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Abstract 

Because many real-world NLP tasks rely on user data that is not necessarily guar- 
anteed to be in-distribution, it is critical to build robust question answering systems 
that can generalize to out-of-domain data. We aim to build a question answering 
system using context demonstrations and dataset augmentation via backtranslation 
on top of DistilBERT that is robust to domain shifts. Our method replicates one 
of the two approaches described in Gao et al. (2020), sampling and appending 
out-of-domain demonstrations to each training example when finetuning the model. 
Our method also augments the out-of-domain dataset from which demonstrations 
are sampled using backtranslation to generate in-distribution training examples. 
We find that the basic approach of simply appending randomly sampled out-of- 
domain demonstrations to in-domain contexts does not improve model Fl and EM 
score performance, but supplementing this approach by adding separator tokens 
between each demonstration and augmenting the out-of-domain training dataset 
using backtranslation improves model performance. 

1 Introduction 

Natural language processing systems have long faced problems effectively generalizing to out-of- 
domain data. This problem is especially pertinent to the task of question answering. Many user-facing 
question answering systems rely on user input, which is not guaranteed to be in the same domain as 
the dataset on which the model was trained, and therefore cannot generalize well to these domain 
shifts and produce accurate predictions. In Jia 2020, systems trained on the Stanford Question 
Answering Dataset (SQUAD) with adversarially inserted out-of-domain sentences dropped from an 
average accuracy of 75% F1 score to 36% in a clear display of the difficulties many language models 
experience when faced with out-of-domain data. 

Furthermore, building models that can make accurate predictions given only a limited number of 
training examples from a particular domain is essential. Large sets of labeled training data are be 
very difficult to create and process, but model predictions must still be useful. Furthermore, large 
language models with a large number of parameters have particular difficulties learning and making 
accurate predictions on a small amount of out-of-domain data. 

Due to these unique problems, we aim to build a lightweight question answering system that is 
more robust to domain shifts. We achieve this by using demonstrations to expose the model to 
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out-of-domain data during finetuning, and augmenting a small number of out-of-domain training 
examples using backtranslation to produce more diversity in the out-of-domain data. We replicate 
one of the approaches laid out by Gao et al.[1] by randomly sampling and augmenting a similar 
out-of-domain context to each in-domain context seen during finetuning. Additionally, we follow 
a similar approach to Longpre et al.,[2] where we generate paraphrased contexts, questions, and 
answers from the out-of-domain dataset using a pre-trained machine translation model, Marian NMT, 
to translate the original data into French, Chinese, and Dutch, and then from French, Chinese, or 

Dutch back to English. We then augment our relatively small out-of-domain training dataset with 
these paraphrased examples. 

2 Related Work 

Numerous works have been done targeting the difficulties of domain-agnostic question answering 
models, specifically in a setting where we have limited out-of-domain data. 

Gao et al. (2020)[1] explored improvements to few-shot learners through demonstrations and and 

automatic prompt generation as ways to improve on the naive in-context learning approach used 
by GPT-3. GPT-3 has shown impressive results in few-shot settings by sampling random examples 
(demonstrations) as well as prompts with masked tokens (meant for the model to fill in the blank) and 

concatenating them with the input. Gao et al. expanded on this by prioritizing useful examples during 
demonstration sampling with the use of a pretrained sentenceBERT model to identify examples that 
are semantically close to the context of the given input. The authors used these demonstrations 
as learning examples to help the model learn to fill in templates—prompts with masked tokens as 
fill-in-the-blanks. Since the size of our out-of-domain training dataset is rather small and almost the 
same as the size of our out-of-domain validation dataset, we adapted these techniques in hopes that 
their improvements in few-shot settings would translate to better robustness against domain shifts. 

Ribeiro et al. (2018) [3] has seen success with using machine translation to obtain semantically- 

equivalent adversaries. Training the model on dataset augmented with semantic-preserving 
perturbations—additional examples that are semantically the same as the original examples but 
worded differently and can confuse the model-showed great improvement to the flexibility of the 
model. 

Junczys-Dowmunt et al. (2018)[4] created Marian, an efficient Neural Machine Translation model 

written in C++ with minimal dependencies. Marian is a research-friendly model that offers both high 
training and translation speed. 

Longpre et al. (2019)[2] found good results with negative sampling to better identify unanswerable 
questions, domain sampling (training on examples from multiple domains), modifying the sampling 
distribution to deprioritize certain domains that degrade the general performance of the model on 
a particular task, and data augmentation with paraphrases obtained through back-translation with 
priority on more challenging examples. 

We primarily referenced the improved in-context learning method with demonstrations and prompts 
from Gao et al. (2020) for the few-shot learning aspect and the back-translation approach used in 
Ribeiro et al. (2018) for the data augmentation aspect. 

3 Approach 

3.1 Demonstrations (with separator tokens) 

We first implemented the approach of fine-tuning the model with demonstrations laid out in Gao et 
al.. Let Dirain denote the subset of the in-domain training data and DS sn denote the subset of the 

out-of-domain training data of domain C. 

Demonstrations appending 
We appended demonstrations from the out-of-domain training set prior to training our model on an 
in-domain training set Dz;ain. For each training example context T;,, € Dtrain, we found the top 

50% out-of-domain training example contexts Tox € De in that are most similar to T;,,, using 

cosine similarity as a metric for similarity. From those top 50% contexts, we randomly sampled 
one context T,,,, and appended it to T;,,. We did this for each of the datasets in the training set, and



reversed the process when finetuning on the out-of-domain train set by sampling from demonstrations 
from the contexts of the in-domain train set. We followed this approach using a bag-of-words 
representation to generate embeddings for all contexts. 

We added a separator token between each demonstration (context) as a starting point. 

Single sentence demonstrations 
We also tried sampling a single sentence from the top 50% most similar sentences in DC_,,,, and 
appending this single sentence to T;,,, rather than sampling and appending the entire paragraph of 
context. 

Separator token between each sentence 
Finally, we experimented with adding a separator token between each sentence in the demonstrations. 
We elected to use this method as the default for all of our experiments with out-of-domain context 
appending since it led to a slight improvement in the F1 score after finetuning. 

  rs 
BPB In accounting , minority interest ( or non-controlling 

interest ) is the portion of a subsidiary corporation ‘s stock 

that is not owned by the parent corporation . The magnitude of original context 

the minority interest in the subsidiary company is generally 

less than 58\% of outstanding shares , or the corporation would 

generally cease to be a subsidiary of the parent . EEPE [sep] 

Lake Champlain Chocolates (LCC) is a [mask] held chocolate ) 

manufacturer [mask] in Burlington, Vermont, USA. [sep] Want to 
save money when travelling by train? Here are some ways [sep] 

Day Returns This [mask] can save you up to 45\% on the standard 

fare [sep] You have to travel after the rush hour period 

Mon.-Fri., but can travel at any time on Sat. or Sun. [sep] Big 
city Saves These are special low-priced tickets on certain 

trains. Yon have to [mask] in advance----- at the latest by 

16:88 the day before you travel [sep] The [mask] opens with a 

man, Alderson (Julian Richings), waking up in a cube-shaped room 

with glowing, computer circuit-like walls and six [mask], one at 

the center of each wall, ceiling and floor[sep] After recovering demonstration from cross-domain dataset 3 
from his confusion, he opens two of the doors and looks into 

ail to find rooms that differ to the one he is in only by color 

Le 

demonstration from cross-domain dataset 1 

demonstration from cross-domain dataset 2 

    
Figure 1: Example of a context after appending demonstrations with separator tokens between each 
sentence and 2 mask tokens in each demonstration. 

3.2 Templates (with mask tokens) 

We then experimented with using separator and mask tokens. We followed the same sampling 
technique outlined above, but prior to appending the out-of-domain contexts T/,, to the in-domain 
contexts, we inserted separator tokens in between each sentence of T/,,, and replaced either 2 or 
1/12 * (context size) random words with mask tokens for the model to fill in as our simplified version 
of generating templates. 

3.3. Backtranslation 

Finally, we applied a data augmentation method inspired by the backtranslation approach detailed 
in Longpre et al. on the out-of-domain dataset. We used Marian NMT, a pre-trained transformer 
machine translation model, to translate the text of each example in DC.,,,, (including the context, 
question, and answer) first from English to French, then back from French to English. We also 
experimented with backtranslation from French, Dutch, and Chinese combined. Our new augmented 
dataset, D/ ,,,, includes all backtranslated data appended to the original data. Finally, we followed 
the same strategy of appending contexts with sentence seperator tokens as outlined above, sampling 

IC from each augmented Div in-
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Figure 2: Workflow used for backtranslation of datasets. 

4 Experiments 

4.1 Data 

For this project, we used SQUAD (150k questions), NewsQA (100k human-generated QA pairs from 

10,000 articles), and Natural Question (323k examples) for our in-domain datasets, and DuoRC (186k 

QA pairs), RACE (100k questions from 28k passages), and RelationExtraction (70k sentences) for 
out-of-domain datasets. Each dataset entry consists of a context paragraph, a question, and a series of 
possible answers, with each answer consisting of the text of the answer and the starting index of the 
answer span in the context paragraph. 

We also created and used a randomly sampled smaller in-domain training dataset that is 1/5 of the 
original size for faster iteration on our experiments. In order to maintain the same distribution of 
samples in each dataset, we separately sample 1/5 of the training exmaples from each of the datasets 
in the training set (Natural Question, NewQA, SQuAD). 

4.2 Evaluation method 

The demonstration appending and prompt generation method in Gao et al. was evaluated using F1 
score to compute performance, which aligns with our own measurement goals. In addition to F1 
score, we also evaluated our model’s performance using exact match (EM) score in order to compare 
the model’s performance in generating approximate and exact answers. 

4.3 Experimental details 

All experiments were trained for 3 full epochs. 

1. Baseline model: We trained our baseline model, a pretrained DistiIBERT model, on the 

large in-domain training dataset, with a default learning rate of 3e~° and a default batch size 
of 16. 

2. Out-of-domain demonstrations: We trained our model on the in-domain training datasets 
and appended radomly sampled contexts from the out-of-domain datasets as detailed previ- 
ously. We trained this model on the large in-domain dataset with the default learning rate of 
3e—° and the default batch size of 16. 

3. Out-of-domain demonstrations with a smaller learning rate: We followed the same 
approach of appending out-of-domain demonstrations as in the previous experiment, but 
decreased the learning date to 3e~°. We trained this model on the large in-domain dataset 
with the default batch size of 16. 

4. Out-of-domain demonstrations with masking: We appended out-of-domain demonstra- 
tions and masked 2 random words in each in-domain context. We trained this model on the 
large in-domain dataset with the default learning rate of 3e~° and the default batch size of 
16.
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. Out-of-domain demonstrations with masking and smaller learning rate We followed 
the same approach as in our previous experiment, but trained our model with a smaller 
learning rate of 3e~°) and the default batch size of 16. 

. Out-of-domain demonstrations with separated sentences: We followed the approach 
detailed previously of inserting separator tokens in between every sentence of each out-of- 
domain demonstration before appending it. We trained this model on the smaller sampled 
in-domain training dataset with the default learning rate of 3e~° and the default batch size 
of 16. 

. Out-of-domain single sentence demonstrations: We randomly sampled and appended 
single sentences from the out-of-domain contexts rather than entire contexts. We trained 
this model on the smaller sampled in-domain training dataset with the default learning rate 
of 3e~° and the default batch size of 16. 

. Out-of-domain demonstrations with separated sentences: We followed the exact same 
approach as our previous experiment with separated sentences, but as a followup, trained our 
model on the entire large in-domain training dataset instead of the small sampled in-domain 
dataset. We trained the model with the default learning rate of 3e-6 and finetuned the model 
with a smaller learning rate of 3e~° and the default batch size of 16. 

. Out-of-domain demonstrations with separated sentences and masking: We followed 
the same approach as in our experiment with separated sentences above, but trained our 
model on the entire large in-domain training dataset instead of the small sampled in-domain 
dataset and masked all instances of a randomly chosen word in each in-domain training 
example. We trained this model with a smaller learning rate of 3e~° and the default batch 
size of 16. 

Out-of-domain demonstrations with French backtranslation dataset augmentation 
and masking: We trained this model on the entire large training dataset, and randomly 
sampled demonstrations from the augmented English-French backtranslated out-of-domain 
training dataset. We trained this model with a smaller learning rate of le~° and the default 
batch size of 16. We masked 2 words in each demonstration after backtranslating and 
inserted separator tokens between each sentence. 

Out-of-domain demonstrations with French, Mainland Chinese, and Dutch back- 
translation dataset augmentation and masking: In order to investigate for further gains, 
we retrained our model on the entire train set, and randomly sampled demonstrations from 
an out-of-domain dataset composed of the original English, French to English, Chinese to 
English, and Dutch to English translations. We trained this model 3 times and found that the 
default batch size of 16 and a learning rate of 8e~© produced the best results. As before, 
we masked 2 words in each demonstration after backtranslating and insert separator tokens 
between each sentence. 

4.4 Results 

Results on development set: 

  

  

    

Full-size training set Fl EM 

1 Baseline 48.43 33.25 
2 Baseline train + finetune w/ OOD demonstrations 47.10 31.68 
3 Baseline train + finetune w/ OOD demonstrations + 3e-6 learning rate 48.36 32.98 
8 Baseline train + finetune w/ OOD demonstrations + sentence separation 47.10 31.68 
4 Baseline train + finetune w/ OOD demonstrations + masking 48.62 32.20 
10 OOD demos w/ backtranslation (French) augmentation + 7e6 learning rate 49.01 33.25 
11 | OOD demos w/ backtranslation (French, Dutch, Chinese) + le-5 learning rate 48.55 32.72 

11 | OOD demos w/ backtranslation (French, Dutch, Chinese) + 8e-6 learning rate 49.01 33.25 
   



  

  

            

  

  

Small training set Training Finetuning 
Fl EM Fl EM 

1 Baseline 41.82 25.92 - - 
9 | OOD demonstrations + sep. sentences + masking 41.86 25.92 - - 
2 OOD demonstrations 43.47 26.70 43.47 26.70 
6 OOD demonstrations + separated sentences 43.47 26.70 43.52 26.70 
7 OOD demonstrations + single sentences = - 43.47 26.70 

Results on test set: 

Test set Fl EM 

OOD demos with backtranslation (French, Dutch, Chinese) augmentation 60.327 42.431 

OOD demos with backtranslation (French) augmentation 60.327 42.431       

5 Analysis 

We found that the basic approach of appending out-of-domain demonstrations to in-domain training 
data did not improve the model’s performance on out-of-domain data. We hypothesize that this 
approach yielded lower scores than the baseline because we increased the context size approximately 
4 times by appending 3 demonstrations pulled from the out-of-domain contexts, making it more 
difficult to capture long-distance dependencies in attention scores. This might have hurt the model’s 
performance because parsing through more context for the answer could’ve made it harder to find the 
correct answer. 

Incorporating mask tokens into the appended demonstrations led to a modest increase in F1 score 
relative to basic demonstration appending, but a reduction in the EM score on the full dataset. 
However, this approach did not improve upon the baseline EM and F1 scores. This indicates that the 
change in masking improved our model’s ability to predict words, a subtask of the question answering 
task, and also improved our context appending approach. We hypothesize that the performance 
reduction relative to the baseline model occurred due to the large increase in the size of the contexts, 
and the masking only partially affected this. 

We found that adding separator tokens in between each demonstration and in between each sentence 
of each demonstration improved on the baseline scores on the small, sampled training dataset. 
However, this approach led to the same EM and FI! scores as the basic demonstration approach 
on the large training dataset. We believe that this approach helped the model better capture long- 
distance dependencies due to the separation of sentences. However, after inspecting the appended 
demonstrations, we hypothesize that the lack of diversity and relatively small size of the out-of- 
domain training dataset led to similar or the same context demonstrations being appended multiple 
times, preventing the model from truly learning anything about the out-of-domain dataset distribution. 
This experiment was performed before the integration of backtranslation for data augmentation. 

We only tested appending single-sentence demonstrations instead of whole contexts with the small 
sampled training dataset, and this approach led to improved scores over the baseline on this small 
dataset. We hypothesize that appending shorter demonstrations better allowed the model to encode 
information. Because this approach scored lower on the small training set than the approach of adding 
separator tokens, we chose to pursue the latter approach on the large training set instead. 

Combining the approaches of demonstration appending with separator tokens and augmenting 
the out-of-domain dataset using backtranslation to generate training examples in the same out- 
of-domain distribution led to improved performance over the baseline model. Augmenting the 
dataset with examples backtranslated from French, Chinese, and Dutch, led to similar performance 
as backtranslating from a single language, French. We hypothesize that augmenting the dataset 
in this way increased the diversity of the out-of-domain dataset and the diversity of the sampled 
demonstrations, thus allowing the model to generalize better when making predictions and leading to 
better model performance. However, since backtranslation into multiple languages still relies upon a 
universal source text, the amount of data fuzzing and augmentation is limited beyond the first set of 
back translations. Looking to Gao, Fisch, and Chen’s work in Making Pre-trained Language Models 
Better Few-shot Learners, a key component of context appending involves generating data. This 
approach to backtranslation augmented our training set to 3 times its original size.



Beyond pure score improvements, we can also analyze a few of the model’s quirks when using 
backtranslation. Our model had a tendency toward brevity, predicting "more than 200" when 
supposed to predict "more than 200 strong" in one specific instance. In another instance, with a 
too-aggressive learning rate, the model learns too much from the backtranslated text and predicts 
"non-religious war" in place of "secular war." Ultimately, however, unlike the baseline or original 
out-of-domain context appending, the backtranslated model is able to consistently adapt to phrases 
not seen in the original training text. We hypothesize this is what allowed the model to outperform 
the initial out-of-domain context appending approach. 

6 Conclusion 

In conclusion, we discovered that combining context demonstrations with dataset augmentation can 
lead to improved performance on out-of-domain datasets. We were able to improve on the baseline 
F1 score by 0.6 on the validation set, and generated more significant gains on the test set, significantly 
improving our ranking on the RobustQA test leaderboard compared to the validation leaderboard 
at the time of submission. This approach also does not require extra external data, and allows for 
data augmentation without new data gathering. A few of the primary limitations of this approach are 
that it relies on access to quality input data for out of domain training, as well as the fact that further 
extending the backtranslation approach is computationally expensive, since we rely on a pretrained 
transformer model to perform our translations. One avenue for future work is to look toward further 
backtranslation through exploring different languages or translation chaining, in order to expose our 
model to more diverse text. Potential further exploration can be done with different demonstration 
integrations, such as incorporating less similar contexts or using a transformer to generate text. 
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