulation 
seems more natural than creating the two independently and may yield improved performance. 

6 Conclusion 

In this project, we explored the QANet architecture and its performance on the SQUAD 2.0 dataset. 
We first reimplemented QANet from scratch by taking heavy inspiration from the original paper [1]. 
Unfortunately, we were not able to achieve better results than our baseline BiDAF, even after we 

experimented with tuned hyperparameters. As QANet was first created with SQUAD 1.0 in mind, 
we decided to introduce a new answerability module so our model would work better on SQUAD 
2.0. This new model, EQuANT, also was not able to improve on our baseline performance. As our 
models were not successful in the conventional sense, we conducted a full analysis of possible errors 
and fixes to our implementation. The motivation and power of the QANet model stems from the 
feed forward nature of the architecture which allows for more efficient processing and therefore the 
inclusion of augmented data during training. A more memory efficient implementation may allow for 
a larger batch size during training, which again could make training with augmented data feasible. 
Additionally, we considered architectural variations for future work to improve performance such as 
attention mechanisms, improved feature sets for explicitly predicting answerability, and conditioning 
the end index probabilities on the start index probabilities. While we were not able to see the full 
power of QANet with respect to convolutions and self-attention, we learned about the importance of 
implementation details and real-time result analysis.
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