
Building a QA System (IID SQuAD track)

Stanford CS224N Default Project

Bo Yu
boyui9@stanford.edu

Abstract

The task of this project is to build a question answering system that works well
on SQuAD 2.0. The goal is to investigate and implement models to improve the
performance of a baseline model, called Bidirectional Attention Flow (BiDAF).

Specifically, the improvements mainly focus on 1) extending the baseline em-
bedding layer implementation to include character-level word embeddings, 2)
enhancing the baseline attention layer, 3) improving the output layer by condi-
tioning the prediction of end position on the prediction of start position of the
answer span. Experiment results show significant performance improvement with
the additional character-level word embeddings, deep residual coattention, and a
pointer network model in the output layer.

1 Introduction

Question answering (QA) is a crucial and challenging task in natural language processing that aims to
build systems that can automatically answer questions given a passage or document. It has attracted
lots of attention in the past several years due to its numerous practical real-world applications. The
current state-of-the-art QA systems are almost all built on top of end-to-end training and pre-trained
language models since BERT [1] was released in 2018. Prior to BERT, there has been lots of research
on designing end-to-end neural network architectures for QA, with most of them focusing on attention
scheme design and output decoding scheme design [2, 3, 4, 5, 6].

In this project, we focus on the design, implementation and evaluation of techniques and models
without using pre-trained models for QA on the Stanford Question Answering Dataset (SQuAD) 2.0

[7] and aim to build a system to achieve the highest performance as possible on this dataset. The
new challenge in SQUAD 2.0 is that systems must not only answer questions when possible, but also
determine when no answer is supported by the paragraph and abstain from answering. To achieve
this goal, we explore different techniques in three major layers of the end-to-end architecture, namely,
the encoding layer, the attention layer and the output layer. Experiment results show that better
performance can be achieved with different enhancements on top of the baseline model. Especially,
with extra character embedding and deep residual coattention, we can achieve EM of 61.17 and F1 of
64.97 in comparison to EM of 58.32 and F1 of 61.78 of the baseline model on the development data
set. On the test set, an EM of 59.966 and F1 of 63.386 can be achieved.

2 Related Work

During the pre-BERT era, most of the QA systems employed the recurrent neural network architecture
and focused on attention scheme design and output decoding/prediction scheme design.

The bidirectional attention flow (BiDAF) model in [2] proposed a multi-stage hierarchical process to
represent the context at different levels of granularity (character, word, context) and use a bidirectional
attention flow mechanism, namely, context-to-query (C2Q) and query-to-context (Q2C), to achieve a

query-aware context representation.

The dynamic coattention networks (DCN) proposed in [3] consists of a coattention encoder that

captures the dependence between the question and the document, and a dynamic pointing decoder

Stanford CS224N Natural Language Processing with Deep Learning

that can estimate the start and end points of the answer span multiple times by iterating over potential
answer spans. Unlike the attention flow in BiDAF, the coattention in DCN involves a second-level
attention computation by taking weighted sums of the Q2C attention outputs using the C2Q attention
distributions. Then the second-level attention outputs are concatenated with the first-level C2Q
attention outputs and the sequence are fed through a bidirectional LSTM encoding layer.

Later, the same authors of the DCN model proposed a new attention scheme called deep residual
coattention in [6]. This is basically an extension to the original DCN attention scheme by stacking
coattention layers and merging coattention outputs from each layer with residual connections aiming
to improve the modeling of long-range dependencies in the input texts.

In contrast to the BiDAF model, where the start location and the end location are predicted indepen-
dently, [8] proposed to use pointer network to predict the start and end locations such that the end
location prediction is conditioned on the start location prediction.

All of the above models and techniques were evaluated on SQuAD 1.0. In this project, we explore
these techniques and modes on SQuAD 2.0.

3 Approach

The high level hierarchical multi-stage process of the system model is shown in Fig. 1. For three
major layers of the model (the encoding layer, the attention layer and the output layer), we investigate
the performance of different techniques.

High-level model Techniques

y > Independent
(» decoding

 Output layer

;) Pointer

! network

a

Modeling layer

\ _—— 7

za
coattention

(OO) .
Attention layer Deep residual

—————— coattention

| Word embedding
 Encoding layer

ee
\) Char embedding

Figure 1: High level model architecture and techniques for each layer.

 t
3.1 Baseline

The baseline is the BiDAF model proposed in [2]. The details of the BiDAF model can be found
in the original paper or the project handout. Note that the attention layer implemented in the starter
code is not the same as the scheme proposed in the original paper, instead it is based on the dynamic
coattention scheme proposed in [3]. The details are described in Section 3.3.

3.2 Character-level word embeddings

The first enhancement implemented is integrating the character-level word embeddings into the
embedding layer. This character-level embedding of each word is implemented using convolutional

neural networks (CNN) based on [9] as shown in Fig. 2. The embedding vectors of each character

for each word is fed into the CNN. Then the CNN outputs a fixed-size vector for each word with
max-pooling. Then the character-level embedding vector and the word-level embedding vector are
concatenated and passed to a two-layer Highway Network.

Embedding vector

COEEEEErs

f concat)

coo coo
Seattle

CNN

+ Max Pooling

Seattle

Figure 2: Concatenation of word embedding and character-level embedding.

3.3. Attention layer

The second core part of the model is the attention layer, which is responsible for finding query-aware
representation for the context words.

The original attention scheme in BiDAF model is illustrated in Fig. 3, where a C2Q attention and
a Q2C attention are calculated based on a shared similarity matrix S derived from the contextual
embeddings of the context words C’ and the query words Q. Both attention outputs are combined
or simply concatenated with the contextual embeddings of the context words to form final attention
output G and fed to the modeling layer.

A similar bidirectional attention scheme proposed in DCN model is illustrated in Fig. 4. As can be
seen from the figure, the only difference is there is a second-level attention calculation after the Q2C

attention output. This is the scheme that is implemented in the baseline BiDAF model in the starter
code. The attention output is modeled as:

G = concate(C; A;C © A;C © B),

where © is element-wise matrix multiplication.

As a second extension, we implemented the deep residual coattention (DRC) scheme as illustrated in
Fig. 5 and compared the performance to the baseline attention scheme. As can be seen from Fig. 5,
the main idea is to stack two coattention layers (each coattention layer computes the bidirectional
attentions as shown in Fig. 4) and merge the coattention outputs from each layer with residual
connections aiming to model long-range dependencies between the context words and the query
words. The attention output is modeled as the following in the original paper:

G = concate(C; A; B; C2; A2; B2).

However, in our implementation, we choose to model the attention output as the following for better
performance:

G = concate(C; A;C © A;C © B;C © A2;C © B2).

Contextual embeddings C2Q attention
 Attention output

C :
Find similarity Combine or G

Ql matrix S concatenate

Q2C attention

Figure 3: C2Q and Q2C bidirectional attention in BiDAF.

C2Q attention

c :
Find similarity Combine or G

QS matrix S concatenate Attention output
Contextual embeddings

Coattention

Figure 4: Coattention in DCN.

1 c2 A A c

Find slnilarity Coattention 1 Bi-LSTM Find Slit Coattention 2 Concatenate
matrix $1 matrix S2 }

B2 B1 Q2

Figure 5: Deep residual coattention in DCN+.

3.4 Output layer enhancement with pointer network

The third enhancement implemented is based on the pointer network model proposed in [8]. In
contrast to the baseline output layer where the start position and the end position are predicted
independently, pointer network model predicts the probability distribution for the end position based
on the start position probability distribution based on the outputs of the attention layer.

Specifically, for the baseline output layer, the probability distribution for the start position and the
end position are produced as:

Pstart = softmax(Wstart|G; M]), Pena = softmax(Wena[G; M']),

where G € R°“*% and M € R24*N are the outputs of the attention layer and the modeling layer,

respectively, M’ € R24XN is the output of a bidirectional LSTM with M as input, Wetart, Wend €

IR!*101 are learnable parameters, H is the hidden layer size, and N is the context length.

The pointer network model is a RNN that is run for two steps, one for the start position, and one for
the end position. Specifically, at time step k,

Fi, = tanh(W, M + Wehz_1), Bx = softmax(W3F;),

where W,, W2, W3 are learnable parameters, 3; € RY is the probability distribution for the k-th

position in the answer ((, for start position and G2 for end position). hy_ 1 is the hidden vector at

position k — 1 modeled as:

hy = LSTM(M x , hy_1).
This is essentially how (is conditioned on 3.

4 Experiments

4.1 Dataset

The official SQUAD 2.0 dataset is used. The dataset splits are summarized in Table 1. Note that more
than 50% of the questions in the dev set are not answerable, while about only 33% of the questions in
the train set are not answerable.

plits 1Ze€ O-answer ratio mment

train .Q training set

set, se

test m Oo Set,

Table 1: Dataset splits information.

The statistics of context word length, question word length, and answer word length are illustrated in
Fig. 6. As can be seen, the majority of the contexts are within 300 words, and the majority of the
questions are within 20 words. In terms of answer length, the majority are within 5 words. Both dev
and train set exhibit similar statistics.

Context length Question length Answer length

0.14
0.014 MME dev mm dev 05 mmm dev

© train 0.12 = tain SE tain

0.012

04
0.010 0.10

>
2& 0.008 z 0.08 203
a a o
o o s
© 0.006 © 0.06 @

“0.2

0.004 0.04

01
0.002 0.02

0.000 0.00 0.0
0 100 200 300 400 500 600 0 10 20 30 40 0 2 4 6 8 Wb 2

Number of words in context Number of words in question Number of words in answer

Figure 6: Dataset statistics.

4.2 Evaluation metrics

Exact match (EM) and F1 scores are used as evaluation metrics. EM measures whether the answer

span matches exactly with the ground truth answer. F1 scores are computed as the harmonic mean
of precision and recall, where precision is calculated as the number of correct words divided by the
length of the predicted answer, and recall is calculated as the number of correct words divided by the
length of the ground truth answer. For evaluation, the predicted answer is measured against 3 golden
answers for each question, and the highest score among the three is recorded.

4.3. Model details

For the sake of fair comparison, in all the models, the character-level embedding dimensionality is 64
and the word level embedding dimensionality is 300. We use a batch size of 64 and a hidden layer
size of 100. We train all the models for 30 epochs, with a learning rate of 0.5 and drop-out probability
of 0.2.

4.4 Results and discussions

The results of different models on the development set are summarized in Table 2. We evaluate
different extensions to the baseline BiDAF model. For pointer network in the output layer, we explore
two options for the implementation. One option is to use separate weight parameters for the start
position prediction and the end position prediction (PN-1 in the table), and the other option is to share
the weight parameters between the two predictions (PN-2 in the table).

We also investigate how the performance of different models vary with respect to the length of
contexts and questions and the results are summarized in Table 3. The data points in the development
set are categorized into four groups, based on the length of contexts and the length of answers (we do
not include results for the impact of question length on performance since it is very similar to the
impact of context length). If there are more than 100 words in a context, then it is classified as a long
context; otherwise, it is classified as a short context. Similarly, if there are more than 3 words in an

answer, it is classified as a long answer, otherwise, it is classified as a short answer.

As can be seen, with only char-embedding enhancement, the baseline BiDAF performance can
be improved slightly, and the improvement is mainly for questions with long answers and long
contexts as shown in Table 3. With only pointer network modeling enhancement, the performance
improvement is quite small. With both char-embedding and pointer network modeling, the model
can achieve an EM score of 61.07 and an FI! score of 64.41. Sharing weights in the pointer network
modeling causes slight performance degradation and it is quite strange that the degradation mainly
happens for questions with short answers.

With deep residual coattention, char-embedding and independent start and end position prediction
as in baseline model, comparable performance can be achieved (EM of 61.17 and F1 of 64.97) as
BiDAF with char-embedding and pointer network modeling. For test set, an EM of 59.966 and
F1 of 63.386 is achieved for this model. However, adding pointer network modeling to the deep
residual coattention scheme causes slight performance degradation. The main degradation happens
for questions with long answers as shown in Table 3. This suggests that the current pointer network
implementation is not optimal for deep residual coattention scheme, and the attention layer and the
output layer need to be tuned together in order to achieve good performance.

V.

+ -em

+ pointer
+

+C

Table 2: Model performance results on development set.

Also as shown in Table 3, there is no significant performance difference between long contexts
and short contexts for all models. This is possibly due to the fact that all models use bidirectional
attention and thus are able to focus on the most relevant words pretty well irrespective of the length
of contexts. However, there is notable performance degradation for the group with long answers,
especially in terms of EM. This is as expected, as the longer the answer, the harder to predict the
correct answer span.

context context answer
Models o °

Table 3: Model performance for different lengths of documents and answers on the development set.

5 Analysis

To understand more deeply about the behavior and performance of the best model (deep residual
coattention with extra character embedding), we examine its performance across question types. The
average F1 score and the number of questions for each question type are summarized in Table 4. We
can see that the model performs best for “when” questions and does not do well for “why” and “how”
questions. This is intuitive since these questions are more complicated. Surprisingly, the performance
for “where” questions is also below average. We inspected some of the error answers and several
examples with comments are provided in Table 5. We also examined the errors made in the other
question types and some examples are listed in Table 6.

Question type | What | Who | When | Which | Where | Why | How | Other | Total

Size 3653 | 687 445 213 252 87 555 59 5951
Fl 63.72 | 66.68 | 74.25 | 72.49 | 60.41 | 60.28 | 59.56 | 49.70 | 64.45

Table 4: Best model performance across question types.

Context “Several families of Byzantine Greece were of Norman mercenary origin during the
period of the Comnenian Restoration, when Byzantine emperors were seeking out
western European warriors”

Question “Where were several Norman mercenary familes originate from?”
Prediction “Comnenian Restoration”
Ground truth | Not answerable
Comment The model made a mistake on the answer type. The predicted answer is a time/period.

Probably it is because the model does not understand the “when” clause followed the
predicted answer.

Context “The legendary religious zeal of the Normans was exercised in religious wars long
before the First Crusade carved out a Norman principality in Antioch. They were
major foreign participants in the Reconquista in Iberia”

Question “Where did the Normans carve out a principality before the First Crusade?”
Prediction “Antioch”
Ground truth | Not answerable
Comment This is a very tricky question for the model. The model indeed gave the correct answer

type (Antioch is indeed a place), but the model does not understand the difference of
“before” in the context and the question.

Context “The customary law of Normandy was developed between the 10th and 13th centuries
and survives today through the legal systems of Jersey and Guernsey in the Channel
Islands. Norman customary law was transcribed in two customaries in Latin by two
judges”

Question “Where are Jersey and Guernsey?”
Prediction No answer
Ground truth | Channel Islands
Comment The model failed to give an answer for this typical “where” question. It seems that the

model does not understand the expression with proposition “in”, possibly because it
didn’t see many such examples in the training set.
Table 5: Some examples of errors in “where” question type.

We also investigate the F1 score distribution on the development set for the best performed model and
the result is shown in Table 7. We can see the model predicts a perfect answer (with 100% F1 score)
for 61.2% of the questions and a wrong answer (with 0% F1 score) for 33.4% of the questions. It
predicts a partial correct answer for only the remaining 5.4% questions. Out of the 1986 completely
wrong answers, 1204 (60.6%) are wrong because the questions are not answerable, but the model
gives an answer, 530 (26.7%) are wrong because the questions are answerable, but the model predicts
no answer.

Fl 100%

Size | 3640 (61.2%)
0%

1986 (33.4%)

in between

325 (5.4%)

Table 7: F1 score distribution.

6 Conclusion

In this project, we explored different techniques in the encoding layer, the attention layer and the
output layer of an end-to-end neural network architecture for question answering. Experiment results
show that better performance can be achieved with different enhancements on top of the baseline
model. Especially, with extra character embedding and deep residual coattention, we can achieve
EM of 61.17 and F1 of 64.97 in comparison to EM of 58.32 and F1 of 61.78 of the baseline BiDAF
model. We also investigated the behavior of the best performed model by breaking down F1 score
and examining the performance across different context lengths, answer lengths, question types, and
error distributions. By inspecting some of the error examples, we found that the model performs
poorly mainly when it involves some kind of reasoning or advanced/complicated sentence structures.

Context “In contrast, an instance of this problem is a rather concrete utterance, which can serve

as the input for a decision problem”
Question “Is a problem instance typically characterized as abstract or concrete?”
Prediction “concrete utterance”
Ground truth | concrete
Comment The model basically found the right place for the answer. But in order to be more

precise, it needs to understand the meaning of “or” structure in the question.

Context “A function problem is a computational problem where a single output (of a total
function) is expected for every input, but the output is more complex than that of a
decision problem”

Question “Ts the output of a functional problem typically characterized by a simple or complex
answer?”

Prediction “the output is more complex”
Ground truth | complex
Comment Similar to the previous example, the model can locate the general range of the answer,

but failed to give a precise answer to the question.

Context “A decade after the 1973 oil crisis, Honda, Toyota and Nissan, affected by the 1981
voluntary export restraints, opened US assembly plants and established their luxury
divisions (Acura, Lexus and Infiniti, respectively) to distinguish themselves from their
mass-market brands.”

Question “Name a luxury division of Toyota.”
Prediction Acura, Lexus and Infiniti

Ground truth | Lexus
Comment Again, the model locate the general range of correct answer. But in order for the

model to precisely identify Lexus is the division of Toyota, it needs to understand
“respectively” and relate it to previous context “Honda, Toyota and Nissan”.

Table 6: Some examples of errors in other question types.

References

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, 2018.

[2] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention

flow for machine comprehension. In International Conference on Learning Representations
(ICLR), 2017.

[3] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. In International Conference on Learning Representations (ICLR), 2017.

[4] Microsoft Research Asia Natural Language Computing Group. R-net: Machine reading com-
prehension with self-matching networks. In https:/Avww.microsoft.com/en-us/research/wp-
content/uploads/2017/05/r-net.pdf, 2017.

[5] Shuohang Wang and Jing Jiang. Machine comprehension using match-Istm and answer pointer.
In International Conference on Learning Representations (ICLR), 2017.

[6] Caiming Xiong, Victor Zhong, and Richard Socher. DCN+: mixed objective and deep residual
coattention for question answering. CoRR, 2017.

[7] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQUAD. In Association for Computational Linguistics (ACL), 2018.

[8] Shuohang Wang and Jing Jiang. Machine comprehension using match-Istm and answer pointer.
CoRR, 2016.

[9] Yoon Kim. Convolutional neural networks for sentence classification. CoRR, 2014.

