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Abstract 

The task of this project is to build a question answering system that works well 
on SQuAD 2.0. The goal is to investigate and implement models to improve the 
performance of a baseline model, called Bidirectional Attention Flow (BiDAF). 

Specifically, the improvements mainly focus on 1) extending the baseline em- 
bedding layer implementation to include character-level word embeddings, 2) 
enhancing the baseline attention layer, 3) improving the output layer by condi- 
tioning the prediction of end position on the prediction of start position of the 
answer span. Experiment results show significant performance improvement with 
the additional character-level word embeddings, deep residual coattention, and a 
pointer network model in the output layer. 

1 Introduction 

Question answering (QA) is a crucial and challenging task in natural language processing that aims to 
build systems that can automatically answer questions given a passage or document. It has attracted 
lots of attention in the past several years due to its numerous practical real-world applications. The 
current state-of-the-art QA systems are almost all built on top of end-to-end training and pre-trained 
language models since BERT [1] was released in 2018. Prior to BERT, there has been lots of research 
on designing end-to-end neural network architectures for QA, with most of them focusing on attention 
scheme design and output decoding scheme design [2, 3, 4, 5, 6]. 

In this project, we focus on the design, implementation and evaluation of techniques and models 
without using pre-trained models for QA on the Stanford Question Answering Dataset (SQuAD) 2.0 

[7] and aim to build a system to achieve the highest performance as possible on this dataset. The 
new challenge in SQUAD 2.0 is that systems must not only answer questions when possible, but also 
determine when no answer is supported by the paragraph and abstain from answering. To achieve 
this goal, we explore different techniques in three major layers of the end-to-end architecture, namely, 
the encoding layer, the attention layer and the output layer. Experiment results show that better 
performance can be achieved with different enhancements on top of the baseline model. Especially, 
with extra character embedding and deep residual coattention, we can achieve EM of 61.17 and F1 of 
64.97 in comparison to EM of 58.32 and F1 of 61.78 of the baseline model on the development data 
set. On the test set, an EM of 59.966 and F1 of 63.386 can be achieved. 

2 Related Work 

During the pre-BERT era, most of the QA systems employed the recurrent neural network architecture 
and focused on attention scheme design and output decoding/prediction scheme design. 

The bidirectional attention flow (BiDAF) model in [2] proposed a multi-stage hierarchical process to 
represent the context at different levels of granularity (character, word, context) and use a bidirectional 
attention flow mechanism, namely, context-to-query (C2Q) and query-to-context (Q2C), to achieve a 

query-aware context representation. 

The dynamic coattention networks (DCN) proposed in [3] consists of a coattention encoder that 

captures the dependence between the question and the document, and a dynamic pointing decoder 
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that can estimate the start and end points of the answer span multiple times by iterating over potential 
answer spans. Unlike the attention flow in BiDAF, the coattention in DCN involves a second-level 
attention computation by taking weighted sums of the Q2C attention outputs using the C2Q attention 
distributions. Then the second-level attention outputs are concatenated with the first-level C2Q 
attention outputs and the sequence are fed through a bidirectional LSTM encoding layer. 

Later, the same authors of the DCN model proposed a new attention scheme called deep residual 
coattention in [6]. This is basically an extension to the original DCN attention scheme by stacking 
coattention layers and merging coattention outputs from each layer with residual connections aiming 
to improve the modeling of long-range dependencies in the input texts. 

In contrast to the BiDAF model, where the start location and the end location are predicted indepen- 
dently, [8] proposed to use pointer network to predict the start and end locations such that the end 
location prediction is conditioned on the start location prediction. 

All of the above models and techniques were evaluated on SQuAD 1.0. In this project, we explore 
these techniques and modes on SQuAD 2.0. 

3 Approach 

The high level hierarchical multi-stage process of the system model is shown in Fig. 1. For three 
major layers of the model (the encoding layer, the attention layer and the output layer), we investigate 
the performance of different techniques. 
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Figure 1: High level model architecture and techniques for each layer. 
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3.1 Baseline 

The baseline is the BiDAF model proposed in [2]. The details of the BiDAF model can be found 
in the original paper or the project handout. Note that the attention layer implemented in the starter 
code is not the same as the scheme proposed in the original paper, instead it is based on the dynamic 
coattention scheme proposed in [3]. The details are described in Section 3.3. 

3.2 Character-level word embeddings 

The first enhancement implemented is integrating the character-level word embeddings into the 
embedding layer. This character-level embedding of each word is implemented using convolutional



neural networks (CNN) based on [9] as shown in Fig. 2. The embedding vectors of each character 

for each word is fed into the CNN. Then the CNN outputs a fixed-size vector for each word with 
max-pooling. Then the character-level embedding vector and the word-level embedding vector are 
concatenated and passed to a two-layer Highway Network. 
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Figure 2: Concatenation of word embedding and character-level embedding. 

3.3. Attention layer 

The second core part of the model is the attention layer, which is responsible for finding query-aware 
representation for the context words. 

The original attention scheme in BiDAF model is illustrated in Fig. 3, where a C2Q attention and 
a Q2C attention are calculated based on a shared similarity matrix S derived from the contextual 
embeddings of the context words C’ and the query words Q. Both attention outputs are combined 
or simply concatenated with the contextual embeddings of the context words to form final attention 
output G and fed to the modeling layer. 

A similar bidirectional attention scheme proposed in DCN model is illustrated in Fig. 4. As can be 
seen from the figure, the only difference is there is a second-level attention calculation after the Q2C 

attention output. This is the scheme that is implemented in the baseline BiDAF model in the starter 
code. The attention output is modeled as: 

G = concate(C; A;C © A;C © B), 

where © is element-wise matrix multiplication. 

As a second extension, we implemented the deep residual coattention (DRC) scheme as illustrated in 
Fig. 5 and compared the performance to the baseline attention scheme. As can be seen from Fig. 5, 
the main idea is to stack two coattention layers (each coattention layer computes the bidirectional 
attentions as shown in Fig. 4) and merge the coattention outputs from each layer with residual 
connections aiming to model long-range dependencies between the context words and the query 
words. The attention output is modeled as the following in the original paper: 

G = concate(C; A; B; C2; A2; B2). 

However, in our implementation, we choose to model the attention output as the following for better 
performance: 

G = concate(C; A;C © A;C © B;C © A2;C © B2). 

  

         

      

Contextual embeddings C2Q attention 
  Attention output   

  

   

    

  

    

  

C : 
Find similarity Combine or G 

Ql matrix S concatenate 

Q2C attention 

Figure 3: C2Q and Q2C bidirectional attention in BiDAF.
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Figure 4: Coattention in DCN. 
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Figure 5: Deep residual coattention in DCN+. 

3.4 Output layer enhancement with pointer network 

The third enhancement implemented is based on the pointer network model proposed in [8]. In 
contrast to the baseline output layer where the start position and the end position are predicted 
independently, pointer network model predicts the probability distribution for the end position based 
on the start position probability distribution based on the outputs of the attention layer. 

Specifically, for the baseline output layer, the probability distribution for the start position and the 
end position are produced as: 

Pstart = softmax(Wstart|G; M]), Pena = softmax(Wena[G; M']), 

where G € R°“*% and M € R24*N are the outputs of the attention layer and the modeling layer, 

respectively, M’ € R24XN is the output of a bidirectional LSTM with M as input, Wetart, Wend € 

IR!*101 are learnable parameters, H is the hidden layer size, and N is the context length. 

The pointer network model is a RNN that is run for two steps, one for the start position, and one for 
the end position. Specifically, at time step k, 

Fi, = tanh(W, M + Wehz_1), Bx = softmax(W3F;), 

where W,, W2, W3 are learnable parameters, 3; € RY is the probability distribution for the k-th 

position in the answer ((, for start position and G2 for end position). hy_ 1 is the hidden vector at 

position k — 1 modeled as: 

hy = LSTM(M x , hy_1). 
This is essentially how ( is conditioned on 3. 

4 Experiments 

4.1 Dataset 

The official SQUAD 2.0 dataset is used. The dataset splits are summarized in Table 1. Note that more 
than 50% of the questions in the dev set are not answerable, while about only 33% of the questions in 
the train set are not answerable. 

plits 1Ze€ O-answer ratio mment 

train .Q training set 

set, se 

test m Oo Set, 

  

Table 1: Dataset splits information.



The statistics of context word length, question word length, and answer word length are illustrated in 
Fig. 6. As can be seen, the majority of the contexts are within 300 words, and the majority of the 
questions are within 20 words. In terms of answer length, the majority are within 5 words. Both dev 
and train set exhibit similar statistics. 
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Figure 6: Dataset statistics. 

4.2 Evaluation metrics 

Exact match (EM) and F1 scores are used as evaluation metrics. EM measures whether the answer 

span matches exactly with the ground truth answer. F1 scores are computed as the harmonic mean 
of precision and recall, where precision is calculated as the number of correct words divided by the 
length of the predicted answer, and recall is calculated as the number of correct words divided by the 
length of the ground truth answer. For evaluation, the predicted answer is measured against 3 golden 
answers for each question, and the highest score among the three is recorded. 

4.3. Model details 

For the sake of fair comparison, in all the models, the character-level embedding dimensionality is 64 
and the word level embedding dimensionality is 300. We use a batch size of 64 and a hidden layer 
size of 100. We train all the models for 30 epochs, with a learning rate of 0.5 and drop-out probability 
of 0.2. 

4.4 Results and discussions 

The results of different models on the development set are summarized in Table 2. We evaluate 
different extensions to the baseline BiDAF model. For pointer network in the output layer, we explore 
two options for the implementation. One option is to use separate weight parameters for the start 
position prediction and the end position prediction (PN-1 in the table), and the other option is to share 
the weight parameters between the two predictions (PN-2 in the table). 

We also investigate how the performance of different models vary with respect to the length of 
contexts and questions and the results are summarized in Table 3. The data points in the development 
set are categorized into four groups, based on the length of contexts and the length of answers (we do 
not include results for the impact of question length on performance since it is very similar to the 
impact of context length). If there are more than 100 words in a context, then it is classified as a long 
context; otherwise, it is classified as a short context. Similarly, if there are more than 3 words in an 

answer, it is classified as a long answer, otherwise, it is classified as a short answer. 

As can be seen, with only char-embedding enhancement, the baseline BiDAF performance can 
be improved slightly, and the improvement is mainly for questions with long answers and long 
contexts as shown in Table 3. With only pointer network modeling enhancement, the performance 
improvement is quite small. With both char-embedding and pointer network modeling, the model 
can achieve an EM score of 61.07 and an FI! score of 64.41. Sharing weights in the pointer network 
modeling causes slight performance degradation and it is quite strange that the degradation mainly 
happens for questions with short answers.



With deep residual coattention, char-embedding and independent start and end position prediction 
as in baseline model, comparable performance can be achieved (EM of 61.17 and F1 of 64.97) as 
BiDAF with char-embedding and pointer network modeling. For test set, an EM of 59.966 and 
F1 of 63.386 is achieved for this model. However, adding pointer network modeling to the deep 
residual coattention scheme causes slight performance degradation. The main degradation happens 
for questions with long answers as shown in Table 3. This suggests that the current pointer network 
implementation is not optimal for deep residual coattention scheme, and the attention layer and the 
output layer need to be tuned together in order to achieve good performance. 
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Table 2: Model performance results on development set. 

Also as shown in Table 3, there is no significant performance difference between long contexts 
and short contexts for all models. This is possibly due to the fact that all models use bidirectional 
attention and thus are able to focus on the most relevant words pretty well irrespective of the length 
of contexts. However, there is notable performance degradation for the group with long answers, 
especially in terms of EM. This is as expected, as the longer the answer, the harder to predict the 
correct answer span. 

context context answer 
Models o ° 

  

Table 3: Model performance for different lengths of documents and answers on the development set. 

5 Analysis 

To understand more deeply about the behavior and performance of the best model (deep residual 
coattention with extra character embedding), we examine its performance across question types. The 
average F1 score and the number of questions for each question type are summarized in Table 4. We 
can see that the model performs best for “when” questions and does not do well for “why” and “how” 
questions. This is intuitive since these questions are more complicated. Surprisingly, the performance 
for “where” questions is also below average. We inspected some of the error answers and several 
examples with comments are provided in Table 5. We also examined the errors made in the other 
question types and some examples are listed in Table 6. 

  
Question type | What | Who | When | Which | Where | Why | How | Other | Total 

Size 3653 | 687 445 213 252 87 555 59 5951 
Fl 63.72 | 66.68 | 74.25 | 72.49 | 60.41 | 60.28 | 59.56 | 49.70 | 64.45 

  

  

                        

Table 4: Best model performance across question types.



  

  

  

Context “Several families of Byzantine Greece were of Norman mercenary origin during the 
period of the Comnenian Restoration, when Byzantine emperors were seeking out 
western European warriors ......” 

Question “Where were several Norman mercenary familes originate from?” 
Prediction “Comnenian Restoration” 
Ground truth | Not answerable 
Comment The model made a mistake on the answer type. The predicted answer is a time/period. 

Probably it is because the model does not understand the “when” clause followed the 
predicted answer. 

Context “The legendary religious zeal of the Normans was exercised in religious wars long 
before the First Crusade carved out a Norman principality in Antioch. They were 
major foreign participants in the Reconquista in Iberia ......” 

Question “Where did the Normans carve out a principality before the First Crusade?” 
Prediction “Antioch” 
Ground truth | Not answerable 
Comment This is a very tricky question for the model. The model indeed gave the correct answer 

type (Antioch is indeed a place), but the model does not understand the difference of 
“before” in the context and the question. 

Context “The customary law of Normandy was developed between the 10th and 13th centuries 
and survives today through the legal systems of Jersey and Guernsey in the Channel 
Islands. Norman customary law was transcribed in two customaries in Latin by two 
judges ......” 

Question “Where are Jersey and Guernsey?” 
Prediction No answer 
Ground truth | Channel Islands 
Comment The model failed to give an answer for this typical “where” question. It seems that the 

model does not understand the expression with proposition “in”, possibly because it 
didn’t see many such examples in the training set.       
Table 5: Some examples of errors in “where” question type. 

  
We also investigate the F1 score distribution on the development set for the best performed model and 
the result is shown in Table 7. We can see the model predicts a perfect answer (with 100% F1 score) 
for 61.2% of the questions and a wrong answer (with 0% F1 score) for 33.4% of the questions. It 
predicts a partial correct answer for only the remaining 5.4% questions. Out of the 1986 completely 
wrong answers, 1204 (60.6%) are wrong because the questions are not answerable, but the model 
gives an answer, 530 (26.7%) are wrong because the questions are answerable, but the model predicts 
no answer. 

  
Fl 100% 

Size | 3640 (61.2%) 
0% 

1986 (33.4%) 

in between 

325 (5.4%) 
  

            

Table 7: F1 score distribution. 

6 Conclusion 

In this project, we explored different techniques in the encoding layer, the attention layer and the 
output layer of an end-to-end neural network architecture for question answering. Experiment results 
show that better performance can be achieved with different enhancements on top of the baseline 
model. Especially, with extra character embedding and deep residual coattention, we can achieve 
EM of 61.17 and F1 of 64.97 in comparison to EM of 58.32 and F1 of 61.78 of the baseline BiDAF 
model. We also investigated the behavior of the best performed model by breaking down F1 score 
and examining the performance across different context lengths, answer lengths, question types, and 
error distributions. By inspecting some of the error examples, we found that the model performs 
poorly mainly when it involves some kind of reasoning or advanced/complicated sentence structures.



  

  

  

    
  

  

Context “In contrast, an instance of this problem is a rather concrete utterance, which can serve 

as the input for a decision problem ......” 
Question “Is a problem instance typically characterized as abstract or concrete?” 
Prediction “concrete utterance” 
Ground truth | concrete 
Comment The model basically found the right place for the answer. But in order to be more 

precise, it needs to understand the meaning of “or” structure in the question. 

Context “A function problem is a computational problem where a single output (of a total 
function) is expected for every input, but the output is more complex than that of a 
decision problem ......” 

Question “Ts the output of a functional problem typically characterized by a simple or complex 
answer?” 

Prediction “the output is more complex” 
Ground truth | complex 
Comment Similar to the previous example, the model can locate the general range of the answer, 

but failed to give a precise answer to the question. 

Context “A decade after the 1973 oil crisis, Honda, Toyota and Nissan, affected by the 1981 
voluntary export restraints, opened US assembly plants and established their luxury 
divisions (Acura, Lexus and Infiniti, respectively) to distinguish themselves from their 
mass-market brands.” 

Question “Name a luxury division of Toyota.” 
Prediction Acura, Lexus and Infiniti 

Ground truth | Lexus 
Comment Again, the model locate the general range of correct answer. But in order for the 

model to precisely identify Lexus is the division of Toyota, it needs to understand 
“respectively” and relate it to previous context “Honda, Toyota and Nissan”. 

Table 6: Some examples of errors in other question types. 
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