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Abstract 

One of the important topics in NLP domain is machine reading comprehension 
through automated question answering. In this project we research and implement 
from scratch a question answering system based on QANet [1] neural network 
model. We compare the performance of QANet neural network architecture to 
one of the previous recurrent neural network, in particular a baseline based on 
BiDAF [2] architecture. Then we experiment by modifying components of QANet 
model in a novel way and observe the impact of architectural modifications to 
model’s performance on SQUAD v2.0 [3] dataset. 

1 Introduction 

Machine reading comprehension has been one of the exciting research areas in NLP for obvious 
reasons. Over the past few years significant progress has been made in one of the ways we measure 
machine reading comprehension - automated question answering (Q&A). Until recent, most leading 
neural network architectures employed recurrent neural network (RNN) approach in their models. 
With the latest introduction of Transformer [4] that solely concentrates on just self-attention, we 
investigate how machine reading comprehension Q&A systems can not only be achieved without 
RNNs in their neural network architecture, but also achieve better results with just self-attention 
mechanism. The main research paper that inspired this project is a feed-forward type architecture - 
QANet [1], where it has no RNN componenets, and instead borrows ideas from Transformer. 

In our project we first train RNN-based baseline inspired by BiDAF [2] model, then implement from 
scratch and train QANet model to show advantages of the latter neural network architecture over the 
former model. Further we investigate how simple modifications to QANet model affects its results 
and show quantitative details of those impacts in comparison with a baseline. 

2 Related Work 

Due to how human natural language is structured, specifically sequential nature of sentences, almost 
all previous neural network models employed RNNs to process input, and used an attention component 
to deal with interactions of words in long input of texts. Our baseline is based on a similar architecture, 
in particular BiDAF [2] architecture. The weakness of RNN-based models, however, is that they are 
often slow for both training and inference because of their recurrent nature, especially processing long 
input of texts. QANet [1] model, compared to BiDAF model, approaches Q&A task in a complete 
novel way, which is the main research of this project. 

Our motivation in researching and implementing QANet model is based on its architecture of 
approaching machine reading comprehension task in a non-traditional way, by going away from 
RNNs and adapting ideas from Transformer [4]. We find Transformer model to be a very valuable 
architecture to study as it gave birth to a lot of other state-of-the-art models like BERT, GPT-3, etc.. 
Although QANéet’s use of Transformer is slightly modified in its Encoder Blocks, we still find QANet 
to be a perfect candidate for exploration into Transformer building blocks. 
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In this project paper, we mainly concentrate on the detailed architecture of QANet neural network, 
and describe our experimentations with the model. 

3 Approach 

First, we will formulate the reading comprehension problem as follows. We are given a con- 
text paragraph C' with n words, C = {ci,c2,...,Cn}, and a query sentence Q with m words, 
Q = {h,4,---,dm}, the objective of the model is to find a span of context words S = 
{Ci, Cit+1,---+,Ci+;} from C, where S is the answer to Q. Since roughly half of SQUAD v2.0 [3] 

dataset’s context paragraphs are unanswerable, we prepend a special Out of Vocabulary (OOV) token 
coov to C = {coov, C1; C2,---5 Cn}. In this case if C has no answer, its ground truth answer span 
is S = {coov}. For further discussions, we will denote x to be a word for any x € C,Q. 

3.1 Baseline 

As a baseline for this project we use the default initial model based on BiDAF [2] architecture without 
character embeddings. More details of this BiDAF model and architecture can be found in Default 
Final Project handout [5]. 

3.2 QANet Architecture 

We implement a slightly modified QANet model based on the research paper "QANet: Combining 
Local Convolution with Global Self-Attention for Reading Comprehension" [1]. The main difference 
of this model compared to previous neural networks is that QANet does not use RNNs at all, and 
instead use convolutions and self-attentions in its feed-forward type architecture. QANet borrows 
the ideas from Transformer [4] where it exclusively used convolutions and self-attention as building 
components in its Encoder Blocks, as shown in Figure 1. Our implementation of QANet is made of 
five main layers. 

3.2.1 Input Embedding Layer 

We follow the main paper and adopt the same techniques to obtain embeddings for word x. In 
particular, we use pre-trained GloVe word embedding vectors e,, of dimension d, = 300 that are 
fixed during training, and character embeddings where each character represented as a trainable 
vector of dimension dz = 64. The length of each word is either truncated or padded to 16. We 
apply convolution to character embeddings to get a matrix of size R?*1° then take the maximum 
of each row to get character embeddings e, of size R%. Finally, for given word x we concatenate 
to get embedding [e,,; e.] € R“*+%. After this, following the paper, we apply two-layer highway 
network [6] on top of this representation. The output dimension of this layer is of size d; + dz for 
each individual words. For simplicity of further discussion, we will denote x to be a word embedding 
vector of size R@:+4 as described above, not word x ¢ C,Q. 

3.2.2. Embedding Encoder Layer 

The input dimension of this layer is of size d; + dg for each individual words, which is immediately 
projected to a hidden size h = 96. This layer consists of just one Encoder Block as shown in the 
right side of Figure 1, which is the main novelty of QANet architecture. Similar to the Transformer, 
QANéet’s Encoder Block contains four sublayers with residual connections in the following order: 
Position Encoding Sublayer, Convolution Sublayer, Self-Attention Sublayer, and Feed-Forward 
Sublayer, with exception of Convolution Sublayer that is not present in Transformer encoder block 
and this Sublayer can be repeated and stacked multiple times within this Encoder Block. In this 
model layer Encoder Block has 4 repeated Convolution Sublayers. 

The implementation of all Sublayers (Position Encoding, Self-Attention, Feed-Forward) are the same 
as in the Transformer, where we use multi-head attention with 8 heads in all Encoder Blocks of 

QANet model. 

We use Depthwise Separable [7] convolutions in Convolution Sublayer with kernel size 7. 

The output dimension of this layer is h for each words.
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Figure 1: A high-level overview of the QANet architecture (left) with several Encoder Blocks. 
Encoder Block (right) is used throughout the model. 

3.2.3 Context-Query Attention Layer 

The input dimension of this layer is of size h for each context words C’' and query words Q. This is 
the layer where the fusion between context and query takes place. Context-to-Query and Query-to- 
Context attentions are calculated in this layer. Since the paper follows the same technique as BiDAF, 
we have reused our baseline’s implementation of this layer in our QANet model, where more details 
can be found in Default Final Project handout [5]. 

The output of this layer is the concatenation [c; a;c © a,c © b] € R*”, where c € R” context word 

embeddings, a € R” Context-to-Query attention, b € R” Query-to-Context attention, and © is 
Hadamard product. 

Due to the speed up technique we have employed for our QANet model, we immediately project 
(resize) the output dimension size from 4h to h. 

3.2.4 Model Encoder Layer 

The input dimension of this layer is of size h. In this layer we use the stack of 7 Encoder Blocks 
as described in Embedding Encoder Layer, with a few modifications. The number of Convolution 
Sublayer is 2 in each Encoder Blocks. 

This stack of Encoder blocks are reused 3 times, in other words, the weights of this stack are shared. 

After each stack pass-through we calculate outputs of model encoders M0, M1, M2 as shown in 
Figure 1, from bottom to top. 

The output dimension of this layer is of size h for each MO, M1, M2.



3.2.5 Output Layer 

The input dimension of this layer is of size h. For this layer we follow the paper to predict the 
probability of each position in C’ being the start or end of an answer span. More specifically, the 
probability of starting and ending position are modeled as: 

p°’ = softmax(W,[M0; M1)]), p° = softmax(W2|M0; M2)) 

where W, and W2 are two trainable variables and M0, M1, M2 are outputs from the previous layer. 
Finally, the objective function is defined as the negative sum of the log probabilities of the predicted 
distributions indexed by true start and end indices, averaged over all training examples: 

N 

10) =~; ) lloa(p.) + los( 5) 
where y? and y% are respectively true starting and ending position of answer span for example 2, and 
@ contains all training variables. 

4 Experiments 

4.1 Data 

We use the official SQUAD v2.0 [3] dataset that contains (context, query, answer) triples. The 

whole dataset is split up into train set (129,900 examples), dev set (5951 examples), test set. Using 
the default project starter code set up, we trained our model on train set of the SQUAD v2.0, and 
evaluated on dev set. More details about the SQUAD v2.0 dataset can be found in Default Final 

Project handout [5]. 

4.2. Evaluation method 

We employed standard evaluation methods of Q&A tasks in NLP, in particular after training our 
QANet [1] model on SQuAD v2.0 dataset, we obtained F1 score (harmonic mean of precision and 

recall) and EM score (Exact Match) evaluation metrics on dev and test set of SQUAD v2.0. More 

details about F1/EM evaluation scores and their calculation formulas can be found in Default Final 

Project handout. 

4.3 Experimental details 

We have followed the paper and started with the default hyperparameter configurations for training. 
Although we have experimented with different hyperparameters, after all experimentations the default 
hyperparameter configuration set up delivered the best results. 

We trained our QANet model using two types of standard regularizations, L2 weight decay with 
parameter \ = 3 x 10~", and dropout on word/character embeddings and between layers, where 
word/character dropout rates were 0.1/0.05 respectively, and dropout rate of 0.1 between every two 
layers. 

We chose the hidden size of our model to be 96, and batch size set to 32, training steps are default 
50K of the project starter code set up. Following the paper, we used ADAM optimizer with 6, = 0.8, 
G2 = 0.999, € = 107", and learning rate of 0.001. We used exponential moving average that was 
applied to all trainable variables with a decay rate 0.9999. 

Due to memory requirements of our model, we started training on the Azure’s NC6 VM with NVIDIA 
Tesla K80 GPU with 12GB, and had to upgrade to Azure’s NC6_v2 VM with NVIDIA Tesla P100 
GPU with 16GB. 

During our implementation of QANet from scratch, we have experimented with different model 
modifications, namely: a model with different hidden sizes h = 128, h = 64; a model without 

character embeddings; a model with less Encoder Blocks (1, 3, 5) in the stack of Model Encoder 

Layer (out final version has a stack of 7); a model where Context-Query Attention Layer’s output 
was not projected (reduced) to dimension h but kept at 4h; a model with default project’s optimizer 
Adadelta with default parameters. All of the above modifications to QANet did not result in any
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Figure 2: QANet vl and QANet v2 results compared to baseline BiDAF. 

significant boost, and in fact underperformed when compared to the baseline, or resulted in a model 
with very slow training progress, and therefore we will not discuss them. 

However we picked other top-3 QANet implementations with slight variations in the architecture, 
where their results were comparable and above the baseline. In the following section we show the 
results of QANet v1, QANet v2, and QANet Final compared to the baseline and their differences, 

where QANéet Final model’s architecture is described in detail in Section 3. 

4.4 Results 

The following are quantitative results of different QANet implementations compared to baseline: 

  

  

  

Dev Set Test Set 

Model EM/F1 EM/FI1 

Baseline BiDAF | 57.130/ 60.580 | - 

QANet v1 57.890 / 61.720 | - 

QANet v2 56.360 / 60.550 | - 

QANéet Final 59.536 / 63.318 | 56.331 / 60.651       

QANet v1 compared to the QANet Final had non-trainable character embeddings, and non-trainable 
OOV token word embeddings, and completely separate (weights not shared) 3 stacks of 7 Encoder 
Blocks in Model Encoder Layer, where each of those stacks output is 0, M1, M2 respectively. 
The 30 epoch training of QANet v1 took 19 hours 53 minutes. 

QANet v2 was similar to QANet v1, but the Model Encoder Layer is the same as in QANet Final. 

The 30 epoch training of QANet v2 took 16 hours 41 minutes. 

The results of both QANet v1 and QANet v2 were comparable with baseline as shown in Figure 2. 

Our best implementation - QANet Final, outperformed all other QANet implementations and achieved 
results that are above baseline as show in Figure 3. The 30 epoch training of QANet Final took 17 
hours and 16 minutes. 

Despite the higher scores of QANet Final over baseline BiDAF, we found that the training time of 
QANet is much slower, which is the opposite of what original paper claimed. Baseline’s 30 epoch 
training time was 11 hours 20 minutes.
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Figure 3: QANet Final results compared to baseline BiDAF. 

* Question: When did King Harold || conquer England? 

* Context: In 1066, Duke William I! of Normandy conquered England killing King Harold I! at the Battle of 

Hastings. The invading Normans and their descendants replaced the Anglo-Saxons as the ruling class of 

England. The nobility of England were part of a single Normans culture and many had lands on both sides of the 

channel. Early Norman kings of England, as Dukes of Normandy, owed homage to the King of France for their 

land on the continent. They considered England to be their most important holding (it brought with it the title of 

King—an important status symbol). 

¢ Answer: N/A 

* Prediction: 1066 

Figure 4: An example of a question with a context paragraph. 

5 Analysis 

Upon analyzing answer span output of QANet Final, we see that both baseline BiDAF and our QANet 
Final give incorrect answers to questions where there is a few intersections of words in both context 
paragraph and query sentence. For example, as shown in Figure 4, both context and query contain: 

conquer, England, King Harold IT, where a model learned to associate questions like When with 

integer strings in the sentence where there are "enough" intersections between context and query. 

Other examples of incorrect answers given by QANéet Final are in questions where the answer is 
logically deduced from the context. For example the question: How many non-Muslims are in Greater 
London? for the context paragraph: 

Greater London has over 900,000 Muslims, (most of South Asian origins and concentrated in the 
East London boroughs of Newham, Tower Hamlets and Waltham Forest), and among them are some 
with a strong Islamist outlook. Their presence, combined with a perceived British policy of allowing 

them free rein, heightened by exposés such as the 2007 Channel 4 documentary programme 
Undercover Mosque, has given rise to the term Londonistan. Following the 9/11 attacks, however, 
Abu Hamza al-Masri, the imam of the Finsbury Park Mosque, was arrested and charged with 
incitement to terrorism which has caused many Islamists to leave the UK to avoid internment. 

we see that model learned to attend to the correct parts of the context, but fails to deduce the correct 
logical answer. 

6 Conclusion 

In this project we implemented QANet [1] neural network architecture from scratch, where QANet 
borrowed ideas from Transformer [4] in its Encoder Blocks. A direct hands-on experience learned



during implementation details of this architecture with PyTorch greatly increased our understanding 
and intuition behind self-attention mechanism of Transformer. Precisely diving deeper to understand 
the powerful self-attention mechanism was our motivation in choosing the original paper, and we feel 
that we have achieved our set goals. 
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