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Abstract 

In this project, we attempt to build a state-of-the-art model for question answering 
on the SQuAD 2.0 dataset via combining several different deep learning techniques. 
We iterated off of the baseline BiDAF model with various improvements such as 
feature engineering, character embeddings, coattention, transformer models, and 

more. We had mixed success in getting all of these methodologies to fully run 
as anticipated and found many to not work as well as we had hoped, but we still 
managed to make significant improvements over the baseline by combining some 
of what we had implemented and performing a hyperparameter search. Our final 
model was quite successful on this front, achieving an F1 score of 63.517 and an 
EM score of 59.966 over the baseline’s 58 Fl score and 55 EM score. 

1 Key Information to include 

¢ Mentor: Gita Krishna 

¢ External Collaborators (if you have any): N/A 

¢ Sharing project: N/A 

2 Introduction 

SQuAD 2.0 is a well-known and established NLP problem. The original SQUAD dataset is composed 
of several question-context pairs, and the goal of the problem is to be able to select the start and 
end locations within the context that answers the question. SQUAD 2.0 is an iteration on top of this 
original dataset than introduces a new metric: AvNA, or answer vs. no answer. In this new dataset, 

some contexts may not actually contain the answer to the question, and in the case an answer is not 
present, the model must learn to predict that there is no answer to the question in the given context. 

This evolution to the original SQUAD dataset helped to motivate this as a more realistic problem, 
as it is quite clear that not every question can be answered by a single context. Moreover, given 
the incredibly high amount of data and finite amount of time, answering questions correctly and 
efficiently is an invaluable resource that is still a developing field. Many approaches have managed to 
make improvements, and some have even managed to create slightly different iterations improving 
on others. Very few, however, have tried combining these state-of-the-art approaches such as BiDAF, 
QA-Net, Transformers, and so on to create a hybrid model that outperforms all of these. 

Consequently, our key goal was to first reimplement various successful approaches, where each 
is described further individually in the Approach section, in order to build an effective model for 
question-answering. Because we were supplied with BiDAF in starter code, we decided to mainly 
iterate off of this and see what improvements we could make to boost the model’s overall performance. 
Then, once we had reimplemented many of these different improvements individually and evaluated 
them, we took the most successful of these and combined them to build our main model. 
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3 Related Work 

Previously, existing work in machine reading comprehension has revolved mostly around elaborate 
forms of recurrent neural networks, with the BiDAF[1] model being at the forefront in terms of 

LSTM based question answering models. It is this model that we chose to iterate off of for our project. 
However, many other approaches exist. 

More recently, the NLP landscape has seen the promising results obtained in transfer learning ap- 
proaches involving a pretrained Transformer based network. Newer machine reading comprehension 
models have thus revolved around taking pretrained models such as ELMo[2], GPT[3], BERT[4], etc., 

and finetuning it on the SQuAD dataset. More involved models like the Retro-Reader model[5], one 

of many models to have surpassed human performance on the subject, takes the basic encoder-decoder 
concept of Transformer and improve it by adding more complex verification modules. Owing to 
the size of some of these models and the restriction on using pre-trained models for this version of 
the final project, we do not use these newer state-of-the-art models explicitly. However, we do take 
concepts from several of these existing models as well as others mentioned below in order to build 
our state-of-the-art model, and we describe what these related approaches are and how they work 
in-depth in the Approach section. 

4 Approach 

Our primary approach involved trying out several different improvements to the baseline model 
individually before combining the ones we found to work best in order to build an effective model. 
We will detail each of the individual improvements we made to the BiDAF algorithm, the methods 
for finetuning hyperparameters we used, and the final model we decided to build out of the individual 
components. Unless noted otherwise, we coded every single one of the following approaches (except 
for the baseline) from scratch. 

4.1 Baseline 

As mentioned above, our baseline is a BiDAF model. The BiDAF model is described in depth in its 
associate paper [1], so we recommend that readers read over this paper before continuing to read this 
one, as we will not describe it in detail and make several references to it. 

4.2 Character-Level Embeddings 

To improve the baseline model, we implemented character-level embeddings in addition to the word- 
level embeddings in the baseline model, as mentioned in the original BiDAF paper[1]. Specifically, we 
first modify the model to get the character indices in the forward function and applied an embedding 
layer to each index. Next, we apply a one-dimensional CNN on each of these character embeddings. 
We then apply a maxpooling layer over the width of the word to get a fixed size, one-dimensional 
output for each word. Finally, we concatenate the character embedding vectors and the pretrained 
GloVe word vectors to be the final input to the model. 

4.3 Coattention 

Owing to some of the vagueness and different definitions of coattention, we decided to implement 
two different varieties of coattention, detailed in the next two subsections. 

4.3.1 DCN 

We implemented a coattention layer as described by the authors of the Dynamic Coattention Network 
for Question Answering [6]. A command line argument allows this layer to be substituted in 
for the attention layer of the BIDAF model. A question representation Q € R?*?” and context 
representation C' € R°*?/ are passed in as arguments. We first obtain an updated version of the 
question representation via passing it through a tanh nonlinearity: 

Q = tanh(Linear(Q))



Addtionally, we append two trainable sentinel vectors of length R?H to Q and C, where H is the 

hidden size, yielding Q € R(¢+))*?" and C € R(*+)*24) and then build an affinity matrix: 
L= cg" E R(ct+)) x(a+1) 

From here, we get two attention weights a and (6 and multiply by matrices to get context-to-question 
attention outputs a and question-to-context attention outputs b: 

a= softmax(L) é Ret) xt) 

@ = softmax(L') € Rt) x(e+)) 

a=a*x Q E Rct+1) x28 

b=BxCeE Rat) x20 

Finally, we obtain second-level attention output s: 

s=axBe Rt) x24 

We then concatenate s and a and pass this into a bidirectional LSTM, popping off the sentinel vector 
at this step to yield s,a € R°*?", yielding our final output: 

out = BiLSTM([s; a]) € R°*8# 

4.3.2 LSTM BiDAF Attention 

Owing to the similarity between the attention mechanism in the baseline code and the coattention 
layer as described in the DCN paper [6], we also decided to create our own novel approach to 
coattention. Namely, we noted that the main difference between the baseline’s attention and standard 

coattention was the choice of using a bidirectional LSTM instead of a tensor concatenation for the 
attention layer output. Consequently, we created a hybrid layer by simply replacing the output of the 
BiDAF model ({c, a, ¢* a, c« b]) with a bidirectional LSTM output (BiLSTM({c* a; c*b]) € R°*8). 
This layer is, for the most part, identical to standard BiDAF attention with the exception of the last 
layer; thus, we redirect the reader to read through the associated section 2.4 of the BiDAF paper [1] 
for more detail on how the rest of this layer works. 

4.4 Answer Pointer 

Inspired by the paper on Answer Pointer Net[7], we seek to improve the model’s performance by 
conditioning the end probabilities on the start probabilities. We tried two approaches to this: the 
first one is taking the concatenation of the outputs from the modeling and attention layers and run it 
through a RNN layer to produce the start probabilities; it then takes the RNN output of that layer 
through another RNN layer to produce the end probabilities. The second approach is to take the same 
concatenated output through two layers of self-attention, predicting the start and end probabilities 
respectively. This approach first takes the output of the modeling layers M € R?”™*°, and the BiDAF 
attention layers G € R°”*°, and calculate the start probabilities as follows: 

Cstart = [G; M) 

Cstaré . Cl ') ) 
Astart = Wetart : | softmax {| ———*""" | . Cygrar tart tart ( ( V8H tart 

Dstart = Softmax (Astart) 
where Werart € R!*8" is a learnable weight parameter. Similarly, for the end probability, we have 

M' =LSTM(M) 

Cena = [G; M"] 

Cend . CL ‘) ) 
Aend = Wena | softmax | ————"* ] - Cen 

‘ ‘ ( ( V8H ‘ 
Pena = softmax (Aena) 

where again, Weng € R!*8" is a learnable weight parameter. This approach is inspired by the 
Scaled Dot-Product Self Attention described in the original Transformer architecture[8]. We ran two 

experiments using this Self Attention setup, the difference being that for one we take the output of the 
first layer (start probabilities) to be the key vectors for the second layer; and for the other, we take the 
output of the first layer to be the value vectors for the second layer. We kept all training parameters 
constant.



4.5 Self-Attention 

Once again, self-attention has many definitions, so we decided to implement two versions of this. 
The first, named self-matching attention, stems from Microsoft’s R-Net [9], while the second is the 

same self-attention mechanism used in transformer models. Both are implemented as an optional 
additional layer that may be used immediately after the standard BiDAF attention layer or a variant 
of coattention and are usable via command line arguments. Let the input from the previous attention 
layer be defined as vp € R°*8”, 

4.5.1 R-Net Self-Matching Attention 

Here, we use a modified version of self-matching attention as presented in Microsoft’s R-Net [9]. 
We begin with some passage representation vp € R°*8. We then compute a similarity matrix 
and attention weights as follows, where v' € R°H, W1 € R°#*84, w2 © R845 are trainable 
network parameters: 

S=v!' «tanh(W1 * vp + W2 * vp) 

a = softmax(S) 

C= A* Up € ROSH 

Now, the original R-Net paper uses a bidirectiona RNN over the concatenation of v, and c 

(BiRNN({vp,c]) € R°*?/). However, this did not work for our output dimensionality, as we 
need the output hidden size to match the input size. Consequently, we instead use out = LSTM(c) € 
IR°*8 as our output for this layer. 

4.5.2 Transformer Multiheaded Self-Attention 

Similar to the Transformer architecture [10], we also implemented the same multi-head attention 

mechanism from Attention is all you need [11]. We pass in the result of standard BiDAF atten- 
tion/coattention, represented as vp € R°*®"”. By definition, multihead attention is given by 

MultiHead(Q, K, V)) = Concat(head;,--- , head), )W? 

where head; = Attention(QW2, KW#,VW,’) 

Here, we pass in vp for Q, K, and V, so We, Ws, wy € Rémoa*84 and dmoa = 8H/h and h is 
the number of heads to use, a tunable hyperparameter. Now, all that remains is to define the attention 
operation itself. 

Att nt (Q K V ) — ftmax ( yv e€ on > > = SO 

Doing all of this as described above will then yield the attention output for this variant of self-attention. 

  

4.6 Transformer 

We also experimented with Transformer-based architectures. The main model we tried is imple- 
menting the original QANet architecture as it is described in the paper[10]. The only difference 
between our model and the one described in the paper is the omission of the convolutional layers due 
to hardware constraints. A reduction in the overall size of the model was also needed due to limited 
memory in the machines used for training. Furthermore, we experimented with an original design 
for combining the context and query attention output. Let N be the sequence length and dmodei be 
the model dimension which is a hyperparameter; our model involves a custom decoder block that 
takes as inputs the output of the context encoder C € R“ *@model, the output of the query encoder 
Q € RN*4modet, and the output of the previous decoder layer X;_1 € R% *4™e4e!, We then compute 
the output of the ith decoder layer X; € R% *4me2e! as follows: 

A; = MultiHead (Query = Q, Keys = X;_1, Values = Xj_1) 

X;, = MultiHead (Query = C, Keys = A;, Values = A;) 

The rest of this novel model is the same as the QANet architecture. Due to hardware constraints, 

we ran one model with our custom decoder with dodger = 128 and dpidden = 128, with 4 attention 

heads and 3 layers in both the encoder and decoder stack. As for the QANet, we ran three different



models, first, a small one with dinoder = 64, hidden = 64, 4 attention heads and 3 layers; a medium 

one with dyodet = 128, dnidden = 128, 4 attention heads and 4 layers; and finally, a large one with 

dmodel = 256, dhidden = 512, 8 attention heads and 4 layers. Unfortunately, due to limited memory 

in our machines, we had to drastically decrease the batch size for these Transformer based models to 
fit, which cause significant increases in training time. 

4.7 Feature Engineering 

To further improve our model’s performance, we used feature engineering [12]. To be more specific, 
we first created a word frequency map, and then for each word vector, we tagged the word’s frequency 
at the end. However, there are tradeoffs between feature engineering and end-to-end learning. While 
feature engineering can be make training the model easier with the additional human guidance; it 
requires more human intervention and is thus less adaptable. For end-to-end learning, more emphasis 
is put on model autonomy; even though this makes the model harder to train, it is arguably more 
adaptable. 

4.8 Putting It All Together 

Unfortunately, not all our of experiments yielded results that actually surpassed the baseline model or 
were efficient enough to train in a practical amount of time for this project, as shown below in section 
5.4. We took the experiments that achieved superior performance than the baseline and combined 
them together to form an ultimate BiDAF-based model, which we dubbed UltimateBiDAF. This 
involves combining the character-level embedding, the RNN variation of the Answer Pointer Net 
output, feature engineering, and some hyperparameter tuning. We also trained a model with the 
Transformer style Self Attention, but it did not produce favorable results. 

5 Experiments 

5.1 Data 

As mentioned above, we use the SQUAD 2.0 dataset for our data, as built by Rajpurkar et. al [13]. 
However, we used the modified dev set as specified by the teaching team to avoid breaking the 
honor code. The task of the SQuAD dataset is to, given a context passage and a question, mark the 
indices of the starting and ending positions within the context passage that provide the answer to the 
associated question. If the answer to the question is not present in the context passage, the model 
should instead predict 0 and 0 for the start and end locations, which correlates to a prediction of "no 
answer." Therefore, the input of the model, concretely, will be a string representing a context passage 
and a string representing a question, while the output will be a pair of indices, where (0, 0) maps to 
no answer and (i, j) maps to an answer to the question starting at location i in the context passage and 
ending at location j. 

5.2 Evaluation method 

We use the four metrics supplied by the default project as our metrics. Our first metric is NLL, which 
stands for negative log-likelihood and is our loss function; here, it is the log likelihood of the start 
and end locations as predicted by the model. Our second metric, AVNA, stands for answer vs. no 
answer, and provides the model’s accuracy in predicting no answer vs. an answer being present as 
described in section 5.1. Our third metric, EM, stands for exact match and represents the frequency 
in which the model outputs the perfect label verbatim as a binary outcome. Our final metric, F1, is a 
looser metric than EM that represents the harmonic mean of recall and precision. For instance, if our 
model only predicted part of the true correct answer or predicted more parts of the context outside of 
the true answer, Fl would be non-zero as part of the model’s answer was correct, whereas EM would 

output 0 as a binary label. We primarily used Fl and EM to evaluate our models, although we still 
factored in NLL and AvNA in our experiments. 

5.3 Experimental details 

As described above, we ran our models above individually, tweaking hyperparameters for each 
subcomponent to optimize performance, and then combined the parts that worked best into Ulti-



mateBiDAF and tweaked hyperparameters once more. It would be too long to list the value of each 
hyperparameter we chose individually, so we will simply list the hyperparameters for the final model 
and list our general methodology below. 

The main hyperparameters we tweaked were batch size, dropout rate, number of epochs, and hidden 
size. We ran hyperparameter searches for each model below by tweaking each individually, using 
different "scales" for each value we tried for all of them, and then ran them for enough epochs to 
the point where we had a relatively clear idea where it would converge and would then cancel each 
manually. We repeated this process for every combination of hyperparameters on a large scale and 
then narrowed our search to converge to the best possible hyperparameters for each. Finally, we 
would also note the number of epochs where the model would seem to converge without overfitting 
for each model by analyzing the dev NLL in Tensorboard (a rising dev NLL indicated overfitting) 
and adjust accordingly. Some models had extra hyperparameters, such as the number of heads to use 
in Multiheaded Attention, so we tuned these in much the same way. 

Overall, our ideal values for each seemed to be a batch size somewhere between 16-128, depending 
on the model, dropout rate between 0.1-0.35, roughly 25 epochs, and the default hidden size of 100. 
Note that there were some experiments we could not try, such as raising the hidden size to very high 
values, due to time and memory constraints. For our UltimateBiDAF model, we settled on a batch 

size of 64, a dropout rate of 0.3, 25 epochs of training, and a hidden size of 100. 

5.4 Results 
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Note that we ran far more experiments than in the table above for hyperparameter tuning, 
these were just the ones we ran in optimal configuration for each all the way to convergence. We did 
not train multiheaded self-attention in isolation to completion, as it was clearly being outperformed 
by self-matching attention and QANet by a large margin. 

Our UltimateBiDAF that we chose (the one without self attention) achieved an F1 score of 63.517 

and an EM score of 59.966 for the Gradescope test leaderboard. It achieved 66.026 F1 and 62.729 
EM on the dev leaderboard as well, reflected in the table above. The leaderboards we used were the 

IID SQuAD leaderboards. 

Overall, our results weren’t quite what we were hoping. Namely, we found it strange that our 
self-attention layers were achieving such low results (F1 and EM scores beneath the baseline). We 
ran these, transformers, and coattention past various instructors who were unable to find any bugs, so 
perhaps it was not our implementation but rather how we applied them that did not fit. For instance, 
self-matching attention might not work well in a BiDAF model, as its input and output were both 
different compared to the R-net model from where it came. The QANet poor performance likely 
stemmed from us drastically reducing the model size in order to be able to run it; due to time and 
space constraints, as discussed above, it was completely intractable for us to train the full QANet 
architecture from start to finish to convergence, so we believe this shrinking of the model may have 
impacted its performance as well.



Overall, our approach may have been slightly optimistic, as this project taught us that these machine 
learning techniques are not simple things to "slap together" in order to improve on an existing model; 
but rather are carefully calculated improvements that rely on certain inputs and outputs to truly be 
effective. Nevertheless, our improvement over the baseline using some parts of what we implemented 
such as character level embeddings and feature engineering shows that some small tweaks can 
certainly still improve an existing model by a decent margin as evidenced by the table above. 

6 Analysis 

Our UltimateBiDAF model appeared to be quite successful on the questions we analyzed overall. 
However, we did notice the model appeared to routinely "overpredict" the correct answer, yielding 
high recall scores but low precision and, in some cases, reducing its AVNA performance. For instance, 
when asked "what is the active form of vitamin D known as?", our model predicted "steroid hormone 

calcitriol" instead of simply "calcitriol." This pattern repeats in many other questions as well, and 
one notable thing is that our model never seemed to underpredict the correct output (that is, it didn’t 
appear to ever have high precision but low recall for any output). Furthermore, we noticed that it 
has a tendency to predict an answer when there truly is no answer in the context passage. Thus, our 
model appears to be "overly optimistic" when finding an answer, yielding much information that isn’t 
necessarily relevant to the true answer. 

On the other hand, however, our model appeared to not miss the answer often when an answer 
was present, and it very rarely yielded passages completely unrelated to the true answer (with the 
exception of yielding an answer when no answer actually existed in the context). Consequently, we 
believe our model, qualitatively speaking, to be effective at question answering. No particular type of 
question seemed to give it more issues than any other. The majority of missed questions did begin 
with "what", but most of the questions present that we analyzed began with "what", so we believe 
this phenomenon was simply due to the relatively higher frequency of "what" questions rather than 
any particular issue the model had with these. 

7 Conclusion 

Through this project, we learned that while many excellent and powerful NLP tools exist, these tools 
cannot necessarily be used in all contexts. Some require very specific network structures to truly be 
effective, and trying to use them in other contexts can often times lead to lower performance than if 
they had not been used at all. That said, question answering is a growing field, and many established 
solutions can clearly be combined to greater effect, as shown by our UltimateBiDAF model. By 
combining different unrelated methodologies used for question-answering, we were able to build a 
model that surpassed standard BiDAF in performance; we believe that given more time, we may have 
been able to achieve even greater results. Namely, the Transformer/QANet model was held back by 
severe time and resource constraints. Given more effective GPUs that could hold the model in full 
and the time needed to train one of these to completion, we believe that we may have been able to 
train this model in conjunction with feature engineering and character embeddings to outperform our 
UltimateBiDAF model that we submitted. This is most likely the avenue we would investigate next, 
along with perhaps implementing R-Net from scratch to explore self-matching attention’s potential 
further. 
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