
Improving Question Answering on SQuAD 2.0:
Exploring the QANet Architecture

Stanford CS224N Default Project: Final Report

Aayush Agrawal Jiwon Lee
Department of Computer Science Department of Computer Science

Stanford University Stanford University
aayush2k@stanford.edu jiwonlee@stanford.edu

Laikh Tewari
Department of Computer Science

Stanford University
laikh@cs.stanford.edu

Abstract

In this project, we investigated QANet [1] - an end-to-end, non-recurrent model
that is based on the use of convolutions and self-attention. Our first goal was
to reimplement the QANet model from scratch and compare its performance to
that of our baseline BiDAF [2] - a model that relies on recurrent neural networks

with attention. Both of the QA answering systems were tested on SQUAD 2.0
(the Stanford Question Answering Dataset) which includes both questions that

are answerable given a context and questions that are not answerable given the
context. Finally, after evaluation of our "vanilla" QANet and investigation of
related work, we implemented an extended model called EQuANT [3]. The model

adds an additional output to explicitly predict the answerability of a question
given the context. Our best model (QANet with tuned hyperparameters) achieves
F1 = 57.56 and EM = 54.66 on the developmental set, and F'l = 56.76 and
EM = 53.34 on the test set.

1 Introduction

Question answering and machine reading comprehension tasks have been receiving growing interest in
the last five years. As a result, neural models have been making large strides in terms of performance
on large, open-domain datasets. These architectures are split into two approaches: PCE (Pre-trained
Contextual Embeddings) methods and non-PCE methods. Examples of the former include ELMo
and Bert, while examples of the latter are BiDAF and QANet (models we investigate in the paper).

Built by Yu et al. [1], the original QANet was able to achieve a state-of-the-art performance on
SQuAD 1.0. They were able to gain this performance boost over previous models like our baseline
BiDAF by replacing the use of recurrent neural networks with convolutions and self-attention that
boosted speed and efficiency. However, QANet was not tested on a dataset with unanswerable
questions like SQUAD 2.0. We wanted to investigate the performance of QANet in this novel territory.

Thus, the focus on this project was to first reimplement QANet, then evaluate its performance against
our baseline BiDAF on SQuAD 2.0, and finally explore ways to extend and improve its architecture.
Once we had constructed our QANet model, which was faithful to the original implementation in
terms of layers, convolution blocks, and hyperparameters, we decided to explore an extension of the
model called EQUANT [3] that would compute answerability separately from the probabilities of
the span. Finally, we analyzed our model outputs in order to gain intuition about their architecture,
understand when and why they were succeeding or failing, and suggest possible improvements to our
implementation.

Stanford CS224N Natural Language Processing with Deep Learning

2 Related Work

A particularly successful RNN-based question answering model is the Bidirectional Attention Flow
(BiDAF) model by Seo et al [2]. An ensemble model based on this architecture was able to gain

state-of-the-art performance in 2016. However, a disadvantage of this model is its heavy use of RNNs
that hinders the ability to parallelize computations. This is the baseline that we use as our main point
of comparison for our non-recurrent models. It is important to note that the original BiDAF model’s
EM and F1 scores are based off of the SQUAD 1.0 dataset, not SQUAD 2.0.

The QANet model by Yu et al. [1] that we implemented borrows ideas from NMT in the Transformer

architecture. Particularly, the embedding and model encoders discard RNNs and uses a combination
of convolutions and self-attention in order to both model local features and process global interactions.
QANet was estimated to train 4 times faster than BiDAF and evaluate 7 times faster, meaning that
data augmentation could be used to process more training data than BiDAF. Like the BiDAF model,
the original paper bases their scores off of the SQUAD 1.0 dataset.

With the release of the SQUAD 2.0 dataset introducing unanswerable questions, the EQUANT model
by Aubet et al. [3] focuses on answerability as an extension of the QANet model. This model imple-
ments an answerability module on top of the QANet architecture that outputs a probability score that
is used to determine the model’s confidence in outputting its answer. Having this mechanism in place
in their EQUANT model increased the EM and F1 scores from their vanilla QANet implementation.

3 Approach

We began our project by implementing the QANet model as described in the Yu et al. paper [1] from
scratch. The high-level structure of our model contains an input embedding layer, embedding encoder
layer, context-query attention layer, model encoder layer, and output layer.

Model One Encoder
Block

Start Probability End Probability

Softmax

Linear we
e

Concat

Stacked Model
Encoder Blocks

Stacked Model
Encoder Blocks

Stacked Model
Encoder Blocks

Context-Query Attention

Stacked Embedding ‘Stacked Embedding
Encoder Blocks Encoder Blocks

Embedding Embedding

Position Encoding

Context Question

Figure 1: Diagram of QANet architecture, single encoder block sublayer structure shown on right

The Input Embedding Layer obtains the embedding of each word of the context and query passed
in by concatenating its word embedding and character embedding. We then leverage the two-layer
highway network from the BiDAF baseline to pass the embedding through and generate the output.

The Embedding Encoder Layer is built through the following building block, which uses depthwise
separable convolution layers and an 8 headed self-attention layer:

(convolution-layer x # + self-attention-layer + feed-forward-layer).

This layer consists of 1 encoder block consisting of 4 convolution layers with kernel size 7, and each
operation in the block is placed inside a residual block, for which the output is

f (layernorm(a)) + x

given an input x and an operation f. At the beginning of the layer, a positional encoding is added to
the input as defined by Vaswani et al. [4]. The code for the implementation of this positional encoder
is taken from the PyTorch documentation. We also use stochastic depth layer dropout [5] in this and
the Model Encoder layer between the convolution sublayers where sublayer / has survival probability

pi=1-—(1/L)(1 — pr)

where L is the last layer and py, = 0.9.

The Context-Query Attention Layer is identical to that of the BiDAF model, for which we leverage
the existing code of the baseline and incorporate it directly into our model.

For the Model Encoder Layer, the overall structure is made up of the same encoder building block as
that of the Embedding Encoder Layer. One layer is composed of 7 stacked encoder blocks, each with
2 convolution layers with kernel size 5. There are 3 overall repetitions of this whole layer, with each
output passed into the Output Layer.

Finally, in the Output Layer, the three model encoder outputs are used to compute the start probabilities
and the end probabilities as follows:

Pstart = softmax(W; [Mo, M;]), Pena = softmax(W2 [Mo, M))).

The start index is selected as the index corresponding to the max probability in the start probability
vector, and the end index is then selected as the index corresponding to max probability in the end
probability vector. Notably, SQuAD 2.0 introduces unanswerable questions, so the output answers
are filtered based on the joint probability of the start and end probability vectors.

We then redesigned the goal for a multi-task learning setting to explicitly predict the answerability
probability in addition to the answer span. To predict the answerability of a question given the context,
we extended our vanilla QANet model by adapting the answerability module from EQuANT [3]. This
module aims to generate a score for each answer start-end probability pair that determines whether or
not the model should output an answer based on a confidence threshold.

Answerability Probability

Block

Global Mean Pooling

I I

1 I

1 I

I I

1(___ Feed-forward 24 >1 '
k yEnd y Block

ie ie i 1 eae wee
' aa : ; Feed-forward 48 > 24 I ee } 1

Il 1

I !

I I

!
1

Feed-forward 96 > 48

| 2 x Encoder Blocks

Stacked Model

Encoder Blocks

Stacked Model

Encoder Blocks Context-Query Block

Stacked Model
Encoder Blocks

“Stacked Embedding —
Encoder Blocks

"Stacked Embedding —
Encoder Blocks

OOO00

Context

fouolGloms
Question

i 1
; : i :
: \ i '
: i

Embedding i 1 Embedding ‘

' ' ' 1

' ' ' ri

' ' ' ci

Context Processing Block Question Processing Block

Figure 2: EQuANT architecture builds on QANet by adding a third flow for output from the first
model encoder block consisting of 2 encoder blocks, 3 fully connected layers and pooling to reduce
the dimension to a scalar, and a final output through a sigmoid

This module is implemented from scratch in the same way as described in EQUANT. The first output
of the Model Encoder Layer is passed through 2 encoder blocks and 3 feed-forward layers that
decrease the hidden size down to 1. Taking the mean across the sequence length dimension and
squeezing the size | dimensions, we are left with an answerability score of size 1. This score is
compared to a threshold of p = 0.5, where the prediction is outputted if it exceeds the threshold, and
not given otherwise. Additionally, we adjust the calculation of the training loss to the given function

(0) = = y- [cico$?) + 3 (ci wt?) + £400)]

where po is the answerability probability, 6 is the ground truth, p; and pg is the start-word and end-

word probability, and £;(p;) for 7 = 1, 2,3 is the cross entropy loss associated with answerability,
start-word and end-word predictions respectively.

Lastly, the baseline model that we compare our model’s performance to is the provided BiDAF model
implementation from https://github.com/mingg¢g/squad.git which is based on the paper by Seo et al.

4 Experiments

4.1 Data

As previously mentioned, we trained our models on the SQUAD 2.0 dataset. This is in contrast
to the original QANet model which was trained on SQUAD 1.0 dataset, which did not have any
unanswerable questions. SQUAD 2.0 features data points that each contain a context, question, and
answer. The context (which have been truncated to 400 tokens) has been extracted from Wikipedia.
The answers to the questions are either unanswerable or a span of the context. The original SQUAD

2.0 dataset has a train/dev/test split of 129941/595 1/5915 examples [6].

Roughly 33% of the questions in the train set are unanswerable, while roughly 52% of the questions

in the dev set are unanswerable [6]. We performed exploratory data analysis to understand our data in
more detail and uncover more information about SQUAD 2.0 as shown in Figure 3.

Types of Questions in SQUAD 2.0 (Train and Dev) Lengths of Context (Train and Dev)

q °
e
k
e

a
G
G

0.35

0 == I | | | a = _

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400

= = §

Pe
rc

en
ta

ge

of
Da
ta
se
t

°
e
o
f
o

g
e
o

S
2

6
2
8

B
a
a

e = Where

= Which

= Why
= Other

Lengths of Queries (Train and Dev) Length of Answers for Answerable Question (Train and Dev)

06

os

g 2 04
4

3 03

5
0.2 8 02

&

, was [| — ‘ o 0 i i = — i = =
02 24 46 0-5 5-10 10-15 15-20 20-25 25-30

Pe
rc
en
ta
ge

of
Da
ta
se
t

° &

68 810 1012 1214 1416 >16

Figure 3: Analysis of SQUAD 2.0 Dataset

We found that the question types are mainly whx type, heavily biased towards what questions. The
lengths of the contexts were particularly important as Transformer-based architectures are relatively
poor at modelling long-range dependencies. However, as the lengths were primarily in the 50-200
word range, we decided against implementing Transformer XL [7] features.

Finally, analyzing sample question-answer pairs in the dev set revealed that there were a number
of errors in the ground truth. For example, we found a number of illogical/incorrect question and
answer pairs:

1. Question: What is the force equivalent of torque compared to angular momentum? The
answer did not include "momentum", the right answer.

2. Question: What are there no longer limitations on since 1990? The question is improper in
its phrasing.

4.2 Evaluation method

In order to evaluate our models, we used EM (Exact Match) and FI scores. EM is a measure of

whether the model prediction span exactly matches the ground truth span. On the other hand, F1
is the harmonic mean of recall and precision; recall is the number of right words divided by the
number of ground truth words, while precision is the number of right words divided by the number of
predicted words. Additionally, we record AvNA scores in our results. AVNA is a measure of whether
is model is answering answerable questions and not answering unanswerable ones.

4.3 Experimental details

4.3.1 Implementation of QANet

We began by adapting the model described in the Yu et al. paper [1] with the same parameters, as
laid out in the approach section of this report. With our first run, we ran into an issue of exploding
gradients. After training for a few batches, the NLL would quickly shoot up to around 10!° and then
to NaN after a few more batches. Our first attempt to fix this issue was to implement a scheduler
that would start the learning rate at 0.0 and increase it to the default learning rate of 0.05 in the first
1000 steps, and then maintain a constant learning rate for the remainder of training. Although this
decreased the degree of exploding gradients with an NLL of around 108, the problem of having an
NaN loss persisted. We eventually traced the issue back to the fixed learning rate, which we decreased
from 0.5 to 0.001. This solved our issue, giving us a single digit loss with the first few seconds of
training.

Another issue we ran into shortly after was that the standard NC6 GPU that we used to perform some
experiments did not have enough memory to allow for a batch size of 32 given our implementation.
In order to allow for the model to train without terminating due to insufficient RAM, we reduced
the batch size from 32 to 16, which reduced the training speed to approximately 90 minutes per
epoch. At this point, we were able to have our first full run, for which we ended up with the following
hyper-parameters. We used an Adam optimizer with 8; = 0.8, G2 = 0.999, = 107, and a learning
rate of 0.001. For dropout, we used an inter-layer dropout rate of 0.1 as well as different dropout
layers for our word and character embeddings with dropout rates of 0.1 and 0.05 respectively.

We let the model run for 12 epochs, but we observed that although the training loss curve looked
reasonable, the EM and F1 scores constantly declined from each evaluation step to the next. After
taking several deep dives into our code, we reasoned that we may have been masking the multi-head
self attention layer in our encoder block incorrectly. After fixing this issue, we also added stochastic
layer depth in our encoder block [5] to increase regularization between the convolution layers of the
encoder block as described in our approach section. Lastly, we upgraded our GPU to a NC6 v3 GPU,
which increased our training speed by a factor of 3, giving us roughly 30 minutes per epoch. We
ended up with a baseline QANet model that trained correctly and did indeed increase EM and F1
scores as it trained for more and more epochs. However, we did see some overfitting in the dev NLL
loss, which led to our experimentation with hyper-parameter tuning.

4.3.2 Hyper-parameter Tuning

We systematically explored hyper-parameter settings of our model to improve performance. Specifi-
cally, we investigated how the performance of the QANet architecture changed by varying the number
of heads used in multiheaded attention, the dimension of representation for character embeddings,
and the hidden size used in the majority of the model. We were interested in the effect on evaluation
metrics and on training speed and memory efficiency. Notably, we could only run our hyperparameter
experiments for 5 epochs (which is why the EM, F1, and AvNA scores are low).

4.3.3 Answerability Extension: Implementation of EQUANT

After running our hyper-parameter experiments, we built an additional layer on top of our QANet
paper based off of the answerability module described in the EQUANT model by Aubet et al [3]. The
implementation details are described in our approach section, along with how we modified the loss
function to incorporate our answerability scores. In order to check our scores against the threshold
of p = 0.5, we implemented a custom discretize function based on the baseline function provided
in utils.py. We performed a full run with this model using 96 as our character embedding size
instead of 128 in order to follow the lead of Aubet et al. paper [3], as well as the hidden size as 96 in
a similar vein. However, after training our model for 15 epochs, we found that the EM and FI scores
were worse than our original QANet implementation.

4.4 Results

The table above summarize our results on the SQuAD test set. In Figures 8 and 7, we also see
the longitudinal dev set performance for all three models. As our QANet model outperformed
out EQuANT, we submitted an F1 score of 56.74 and EM score of 53.34 to the IID Squad Track

leaderboard. Notably, our test set scores were lower than our dev set scores: we achieved a F1 score
of 57.56 and EM score of 54.66 on the dev set. The difference in the performance could be attributed
to the natural variance in scores because the dev set is much smaller than the test set because of the
differences in data distribution.

5 Analysis

5.1 Initial Decrease in Dev Performance

We observed in the initial <150k training steps of QANet that the Fl and EM scores drop despite
decreasing loss. The textual predictions on the dev set during this period reveal that the model initially
chose to optimize by only predicting "no answer" since roughly half of the data is unanswerable
yielding around 50% AvNA.

A similar experiment with low evaluation steps showed that the EQUANT model yielded single digit
metrics on the dev set initially. While the traditional QANet architecture yields only probabilities for
the answer span, the EQUANT architecture explicitly provides an answerability probability. A model
with untrained parameters will yield near random outputs, notably resulting in an approximately
uniform distribution across the context for the span selection and randomly predicting answerability.

As such, while the QANet architecture will initially struggle to find start and end probabilities that
exceed the dynamically selected threshold and therefore predict "no answer" frequently, EQUANT
will effectively randomly predict that a question is answerable given the context and therefore select
an effectively random span from the context as the answer leading to drastically worsened F1 and
EM scores.

5.2 Memory and Processing Efficiency

The purported benefit of the QANet architecture is the replacement of recurrent blocks with convolu-
tional blocks for encoding. While recurrent blocks operate sequentially, convolutional blocks do not
feature the inherent dependence on previous state and are therefore more readily parallelizable for
efficient processing. The increase in performance would allow for more data to be processed given
the same compute resources and time. However, our implementation of QANet runs considerably
slower than the baseline BiDAF. We consider two potential explanations and avenues for improving
performance relative to BiDAF.

Firstly, the BiDAF code uses packed sequences when processing the data. Batching examples for
simultaneous training allows for more efficient processing on parallelized systems like a GPU, though
doing so with sequences of variable length poses a representational challenge. As such, sequences are
padded to the maximum sequence length in the batch, allowing contiguous memory to be transferred
to the GPU. However, this means that the kernels on the GPU may process large quantities of
factitious "pad" data resulting in wasted computation. As such, packing the sequence after transfer to
the GPU prevents computation on the pad data, yielding improved performance. In comparison, our
implementation directly processes the padded data yielding sub-optimal performance, so packing the
padded sequences before passing the data through our layers may improve performance.

Secondly, while training various models, we monitored our GPU utilization and observed that while it
occasionally spiked to near full utilization, it would quickly drop such that our average utilization was
65% (Figure 4). This suggests that our implementation was not compute bound on the system, but
rather potentially memory bandwidth bound. Therefore, more frugal use of memory transfers on the
GPU system may improve performance. One solution to loosen the memory bottleneck could be to
use more in-place operations, though doing so would require careful analysis as our implementation
of residual connections, for example, leverage the use of reassigning references for more manageable
code and would break with in-place operations. Additionally, fusing the kernels defined by our layers
together and utilizing shared memory on SMs to reduce transfers to and from memory would improve
GPU utilization given that the training is bandwidth bound, though doing so would require developing
custom low-level kernels.

Reducing memory usage overall would also yield improvement. Specifically, by reducing RAM
usage, training could be performed with a larger batch size, since we observed that training with a
batch size greater than 16 would quickly lead to memory usage that exceeded the capabilities of our
system.

5.3. Data Augmentation

These optimizations for faster and more efficient training enable the augmentation of training
data given the same compute and time resources. One notable example of this would be using
backtranslated data where examples are translated into a series of target languages before being
translated back into the source language. This backtranslation method increases the syntactical
variation in examples and augments the training data. While performing backtranslation with data-
rich language pairs such as English-French are common, the potential linguistic connections of these
languages may limit the introduced variation. As such, using linguistically dissimilar languages
such as English to a non-Romance language may yield increased variety. Other data augmentation
techniques may be applied such as replacing tokens based on thesaurus synonyms or a nearest
neighbor by word embeddings.

5.4 Architectural Improvements

Our model uses BiDAF Attention Flow instead of Dynamic Coattention Network. While both involve
two-way attention between the context and the question, DCN involves a second-level attention

computation - i.e., attending over representations that are themselves attention outputs. However,
we were discouraged of pursuing DCN as a possible extension because of the original QANet paper
[1] that mentions that the use of DCN over BiDAF Attention Flow does not increase performance

significantly.

We instead consider two ways to improve the output layer. Firstly, the EQUANT answerability module
outputs a probability estimate that is then thresholded statically to determine the answerability of
the question given the context. Though the threshold may be tuned post training to optimize F1 (or
any metric) on the dev set, this static thresholding method is inflexible compared to the baseline
answerability prediction. Consider the predicted span probabilities obtained from the softmax
function of a short unanswerable example and a those of a long answerable sequence. Based on these
values alone, we may artificially see uniformly higher probabilities in the first example while lower
(though not uniform) values in the second. Since the answerability output is derived from the first
model encoder, the result may incorporate these artificial differences into the output. One avenue for
exploration may be to dynamically select the threshold based on the distribution of span probabilities.
Another possible exploration could be in incorporating sequence length as an explicit feature in the
answerability block to mitigate differences introduced by the sequence length.

Secondly, the span output prediction yields two probability distributions that are independently created
from the model encoder layer. Instead, probabilities for the start index may be computed directly and
probabilities for the end index may be computed conditionally on the start vector. This formulation
seems more natural than creating the two independently and may yield improved performance.

6 Conclusion

In this project, we explored the QANet architecture and its performance on the SQUAD 2.0 dataset.
We first reimplemented QANet from scratch by taking heavy inspiration from the original paper [1].
Unfortunately, we were not able to achieve better results than our baseline BiDAF, even after we

experimented with tuned hyperparameters. As QANet was first created with SQUAD 1.0 in mind,
we decided to introduce a new answerability module so our model would work better on SQUAD
2.0. This new model, EQuANT, also was not able to improve on our baseline performance. As our
models were not successful in the conventional sense, we conducted a full analysis of possible errors
and fixes to our implementation. The motivation and power of the QANet model stems from the
feed forward nature of the architecture which allows for more efficient processing and therefore the
inclusion of augmented data during training. A more memory efficient implementation may allow for
a larger batch size during training, which again could make training with augmented data feasible.
Additionally, we considered architectural variations for future work to improve performance such as
attention mechanisms, improved feature sets for explicitly predicting answerability, and conditioning
the end index probabilities on the start index probabilities. While we were not able to see the full
power of QANet with respect to convolutions and self-attention, we learned about the importance of
implementation details and real-time result analysis.

7 Acknowledgements

We would like to thank Chris Manning, the CS 224N course assistants, and especially Andrew Wang
for their guidance and particularly helping us approach solving exploding gradients during our models
training.

References

[1] Adams Wei Yu, David Dohan, and Minh-Thang Luong. Qanet: Combining local convolution
with global self-attention for reading comprehension. In International Conference on Learning
Representations, 2018.

[2] Ali Farhadi Min Joon Seo, Aniruddha Kembhavi and Hannaneh Hajishirzi. Bidirectional attention

flow for machine comprehension. In CoRR, abs/1611.01603, 2016.

[3] Dominic Danks Francois-Xavier Aubet and Yuchen Zhu. Equant (enhanced question answer
network). In CoRR, abs/1907.00708, 2019.

[4] Niki Parmar Jakob Uszkoreit Llion Jones Aidan N. Gomez Lukasz Kaiser Ashish Vaswani,

Noam Shazeer and Illia Polosukhin. Attention is all you need. In CoRR, abs/1706.03762, 2017.

[5] Zhuang Liu Daniel Sedra Gao Huang, Yu Sun and Kilian Q. Weinberger. Deep networks with
stochastic depth. In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part IV, 2016.

[6] Konstantin Lopyrev Pranav Rajpurkar, Jian Zhang and Percy Liang. Squad: 100, 000+ questions
for machine comprehension of text.

[7] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhut-

dinov. Transformer-xl: Attentive language models beyond a fixed-length context. CoRR,
abs/1901.02860, 2019.

A Figures

GPU Usage over Time

80
 !

60
 !

GP
U

Uti
liz

ati
on

(%
)

40

T T T T T fl

0 1000 2000 3000 4000 5000 6000

Time (s)

Figure 4: (Smoothed) GPU usage over time, frequent jumps between high and low utilization may
suggest memory bandwidth issues

Train Loss

NU
LL

Index

Figure 5: Training loss (NLL) of select models

10

NL
L

FA

Dev Loss

45

40

3.
5

3.
0 1

Index

Figure 6: Dev loss (NLL) of select models

Performance: F1

35

Index

Figure 7: Performance (F1) of select models

11

EM

Av
NA

Performance: EM

Index

Figure 8: Performance (EM) of select models

Performance: AVNA

Index

Figure 9: Performance (AvNA) of select models

12

