
QANet without Backtranslation on SQUAD 2.0

Stanford CS224N Default (IID) Project

Jacky Huang
Department of Computer Science

Stanford University
jackyh@stanford.edu

Abstract

This paper investigates two different approaches to the question answering problem
on the SQuAD 2.0 dataset [1]. We explore a baseline model based on the BiDaF

architecture [2], and improve its performance through the implementation of char-
acter embeddings and hyperparameter tuning. Further, we implement variations on
the convolution and self-attention based QANéet architecture [3], and explore an

alternative technique for data augmentation. Finally, we form an ensemble model
based on our different experiments which achieves an F1 score of 70.340 and an
EM score of 67.354 on the test set.

1 Introduction

The question answering task is a very important subfield of Natural Language Processing as it has
many applications in different contexts, from phone assistants like Siri to Google Search. In this
task, the goal for the model is to process and understand text and to return accurate answers to
queries about the text. The rise in popularity of deep learning over the past decade has contributed to
renewed interest in the reading comprehension field, leading to an outpour of research papers and
rapid development in this area. Two examples of (at the time) state of the art performance on the
Stanford Question Answering Dataset (SQuAD) [4], a question answering dataset based on Wikipedia

articles, include the Bidirection Attention Flow (BiDaF) architecture proposed by Seo et al [2], and

the QANet architecture proposed by Yu et al [3].

In this paper, we explored and improved upon both architectures on the SQUAD 2.0 [1] dataset,
which is an extension of the original SQUAD dataset with around 50% more queries that have no
answer in the given context. First, we developed a respectable baseline by implementing character
embeddings in the starter BiDaF code and performing hyperparameter tuning. We then implemented
the QANet architecture and explored different architectural changes, such as changing the hidden size
and the number of convolutional layers within an encoder block, as well as modifying the formula for
stochastic depth dropout as defined by Huang et al [5] from a linear decay based rule to an exponential
decay based rule. We also introduced a simple method for data augmentation which significantly
improved the Fl and EM scores. Finally, we implemented an ensemble model by applying the
plurality voting algorithm to the predictions from our different models to generate our ensemble
prediction, ending up with F1/EM scores of 72.647/69.820 on the validation set and 69.041/65.883
on the test set.

2 Related Work

In recent years, Recurrent Neural Network (RNN) based architectures have been popular in the field
of Natural Language Processing, and in particular the task of question answering (QA). A major
reason for its popularity is its success in modelling sequential inputs like text. Usually coupled
with some kind of attention mechanism to capture long term dependencies, many researchers have
developed models based on RNNs to QA tasks such as the SQUAD/SQuAD 2.0 dataset [4, 1]. One

such model is the Bidirectional Attention Flow (BiDaF) model [2], which uses bidirectional LSTMs

Stanford CS224N Natural Language Processing with Deep Learning

within its encoder layers, and attention layers from both context to hidden and hidden to context
directions. We implement the BiDaF model as our baseline for this paper.

One drawback to using RNNs for these tasks is that it can be slow for both training and inference,
as we are unable to parallelize our computations due to the sequential nature of the network. This
bottleneck presents many problems to the overall machine learning pipeline. For example, if inference
is slow, then the solution does not scale well with the size of the test samples. This would mean that
it would be difficult to deploy this model in a real time setting.

Researchers understood the problems of using recurrent networks in QA settings as discussed above,
and were motivated to design a new architecture that is fast in both training and inference, leading to
the QANet architecture [3] by Yu et al. They explore a novel approach to the question answering task
with a different architecture based on convolutional layers and self-attention. By avoiding recurrency
in the architecture and instead relying on the easily parallelizable convolutional layers, they are up to
13x faster in training their model and up to 9x faster in inference compared to similar RNN based
architectures. Compared to the BiDaF model in [2], the authors demonstrate that their model achieves

the same level of accuracy in just 3 hours compared to 15 hours for the BiDaF.

They are able to take advantage of this speed increase by implementing an interesting data augmen-
tation technique known as backtranslation, where the training data is first translated to a foreign
language (say French) with a machine translation system, and then translated back to English. This
backtranslated text is then appended to the training data. At the time of publication, the QANet
architecture was state of the art in the context of the QA task on the SQuAD dataset.

However, the dependency on the neural machine translation (NMT) system in the data augmentation
phase presents certain problems. Firstly, the quality of the NMT system has a direct effect on the
effectiveness of the model. It is very easy for semantics to be lost in the backtranslation, leading to
incorrectly labelled training data. Further, there is a lot of overhead in the training process as the time
taken to perform the backtranslation is non trivial and should not be dismissed.

Thus, a natural next step in building upon the work of Yu et al [3] is to remove the dependency on
NMTs for data augmentation. This paper explores alternative methods of data augmentation that do
not have any external dependencies.

3 Approach

All new ideas and code, except for the provided BiDaF baseline and the implementation of the
depthwise separable convolutions, was original.

3.1 BiDaF baseline

Our first goal was to improve upon the existing baseline model given in the project handout. More
information about this baseline can be found in the handout and the original BiDaF paper [2] by
Seo et al. Our first improvement was to implement character level embeddings [6] as in the original
BiDaF architecture, as the baseline did not have this feature. These character level embeddings have
certain advantages over word embeddings, such as being able to handle Out of Vocabulary (OOV)
words much better.

For each word in both the context and the query, we first obtained a matrix of character embeddings
for the word by looking up each character in a pre-trained character embedding. We then applied a
1D convolutional neural network to that matrix. Finally, max pooling was used in the word length
dimension to make the dimension of the embedding fixed. These character embeddings were then
concatenated with the word level embeddings before being passed to the highway encoder. This
proved to be an effective technique for improving our scores.

3.2 QANet

3.2.1 Architecture

Implementation of the base QANet model followed. The network architecture of the QANet is similar

in style to the BiDaF baseline and many other QA models. As seen in Figure 1, it consists of five

Model One Encoder
Block

inear

Figure 1: QANet architecture diagram [3].

layers; the embedding layer, the embedding encoder layer, then context-query attention layer, the
model encoder layer, and the output layer.

Input Embedding Layer. This layer is very similar to its BiDaF counterpart. Both the context
and question texts are embedded with the same embedding layer (i.e. the weights are shared). The
words are embedded into pre-trained 300 dimensional GloVe embeddings [7], and the characters into

a trainable 200 dimension embedding using a 1D convolutional neural network. For each word, the
embeddings are then concatenated into a 500 dimensional vector. This vector is then passed through
a two layer highway network as described in [2], which is the output of the layer.

One of the variations that we explored was to replace the input embedding layer with the BiDaF
version, namely replacing the trainable character embeddings with a fixed 64 dimensional embedding
provided as part of the starter baseline code. This turned out to provide a small boost in the Fl and
EM scores.

Embedding Encoder Layer. The core insight of the QANet architecture comes from the individual
encoder blocks seen on the right of Figure 1. QANet does away with the LSTM based encoder blocks
and replaces it with depthwise separable convolutions ' [8], multi-head self-attentions [9], and feed

forward networks, which as mentioned before is much more parallelizable. Each of these layernorm +
convolution/attention/feedforward layers are wrapped in a Residual Block which helps with gradient
flow due to the increased depth of the network. Finally, as there is no recurrency in our network, we
add positional encoding as in [9] to the input of the encoder block in order to encode information
about the relative positioning of the words.

The motivation behind this approach is that the convolutions would capture the local signals in the
text, while the self attention layer would learn the global interactions between words. Each of the cyan
coloured encoder blocks on the left of Figure 1 has the same structure as the right block, except for
tunable hyperparameters such as the number of convolutional layers per residual block, the number
of encoder blocks used, and the kernel size. For the embedding encoder layer, these numbers are 4, |
and 7 respectively. The weights are shared between the Context/Question encoders, and between the
output encoders.

Furthermore, stochastic depth dropout [5] is used as a regularization technique by setting the survival

probability of a ResBlock ¢ to be pg = 1 — £(1 — pz), where £ is the current sublayer, L is the total
number of layers in the whole network, and pr, = 0.9. Thus, each ResBlock has a 1 — pe chance of

being dropped with each training batch. We explore an alternative exponential decay based survival

probability function p; = exp(—p7, - £), where p7, is a hyperparameter, with the idea that the earlier
layers are more important and thus should be preserved much more often than the later layers, as seen

'We got the idea for how to implement the depthwise separable convolutions from https: //discuss.

pytorch. org/t/how-to-modify-a-conv2d-to-depthwise-separable-convolution/15843/7.

in Figure 3. Thus as the expected number of active layers in each batch is decreased, this allowed us
to explore much deeper networks by quadrupling the number of convolution layers in each encoder
block and doubling the hidden size.

Context-Query Attention Layer. For our experiments, this layer was unchanged from the provided
baseline BiDaF model so we refer the reader to the handout and the original BiDaF paper by Seo et
al [2].

Model Encoder Layer. These are similar to the Embedding Encoder Layer except for small
variations in the hyperparameters. In this layer, the number of convolutional layers per residual block
is 2, the total number of encoder blocks is 7, and the kernel size is 5. The weights are shared between

each of the three model encoder layers. Each of the three layers outputs a matrix /; to be used in
the span prediction.

Output Layer. This layer is responsible for the prediction of the model. Like the BiDaF architecture,
QANet also predicts the probabilities of each position being the start and end of an answer span.
However, the way it computes the probabilities is different. The probabilities are computed as

p = softmax(W;[Mo; Mj]),p? = softmax(W2[Mo; Mb)),
where the W; are trainable matrices and the MM; are the outputs of the model encoder layers. The
predicted span is then the pair of indices such that the product of the probabilities is maximized. In
the case of SQUAD 2.0, we append an OOV token to the start of the text so that we can predict no
answer in the case the maximal product is between p*(0] and p?[0].

3.2.2 Data Augmentation

Data augmentation via backtranslation plays an important role in the success of the QANet archi-
tecture. However, the dependency on machine translation models has its downsides as mentioned
previously. Thus, we investigate an alternative augmentation algorithm which is lightweight and can
scale.

We run through the entire training set once, and for each query with an answer, we either 1) convert
it to an unanswerable query by firstly removing the answer span from the context entirely and
then dropping 10% of the remaining words at random, or 2) creating a new answerable query by
concatenating another random context to the end of the current context. We pick each option with
equal probability.

The motivation behind option 1 was that it was an easy method of generating unanswerable queries
with a high probability of success. However, we cannot guarantee that every new sample generated
is correct, as for example the context may contain the answer elsewhere. Option 2 was designed to
train the model to better handle noisier/less curated English, because for example the super-context
might be disjointed in the sense that it could start off talking about baseball and then randomly end up
talking about volcanos. This would help the model to pick up the specific subtext which is relevant to
the query.

4 Experiments

4.1 Data

The dataset used is the SQUAD 2.0 dataset [1], which is a collection of passages (context) from

Wikipedia along with a crowdsourced question (query) and answer on each of these passages. In the
original SQuAD dataset [4], answers to the query can be expressed as a span from the passage; that
is, a contiguous collection of words with a well defined start and end point. Thus, it is enough for
models working on the SQuAD dataset to predict the start and end points of the span which it thinks
contains the answer to the query.

The main difference between SQuAD 2.0 and the original SQUAD is the addition of questions which
cannot be answered by their corresponding context. Thus, models now have to decide whether or not
the question is answerable before predicting the span (if applicable). We note that for the purposes
of this project, the dev and test splits are different to the publicly available SQUAD 2.0 dataset for
reasons mentioned in the handout.

4.2 Evaluation method

Our evaluation metrics are the Fl Score and Exact Match (EM). As described in the handout, the EM

metric is a boolean metric that gives a score of | if and only if the predicted span matches the given
answer exactly, and 0 otherwise. The F1 score is the harmonic mean of precision and recall, and as
such will give partial credit to the model if the predicted span has some overlap with the ground truth.

We note that as the answers to the queries can be subjective, the SQUAD dataset provides three ground
truths for each query in the dev and test sets. For each prediction, the metrics are computed against
all three ground truths and the maximum is taken to be the score for that sample. The overall score
for the model is the average of all the scores for samples in the dataset.

For this project, the evaluation metrics will be obtained by uploading the predictions into the
GradeScope leaderboard, which will then compute the scores.

4.3 Experimental details

4.3.1 BiDaF

The provided baseline was trained and evaluated with no changes at all to its configuration or
hyperparameters. Some code changes were needed to implement the BiDaF with character level
embedding architecture. We decided to go with a 1D CNN where the number of in channels was the
dimension of the character embeddings (64), the number of out channels was the hidden size (100)

and the kernel size was 3. The learning rate was fixed at 0.5 for both experiments along with the
AdaDelta optimizer. We trained for a total of 30 epochs, taking around 3 hours for both models. We
started with a dropout of 0.2 but after observing a lot of overfitting, we did some hyperparameter
tuning with respect to dropout and L? weight decay, and found that a dropout of 0.25 with no weight
decay worked best. The batch size was 64.

4.3.2 QANet Baselines

Our first QANet baseline has the same configuration as the original architecture proposed by Yu et al
[3], with the exception that there is no learning rate warm up; the learning rate is fixed at 0.001. We
use a hidden size of 128 and 0.1 dropout between layers, and 0.1/0.05 dropout for word and character
embeddings respectively. Adam optimizer is used with 3; = 0.8, 82 = 0.999,¢ = 10~’, with L?
weight decay of 3 x 1077 and an exponential moving average decay of 0.999. The number of heads
in the self attention layer was 8, and the number of convolution layers, kernel size and number of
encoder blocks as described above. The batch size was 16 as opposed to 32 due to GPU memory
limitations.

We then modified our baseline to use the same embedding layer as the BiDaF models, using the
pretrained 64 dimensional character embeddings. Everything else was constant. Training time for
both models took around 11 hours on an NVIDIA 2080TI GPU.

4.3.3 Deeper QANet

We were interested to see if making the model deeper would improve the predictions. In particular,
whether increasing the hidden size of the network as well as the number of convolutional layers in
each residual block would improve the generalizability of the model. As mentioned previously, we
explored the effects of doubling the number of hidden units in the network, as well as quadrupling the
number of convolutional layers. In order to reduce overfitting, we explored different dropout values
as well as implemented the exponential decay idea for stochastic depth dropout [5]. The idea for
this is to have relatively small networks during training which help to reduce training time as well
as overfitting, but have the power of a full sized network for inference. To account for the memory
usage, batch size had to be dropped to 8.

4.3.4 QANet Data Augmentation

Our algorithm for data augmentation was defined in a previous section. However, we explored
different thresholds for triggering which kind of augmentation technique. In the end, we found that
keeping it at a 50/50 split for the answerable questions provided a nice balance in the dataset, and
the models were able to train nicely. We also explored the effects of augmenting more than once for

each example, however this lead to memory issues. On the other hand, we also tried out augmenting
each answerable question with only 50% probability. This ended up doing quite well but due to the
smaller amount of training data also started plateauing earlier.

4.3.5 Ensembling

Our final idea was to combine our previous models together to form an ensemble. For each query in
the test set, we look up the predicted answer spans for each of our models in the ensemble and output
the span with the most votes. We break ties by picking the span which was produced by the model
with the highest F1 score.

4.4 Results

Dev Test
Model Hidden Dropout EM Fl EM Fl

BiDaF Baseline 100 0.2 58.259 61.586 - -
BiDaF Baseline + Char Emb 100 0.2 60.645 64.134 - -
BiDaF Baseline + Char Emb 100 0.25 61.452 65.032 - -

QANet 128 0.1 64.383 67.821 61.183 64.957
QANet + Pretrained Char Emb 128 0.1 66.207 69.447 - -
QANet + PCE + 4x conv + 0.3 Exp Decay 128 0.1 65.485 69.084 - -
QANet + PCE + 2x conv + 0.6 Exp Decay 256 0.1 65.854 69.240 - -
QANet + PCE + Augment 128 0.1 67.669 71.054 63.804 67.427

Ensemble - - 69.820 72.647 67.354 70.340

Table 1: Results from the leaderboard.

Table | presents a selection of models we trained. Our best model is the Ensemble model, achieving
test scores of 70.340 and 67.354 for Fl and EM respectively, which at the time of writing puts us in
second place on the IID leaderboard.

As expected, the provided BiDaF baseline was by far the worst model. After implementing the char
embeddings as the first step, we were able to improve the dev F1 score by over 2.5 points, highlighting
the importance of character embeddings. Some effort was spent in the context of hyperparameter
tuning the BiDaF model for the milestone, focusing mainly on regularization in order to avoid
overfitting. We tried many different configurations changing both the dropout values as well as the
L? weight decay, and it was surprisingly sensitive to get a good set of hyperparameters. Our best
attempt netted us a 0.9 increase in the dev F1 score.

The QANéet immediately performed well right from the baseline, having a significantly higher dev
FI score from the moderately tuned BiDaF model. This is likely due to the efficiency of the non
recurrent nature of the model, allowing us to stack deep layers into the network. The running time for
the QANet was slower than the BiDaF, however it comes with the benefit of having a much more
complex network that is capable of understanding deeper patterns, as shown by the results.

Our first improvement to the QANet model was from changing the trainable 200 dimension character
embeddings in favour of the 64 dimensional pre trained embeddings as used in the given BiDaF
model. This was quite a surprising result, as we expected that a higher dimensional embedding
would be more useful for the model. On the other hand, we would be training something from
scratch whereas the pre trained ones are ready to go out of the box and probably fine tuned to be very
effective.

The two exponential decay based stochastic dropout models performed slightly worse compared to
the pretrained character embedding QANet model. Although disappointing, this was not much of
a surprise as we were already seeing issues with overfitting in the latter model, so increasing the
complexity of the model was unlikely to improve the result. Unfortunately we ran out of time to run
an experiment with only the stochastic dropout.

On the other hand, the data augmentation algorithm did much better than we anticipated, improving
the pretrained char embedding baseline by 1.6 dev F1 points. We expected it to improve the F1 score
by much less. In part, this was designed to handle the overfitting issues we saw in previous iterations

of the model. Furthermore, we wanted to remove the dependency on machine translation systems by
proposing a quicker and simpler method of augmentation.

Finally, the ensemble model performed as we expected. By combining the various models together,
we are able to leverage all of the training done to aid in our predictions. It was not a surprise that we
were able to increase both the dev and the test scores by a significant margin as compared to the best
single model we had.

5 Analysis

5.1 Question Type Analysis

We will firstly consider the different types of questions that are asked in the dataset, as seen in Table
2. Comparing the scores between the best ensemble model and the best QANet model, we can see
that the scores match up fairly well. Both models do well on "When" type questions, and both do
poorly on "Why" type questions. It makes sense that "When" type questions score high, since they
are likely quantitative ("When was Shakespeare born") and the solution is unlikely to be subjective.
However, "Why" type questions may require deep understanding of the text and the ability to relate
different words to each other, making it a somewhat harder task. On the other hand, it is somewhat

surprising that "Where" type questions do fairly poorly; one would think that it is in the same category
as "When" type questions with a fairly well defined answer.

 of scores per question type.

It also makes sense that the performance between the Ensemble and the QANet model is so similar
throughout the matrix. This is likely due to the tie breaking mechanism in our ensembling code,
where spans with the same amount of votes would be decided by comparing the largest F1 scores of
the models that predicted that span. Indeed, we enforce the tie breaker logic on around 12% of the
validation dataset.

5.1.1 Analysis by category

We will now investigate how the model does on certain categories, as seen in Figure 2. It is
immediately clear that the categories are not even. For example, European Union Law has much
higher scores than Packet switching. By looking at the ratio of answerable to unanswerable questions
as in Figure 3, we can see that Packet Switching has significantly more unanswerable questions
compared to European Union Law. We will investigate what exactly is tripping up the model.

Consider the following passage:

The National Science Foundation Network (NSFNET) was a program of coordinated, evolving
projects sponsored by the National Science Foundation (NSF) beginning in 1985 to promote advanced
research and education networking in the United States. NSFNET was also the name given to several
nationwide backbone networks operating at speeds of 56 kbit/s, 1.5 Mbit/s (T1), and 45 Mbit/s (T3)

that were constructed to support NSF’s networking initiatives from 1985-1995. Initially created to
link researchers to the nation’s NSF-funded supercomputing centers, through further public funding
and private industry partnerships it developed into a major part of the Internet backbone.

 e vs e questions for witching and European Union Law

The query on this context is "NSF began in 1985 to promote what?". This is quite a tricky question.
Firstly, the acronyms "NSF" and "NSFNET" are really similar and are closely related. Furthermore,
the query itself seems to lead the reader to believe that NSF actually did promote something in 1985,
when really it was NSFNET. We found quite a lot of similar adversarial examples in the Packet
Switching topic, which could possibly indicate why our model did quite poorly. We can improve our
model to be more robust by constructing more tricky questions in our training set.

Scores by category and metric
ma Fl

0.8
ma EM

|, 06 mmm AVNA
2
3
8 04

0.2

0.0
o Dm Ww ou Ww +e D> - FB BS &

2 2e Ff § es ce Ge SSE SE S
e¢s5227 8a 2 28a GF Fw Fs

£so 8 BE PE £ @ 5 £ gs ¢!
#2 £ Fs 5§ & w@ FS FS HH, FE GF

2 o 8 gye2e 4 FU EF ZB DB 3S
Ya om £€ eg 3 o &g>37 % £ oo fF 3 ce! v ! so) o a! a 2 =< = P oa 3
S$ a —E s n Yo oc Q <
& —E ao B 2 E 6

2 8 8 8 <'
5 & = oi o

ve} o 5

8 r 5
o £
Ss
a
E
°o
oO

Figure 2: Evaluation Metric scores on different categories with QANet model.

6 Conclusion

This paper explores different deep learning approaches to the question answering task with the
SQuAD 2.0 dataset. We implemented a baseline BiDaF model with character level embeddings, and
performed hyperparameter tuning on the dropout and L? weight decay parameters in order to reduce
overfitting.

Furthermore, we implemented the QANet architecture and experimented with some variations on the
architecture. We also introduced a simple but effective data augmentation algorithm that does not

have a dependency on machine translation systems. Finally, we created an ensemble model based on
the above and achieved an F1 score of 70.340 and an EM score of 67.354 on the test dataset.

Limitations in the paper include the lack of resources, including time and computational power.
Having more of both would’ve allowed for more experimentation and the ability to test more ideas,
in particular the exponential decay based stochastic dropout method which did not work as well as
we hoped. Further work in this regard, assuming the resources are available, include defining even
deeper models and more aggressive data augmentation to see if that can help improve performance.

7 Appendix

 0 02 04 0.6 ols 1

Figure 3: Survival probability functions plotted on https: //www.desmos.com/. Green corresponds
to the default stochastic dropout layer, and purple/red corresponds to the exponential decay based
formula with different hyperparameters.

References

[1] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQUAD. In Association for Computational Linguistics (ACL), 2018.

[2] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional

attention flow for machine comprehension, 2018.

[3] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,

and Quoc V. Le. Qanet: Combining local convolution with global self-attention for reading
comprehension, 2018.

[4] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ ques-
tions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 2383-2392, Austin, Texas, November 2016.
Association for Computational Linguistics (ACL).

[5] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger. Deep networks with

stochastic depth, 2016.

[6] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text

classification, 2016.

[7] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532-1543, 2014.

[8] Frangois Chollet. Xception: Deep learning with depthwise separable convolutions, 2017.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

