
Stanford CS224N SQuAD IID Default Project

Tracy Cai Paul Mure
Department of Computer Science Department of Computer Science

Stanford University Stanford University
cpcai@stanford. edu paulmure@stanford.edu

Ben Rocklin
Department of Computer Science

Stanford University
brocklin@stanford.edu

Abstract

In this project, we attempt to build a state-of-the-art model for question answering
on the SQuAD 2.0 dataset via combining several different deep learning techniques.
We iterated off of the baseline BiDAF model with various improvements such as
feature engineering, character embeddings, coattention, transformer models, and

more. We had mixed success in getting all of these methodologies to fully run
as anticipated and found many to not work as well as we had hoped, but we still
managed to make significant improvements over the baseline by combining some
of what we had implemented and performing a hyperparameter search. Our final
model was quite successful on this front, achieving an F1 score of 63.517 and an
EM score of 59.966 over the baseline’s 58 Fl score and 55 EM score.

1 Key Information to include

¢ Mentor: Gita Krishna

¢ External Collaborators (if you have any): N/A

¢ Sharing project: N/A

2 Introduction

SQuAD 2.0 is a well-known and established NLP problem. The original SQUAD dataset is composed
of several question-context pairs, and the goal of the problem is to be able to select the start and
end locations within the context that answers the question. SQUAD 2.0 is an iteration on top of this
original dataset than introduces a new metric: AvNA, or answer vs. no answer. In this new dataset,

some contexts may not actually contain the answer to the question, and in the case an answer is not
present, the model must learn to predict that there is no answer to the question in the given context.

This evolution to the original SQUAD dataset helped to motivate this as a more realistic problem,
as it is quite clear that not every question can be answered by a single context. Moreover, given
the incredibly high amount of data and finite amount of time, answering questions correctly and
efficiently is an invaluable resource that is still a developing field. Many approaches have managed to
make improvements, and some have even managed to create slightly different iterations improving
on others. Very few, however, have tried combining these state-of-the-art approaches such as BiDAF,
QA-Net, Transformers, and so on to create a hybrid model that outperforms all of these.

Consequently, our key goal was to first reimplement various successful approaches, where each
is described further individually in the Approach section, in order to build an effective model for
question-answering. Because we were supplied with BiDAF in starter code, we decided to mainly
iterate off of this and see what improvements we could make to boost the model’s overall performance.
Then, once we had reimplemented many of these different improvements individually and evaluated
them, we took the most successful of these and combined them to build our main model.

Stanford CS224N Natural Language Processing with Deep Learning

3 Related Work

Previously, existing work in machine reading comprehension has revolved mostly around elaborate
forms of recurrent neural networks, with the BiDAF[1] model being at the forefront in terms of

LSTM based question answering models. It is this model that we chose to iterate off of for our project.
However, many other approaches exist.

More recently, the NLP landscape has seen the promising results obtained in transfer learning ap-
proaches involving a pretrained Transformer based network. Newer machine reading comprehension
models have thus revolved around taking pretrained models such as ELMo[2], GPT[3], BERT[4], etc.,

and finetuning it on the SQuAD dataset. More involved models like the Retro-Reader model[5], one

of many models to have surpassed human performance on the subject, takes the basic encoder-decoder
concept of Transformer and improve it by adding more complex verification modules. Owing to
the size of some of these models and the restriction on using pre-trained models for this version of
the final project, we do not use these newer state-of-the-art models explicitly. However, we do take
concepts from several of these existing models as well as others mentioned below in order to build
our state-of-the-art model, and we describe what these related approaches are and how they work
in-depth in the Approach section.

4 Approach

Our primary approach involved trying out several different improvements to the baseline model
individually before combining the ones we found to work best in order to build an effective model.
We will detail each of the individual improvements we made to the BiDAF algorithm, the methods
for finetuning hyperparameters we used, and the final model we decided to build out of the individual
components. Unless noted otherwise, we coded every single one of the following approaches (except
for the baseline) from scratch.

4.1 Baseline

As mentioned above, our baseline is a BiDAF model. The BiDAF model is described in depth in its
associate paper [1], so we recommend that readers read over this paper before continuing to read this
one, as we will not describe it in detail and make several references to it.

4.2 Character-Level Embeddings

To improve the baseline model, we implemented character-level embeddings in addition to the word-
level embeddings in the baseline model, as mentioned in the original BiDAF paper[1]. Specifically, we
first modify the model to get the character indices in the forward function and applied an embedding
layer to each index. Next, we apply a one-dimensional CNN on each of these character embeddings.
We then apply a maxpooling layer over the width of the word to get a fixed size, one-dimensional
output for each word. Finally, we concatenate the character embedding vectors and the pretrained
GloVe word vectors to be the final input to the model.

4.3 Coattention

Owing to some of the vagueness and different definitions of coattention, we decided to implement
two different varieties of coattention, detailed in the next two subsections.

4.3.1 DCN

We implemented a coattention layer as described by the authors of the Dynamic Coattention Network
for Question Answering [6]. A command line argument allows this layer to be substituted in
for the attention layer of the BIDAF model. A question representation Q € R?*?” and context
representation C' € R°*?/ are passed in as arguments. We first obtain an updated version of the
question representation via passing it through a tanh nonlinearity:

Q = tanh(Linear(Q))

Addtionally, we append two trainable sentinel vectors of length R?H to Q and C, where H is the

hidden size, yielding Q € R(¢+))*?" and C € R(*+)*24) and then build an affinity matrix:
L= cg" E R(ct+)) x(a+1)

From here, we get two attention weights a and (6 and multiply by matrices to get context-to-question
attention outputs a and question-to-context attention outputs b:

a= softmax(L) é Ret) xt)

@ = softmax(L') € Rt) x(e+))

a=a*x Q E Rct+1) x28

b=BxCeE Rat) x20

Finally, we obtain second-level attention output s:

s=axBe Rt) x24

We then concatenate s and a and pass this into a bidirectional LSTM, popping off the sentinel vector
at this step to yield s,a € R°*?", yielding our final output:

out = BiLSTM([s; a]) € R°*8#

4.3.2 LSTM BiDAF Attention

Owing to the similarity between the attention mechanism in the baseline code and the coattention
layer as described in the DCN paper [6], we also decided to create our own novel approach to
coattention. Namely, we noted that the main difference between the baseline’s attention and standard

coattention was the choice of using a bidirectional LSTM instead of a tensor concatenation for the
attention layer output. Consequently, we created a hybrid layer by simply replacing the output of the
BiDAF model ({c, a, ¢* a, c« b]) with a bidirectional LSTM output (BiLSTM({c* a; c*b]) € R°*8).
This layer is, for the most part, identical to standard BiDAF attention with the exception of the last
layer; thus, we redirect the reader to read through the associated section 2.4 of the BiDAF paper [1]
for more detail on how the rest of this layer works.

4.4 Answer Pointer

Inspired by the paper on Answer Pointer Net[7], we seek to improve the model’s performance by
conditioning the end probabilities on the start probabilities. We tried two approaches to this: the
first one is taking the concatenation of the outputs from the modeling and attention layers and run it
through a RNN layer to produce the start probabilities; it then takes the RNN output of that layer
through another RNN layer to produce the end probabilities. The second approach is to take the same
concatenated output through two layers of self-attention, predicting the start and end probabilities
respectively. This approach first takes the output of the modeling layers M € R?”™*°, and the BiDAF
attention layers G € R°”*°, and calculate the start probabilities as follows:

Cstart = [G; M)

Cstaré . Cl '))
Astart = Wetart : | softmax {| ———*""" | . Cygrar tart tart ((V8H tart

Dstart = Softmax (Astart)
where Werart € R!*8" is a learnable weight parameter. Similarly, for the end probability, we have

M' =LSTM(M)

Cena = [G; M"]

Cend . CL ‘))
Aend = Wena | softmax | ————"*] - Cen

‘ ‘ ((V8H ‘
Pena = softmax (Aena)

where again, Weng € R!*8" is a learnable weight parameter. This approach is inspired by the
Scaled Dot-Product Self Attention described in the original Transformer architecture[8]. We ran two

experiments using this Self Attention setup, the difference being that for one we take the output of the
first layer (start probabilities) to be the key vectors for the second layer; and for the other, we take the
output of the first layer to be the value vectors for the second layer. We kept all training parameters
constant.

4.5 Self-Attention

Once again, self-attention has many definitions, so we decided to implement two versions of this.
The first, named self-matching attention, stems from Microsoft’s R-Net [9], while the second is the

same self-attention mechanism used in transformer models. Both are implemented as an optional
additional layer that may be used immediately after the standard BiDAF attention layer or a variant
of coattention and are usable via command line arguments. Let the input from the previous attention
layer be defined as vp € R°*8”,

4.5.1 R-Net Self-Matching Attention

Here, we use a modified version of self-matching attention as presented in Microsoft’s R-Net [9].
We begin with some passage representation vp € R°*8. We then compute a similarity matrix
and attention weights as follows, where v' € R°H, W1 € R°#*84, w2 © R845 are trainable
network parameters:

S=v!' «tanh(W1 * vp + W2 * vp)

a = softmax(S)

C= A* Up € ROSH

Now, the original R-Net paper uses a bidirectiona RNN over the concatenation of v, and c

(BiRNN({vp,c]) € R°*?/). However, this did not work for our output dimensionality, as we
need the output hidden size to match the input size. Consequently, we instead use out = LSTM(c) €
IR°*8 as our output for this layer.

4.5.2 Transformer Multiheaded Self-Attention

Similar to the Transformer architecture [10], we also implemented the same multi-head attention

mechanism from Attention is all you need [11]. We pass in the result of standard BiDAF atten-
tion/coattention, represented as vp € R°*®"”. By definition, multihead attention is given by

MultiHead(Q, K, V)) = Concat(head;,--- , head),)W?

where head; = Attention(QW2, KW#,VW,’)

Here, we pass in vp for Q, K, and V, so We, Ws, wy € Rémoa*84 and dmoa = 8H/h and h is
the number of heads to use, a tunable hyperparameter. Now, all that remains is to define the attention
operation itself.

Att nt (Q K V) — ftmax (yv e€ on > > = SO

Doing all of this as described above will then yield the attention output for this variant of self-attention.

4.6 Transformer

We also experimented with Transformer-based architectures. The main model we tried is imple-
menting the original QANet architecture as it is described in the paper[10]. The only difference
between our model and the one described in the paper is the omission of the convolutional layers due
to hardware constraints. A reduction in the overall size of the model was also needed due to limited
memory in the machines used for training. Furthermore, we experimented with an original design
for combining the context and query attention output. Let N be the sequence length and dmodei be
the model dimension which is a hyperparameter; our model involves a custom decoder block that
takes as inputs the output of the context encoder C € R“ *@model, the output of the query encoder
Q € RN*4modet, and the output of the previous decoder layer X;_1 € R% *4™e4e!, We then compute
the output of the ith decoder layer X; € R% *4me2e! as follows:

A; = MultiHead (Query = Q, Keys = X;_1, Values = Xj_1)

X;, = MultiHead (Query = C, Keys = A;, Values = A;)

The rest of this novel model is the same as the QANet architecture. Due to hardware constraints,

we ran one model with our custom decoder with dodger = 128 and dpidden = 128, with 4 attention

heads and 3 layers in both the encoder and decoder stack. As for the QANet, we ran three different

models, first, a small one with dinoder = 64, hidden = 64, 4 attention heads and 3 layers; a medium

one with dyodet = 128, dnidden = 128, 4 attention heads and 4 layers; and finally, a large one with

dmodel = 256, dhidden = 512, 8 attention heads and 4 layers. Unfortunately, due to limited memory

in our machines, we had to drastically decrease the batch size for these Transformer based models to
fit, which cause significant increases in training time.

4.7 Feature Engineering

To further improve our model’s performance, we used feature engineering [12]. To be more specific,
we first created a word frequency map, and then for each word vector, we tagged the word’s frequency
at the end. However, there are tradeoffs between feature engineering and end-to-end learning. While
feature engineering can be make training the model easier with the additional human guidance; it
requires more human intervention and is thus less adaptable. For end-to-end learning, more emphasis
is put on model autonomy; even though this makes the model harder to train, it is arguably more
adaptable.

4.8 Putting It All Together

Unfortunately, not all our of experiments yielded results that actually surpassed the baseline model or
were efficient enough to train in a practical amount of time for this project, as shown below in section
5.4. We took the experiments that achieved superior performance than the baseline and combined
them together to form an ultimate BiDAF-based model, which we dubbed UltimateBiDAF. This
involves combining the character-level embedding, the RNN variation of the Answer Pointer Net
output, feature engineering, and some hyperparameter tuning. We also trained a model with the
Transformer style Self Attention, but it did not produce favorable results.

5 Experiments

5.1 Data

As mentioned above, we use the SQUAD 2.0 dataset for our data, as built by Rajpurkar et. al [13].
However, we used the modified dev set as specified by the teaching team to avoid breaking the
honor code. The task of the SQuAD dataset is to, given a context passage and a question, mark the
indices of the starting and ending positions within the context passage that provide the answer to the
associated question. If the answer to the question is not present in the context passage, the model
should instead predict 0 and 0 for the start and end locations, which correlates to a prediction of "no
answer." Therefore, the input of the model, concretely, will be a string representing a context passage
and a string representing a question, while the output will be a pair of indices, where (0, 0) maps to
no answer and (i, j) maps to an answer to the question starting at location i in the context passage and
ending at location j.

5.2 Evaluation method

We use the four metrics supplied by the default project as our metrics. Our first metric is NLL, which
stands for negative log-likelihood and is our loss function; here, it is the log likelihood of the start
and end locations as predicted by the model. Our second metric, AVNA, stands for answer vs. no
answer, and provides the model’s accuracy in predicting no answer vs. an answer being present as
described in section 5.1. Our third metric, EM, stands for exact match and represents the frequency
in which the model outputs the perfect label verbatim as a binary outcome. Our final metric, F1, is a
looser metric than EM that represents the harmonic mean of recall and precision. For instance, if our
model only predicted part of the true correct answer or predicted more parts of the context outside of
the true answer, Fl would be non-zero as part of the model’s answer was correct, whereas EM would

output 0 as a binary label. We primarily used Fl and EM to evaluate our models, although we still
factored in NLL and AvNA in our experiments.

5.3 Experimental details

As described above, we ran our models above individually, tweaking hyperparameters for each
subcomponent to optimize performance, and then combined the parts that worked best into Ulti-

mateBiDAF and tweaked hyperparameters once more. It would be too long to list the value of each
hyperparameter we chose individually, so we will simply list the hyperparameters for the final model
and list our general methodology below.

The main hyperparameters we tweaked were batch size, dropout rate, number of epochs, and hidden
size. We ran hyperparameter searches for each model below by tweaking each individually, using
different "scales" for each value we tried for all of them, and then ran them for enough epochs to
the point where we had a relatively clear idea where it would converge and would then cancel each
manually. We repeated this process for every combination of hyperparameters on a large scale and
then narrowed our search to converge to the best possible hyperparameters for each. Finally, we
would also note the number of epochs where the model would seem to converge without overfitting
for each model by analyzing the dev NLL in Tensorboard (a rising dev NLL indicated overfitting)
and adjust accordingly. Some models had extra hyperparameters, such as the number of heads to use
in Multiheaded Attention, so we tuned these in much the same way.

Overall, our ideal values for each seemed to be a batch size somewhere between 16-128, depending
on the model, dropout rate between 0.1-0.35, roughly 25 epochs, and the default hidden size of 100.
Note that there were some experiments we could not try, such as raising the hidden size to very high
values, due to time and memory constraints. For our UltimateBiDAF model, we settled on a batch

size of 64, a dropout rate of 0.3, 25 epochs of training, and a hidden size of 100.

5.4 Results

wer Pointer: -Attention

inter: ue -Attention

- tion

et

et um,

et

et Custom

wl on

ttention

Note that we ran far more experiments than in the table above for hyperparameter tuning,
these were just the ones we ran in optimal configuration for each all the way to convergence. We did
not train multiheaded self-attention in isolation to completion, as it was clearly being outperformed
by self-matching attention and QANet by a large margin.

Our UltimateBiDAF that we chose (the one without self attention) achieved an F1 score of 63.517

and an EM score of 59.966 for the Gradescope test leaderboard. It achieved 66.026 F1 and 62.729
EM on the dev leaderboard as well, reflected in the table above. The leaderboards we used were the

IID SQuAD leaderboards.

Overall, our results weren’t quite what we were hoping. Namely, we found it strange that our
self-attention layers were achieving such low results (F1 and EM scores beneath the baseline). We
ran these, transformers, and coattention past various instructors who were unable to find any bugs, so
perhaps it was not our implementation but rather how we applied them that did not fit. For instance,
self-matching attention might not work well in a BiDAF model, as its input and output were both
different compared to the R-net model from where it came. The QANet poor performance likely
stemmed from us drastically reducing the model size in order to be able to run it; due to time and
space constraints, as discussed above, it was completely intractable for us to train the full QANet
architecture from start to finish to convergence, so we believe this shrinking of the model may have
impacted its performance as well.

Overall, our approach may have been slightly optimistic, as this project taught us that these machine
learning techniques are not simple things to "slap together" in order to improve on an existing model;
but rather are carefully calculated improvements that rely on certain inputs and outputs to truly be
effective. Nevertheless, our improvement over the baseline using some parts of what we implemented
such as character level embeddings and feature engineering shows that some small tweaks can
certainly still improve an existing model by a decent margin as evidenced by the table above.

6 Analysis

Our UltimateBiDAF model appeared to be quite successful on the questions we analyzed overall.
However, we did notice the model appeared to routinely "overpredict" the correct answer, yielding
high recall scores but low precision and, in some cases, reducing its AVNA performance. For instance,
when asked "what is the active form of vitamin D known as?", our model predicted "steroid hormone

calcitriol" instead of simply "calcitriol." This pattern repeats in many other questions as well, and
one notable thing is that our model never seemed to underpredict the correct output (that is, it didn’t
appear to ever have high precision but low recall for any output). Furthermore, we noticed that it
has a tendency to predict an answer when there truly is no answer in the context passage. Thus, our
model appears to be "overly optimistic" when finding an answer, yielding much information that isn’t
necessarily relevant to the true answer.

On the other hand, however, our model appeared to not miss the answer often when an answer
was present, and it very rarely yielded passages completely unrelated to the true answer (with the
exception of yielding an answer when no answer actually existed in the context). Consequently, we
believe our model, qualitatively speaking, to be effective at question answering. No particular type of
question seemed to give it more issues than any other. The majority of missed questions did begin
with "what", but most of the questions present that we analyzed began with "what", so we believe
this phenomenon was simply due to the relatively higher frequency of "what" questions rather than
any particular issue the model had with these.

7 Conclusion

Through this project, we learned that while many excellent and powerful NLP tools exist, these tools
cannot necessarily be used in all contexts. Some require very specific network structures to truly be
effective, and trying to use them in other contexts can often times lead to lower performance than if
they had not been used at all. That said, question answering is a growing field, and many established
solutions can clearly be combined to greater effect, as shown by our UltimateBiDAF model. By
combining different unrelated methodologies used for question-answering, we were able to build a
model that surpassed standard BiDAF in performance; we believe that given more time, we may have
been able to achieve even greater results. Namely, the Transformer/QANet model was held back by
severe time and resource constraints. Given more effective GPUs that could hold the model in full
and the time needed to train one of these to completion, we believe that we may have been able to
train this model in conjunction with feature engineering and character embeddings to outperform our
UltimateBiDAF model that we submitted. This is most likely the avenue we would investigate next,
along with perhaps implementing R-Net from scratch to explore self-matching attention’s potential
further.

References

[1] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension, 2016. arXiv:1611.01603.

[2] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,

and Luke Zettlemoyer. Deep contextualized word representations, 2018. arXiv: 1802.05365.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec

Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv: 1810.04805,
2018.

Zhuosheng Zhang, Junjie Yang, and Hai Zhao. Retrospective reader for machine reading
comprehension. arXiv preprint arXiv:2001.09694, 2020.

Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. arXiv preprint arXiv: 1611.01604, 2016.

Shuohang Wang and Jing Jiang. Machine comprehension using match-Istm and answer pointer,
2016. arXiv:1608.07905.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, page 5998-6008, 2017.

Natural Language Computing Group of Microsoft Research Asia. R-net: Machine reading
comprehension with self-matching networks. 2017.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,

and Quoc V Le. Qanet: Combining local convolution with global self-attention for reading
comprehension, 2018. arXiv:1804.09541.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, and Aidan N.

Gomez. Attention is all you need. CoRR, abs/1706.03762, http://arxiv.org/abs/1706.03762.,
2017.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer
open-domain questions. 2017. arXiv:1704.00051.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQUAD. In Association for Computational Linguistics (ACL), 2018.

