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Abstract 

Researchers today prioritize their time by building increasingly complex models 
that are harder to interpret and debug. The goal of this project is for us to dis- 
cover how noninvasive techniques can be equally as effective. Namely, we explore 
how accuracy improves with hyperparameter tuning, various different methods of 
learning rate decay, and layer freezing. We also analyze the effects of data-side aug- 
mentations such as backtranslation, synonyms, masked learning, and upsampling. 
The last area of exploration is an altered loss function that biases against length. 
Our results indicate that layer-wise fine-tuning and data augmentation each lead to 
better accuracy and generalization, and the new loss function leads to predictions 
closer in length to the ground truth response length. 

1 Key Information to include 

¢ Mentor: No external mentors 

e External Collaborators: N/A 

¢ Sharing project: N/A 

2 Introduction 

The holy grail of nlp question answering for years has been creating a model that can generalize well 
to shifts in domain. In other words, no matter what kind of questions you ask, the model should be 
able to adjust well to new kinds of questions. The Robust QA track for the default project emulates 
this problem by giving two types of datasets - an in-domain and an out-of-domain (ood) dataset. The 
in-domain dataset is substantially larger than the train and validation subsets of the ood dataset, but 
the test set is solely ood. 

The most difficult aspect to this type of problem is to be able to learn general question answering 
features as well as domain specific aspects without overfitting to the specific datasets. It is a fine line, 
because you want to learn question answering from the thousands of examples in the in-domain, but 
you don’t want to memorize how in-domain questions are answered. Similarly for ood, you want to 
learn the patterns of the ood dataset, but you don’t want to memorize the few ood examples in the 
train and validation sets. 

Our approach was five-pronged: exhaustive hyperparameter fine-tuning, data augmentation, mask- 
language modeling, loss function adaptation, and upsampling. The main goal of each of these methods 
is to help the model learn the general question answering framework of the in-domain training set 
and recognize the patterns of the ood training set, all while not overfitting. Our experiments show 
that data augmentation, upsampling, and hyperparameter tuning can increase Fl and EM by a couple 
points. Additionally, masked learning and custom loss functions both show promise and is an area of 
future work for robust question answering models. 
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Figure 1: BERT Knowledge distillation: DistiIBERT 

3.1 DistiIBERT 

BERT is a popular, transormer-based model for question answering, and Sanh et al. created a 
more lightweight version of BERT called DistilBERT (1). Compared to BERT, DistilBERT is 40% 
smaller and 60% faster than BERT while remaining 97% as accurate. The way that they were able 
to accomplish this was by creating a triple loss during pretraining which accounts for the biases 
learned by the larger models. The model accuracy can also be attributed to the knowledge distillation 
approach which uses the larger model to guide the smaller model during the learning period. The 
DistilBert model we use has 102 different parameters with an embedding layer, 6 transformer blocks 
with multi-head self attention, followed by a linear output layer. 

3.2 Hyperparameter Finetuning 

Zhang et al., aim to understand some of the problems of few-sample fine-tuning of BERT contextual 
representation. Despite being considered one of the most state-of-the-art performing pre-trained NLP 
models, BERT and BERT arge remain challenging for practitioners to fine-tune (1). Specifically, 
when training BERT on smaller datasets where pre-training would be most advantageous, it’s often 
seen that identical training processes can result in significantly different and sometimes degenerate 
models. This instability found in the training process has forced researchers to resort to repeatedly 
rerunning experiments for model selection, increasing model deployment time and costs while 
simultaneously making model performance comparisons difficult (2). As a result this paper aims 
to investigate why these instabilities in fine-tuning occur in BERT by analyzing commonplace 
BERT fine-tuning techniques and offer improvements on these techniques to improve remedy these 
instabilities. 

This paper identifies three proposed methods to improve few-sample fine-tuning with BERT and finds 
that other recently proposed methods to improve fine-tuning do not actually have as strong relative 
impact when modifying the fine-tuning process to include the three proposed methods outlined. The 
researchers benchmark the performance of their improvements to fine-tuning methods by studying 
BERT’s fine-tuning on four datasets that cover natural language (RTE), paraphrase detection (MRPC), 
sentiment classification (STS-B), and linguistic acceptability (CoLA), all datasets with fewer than 
10k training samples where BERT fine-tuning on these datasets is known to be unstable (2). The three 
proposed methods Zheng show to improve performance are correcting the gradient bias commonly 
used Adam optimizer that was omitted in many BERT packages, reinitializing the top L layers rather 
than just one specialized output layer can increase model performance, and fine-tuning BERT for 
more training epochs can increase both model performance and stability. 

3.3. Data Augmentation 

Data augmentation has become a popular approach for many machine learning and NLP specific 
projects. Wei and Zou present four easy data augmentation techniques to use to boost performance 
for text classification. The techniques are synonym replacement, random insertion, random swap, 
and random deletion. For the study, they looked into the effects that these techniques have on 
convolutional and reccurent neural networks. For both models, they were able to increase accuracy



by 1 percentage point on average without changing any other parameters. Additionally, they show 
through latent space analysis that their augmentations conserve the accuracy of the labels. 

Longpre et al. also explored the impacts of data augmentation but in the context of domain agnostic 
question answering (3). They show that data sampling techniques and augmentation via back 
translation can increase the performance of question answering models. They recognized that roughly 
half of the examples at test time would be negative examples (in other words, the answer would be 
"NO ANSWER"), so they sampled negative examples at a much higher rate at train time to reflect 
this distribution. For back translation, they translated the queries and contexts into a pivot language 
and then translated them back into the source language in order to create noisy training examples. 
Both techniques performed better than the baseline, and showed promise for the efficacy of data 
augmentation and sampling. 

3.4 Masked Learning Model 

Gururangan et al. demonstrate the powerful affects of task-adaptive pretraining, TAPT, when working 
with little amounts of unlabeled task specific data. Specifically, they recognized that TAPT provides 
large gains for ROBERTA [4]. They found that even with a far smaller pretraining corpus that is 
very task-specific, TAPT helped boost performance on task-specific predictions. Recognizing the 
parallels of having a small out of domain corpus as well, we set to use TAPT to see if the additional 
pretraining task can indeed help boost performance. 

4 Approach 

We go into an overview of our baseline model that we train and the following four main approaches 
that we take for improving DistilBert Model performance on question answering on various domain 
shifts. 

4.1 Baseline Model: 

Our baseline model was obtained by taking the vanilla DistilBertForQuestionAnswering and training 
on the in-domain datasets using early stopping with varying patience and learning rates. We select 
our baseline as the model which has the best F1 on the out of domain validation dataset. Our baseline 
chosen achieved a F1: 70.09 and EM: 53.87 on the in-domain validation, a F1: 48.35 and EM: 

32.46 on the out of domain validation, and a F1: 57.19 and a EM: 37.89 on our upsampled out 
of domain validation. The weights for the best baseline model were then saved and used for all 
subsequent experiments. 

1. Hyperparameter fine-tuning: We performed grid search on the learning rate and analyzed the 
impacts of layer-wise learning rate decay, weight decay, layer-wise learning rate initialization, 
layer freezing, and layer reinitialization. The goal of each of this techniques is to focus the 
learning on the outermost layers of the transformer architecture which are more prone to 
shifts in domain, as opposed to the inner layers which should remain relatively unchanged. 

2. Data Augmentation: We used two methods: backtranslation and synonyms. The goal of this 
is to prevent general overfitting and reinforce learning relationships between words. 

3. End-to-End Masked Language Modelling: Utilized as a pretraining task on the indomain 
and the ood datasets so as to further reinforce relationships between words and to reduce 
overfitting 

4. Custom Loss Function: Our loss function includes an extra term that penalizes the length 
of the predictions. The benefit of this approach is that it guides the model towards making 
predictions according to the average length of predictions 

5. Upsampling : We increased the size of the the ood train and validation sets so as to reflect 
the actual distributions in the test set. 

4.2 Hyperparameter fine-tuning 

We implement two proposed methods from Zheng et al (2) to improve few-sample fine-tuning with 
BERT, namely reinitializing the top L layers of our model and fine-tuning BERT for greater training



epochs as many researchers have been found to not training for sufficiently long even despite few 
samples. We confirm that reinitializing the top L layers rather than just one specialized output layer 
can increase model performance. In theory this makes sense as object recognition transfer learning 
shows that lower pre-trained layers learn more general features while high layers specialize to the 
pre-training task at hand. We conduct experiments of reinitializing the top 0, 1, 2 layers and the output 
layer with the original BERT weight layer initializations. Also, for our experiments we conduct 
various tests of running for varying number of epochs with early stopping patiences of 2,5, and 10 
determined by failure to improve in F1. 
In addition to the above two ideas we implement other common fine tuning practices of layer wise 
decay as well as performing a grid search to identify optimal hyperparameters. For our layer wise 
decay, we set varying learning rates based for the top 2 layers of our transformer, the middle two 
layers of our transformer, and the bottom two layers of our transformer. Likewise, we also experiment 
with freezing the bottom L layers. These are all motivated by the understanding that the top L layers 
are more important to learn domain specific transfer on our out of domain dataset and our bottom 
layers should be limited by how much they change. 

4.3 Data Augmentation 

Since our train and validation sets for ood are so small, it is commonplace for researchers to artificially 
create more data to feed into the model. The focus of the data augmentation is to create noise in 
both the question and the context, but not the answers. For this project, we utilized two different 
approaches for created new, augmented data. 

One method was via back translation. Back translation is the process by which you convert a series 
of text into a "pivot" language, and then translate it back into the original language. The goal of 
this method is to create noise in your dataset while also keeping the same structure of the sentences. 
We utilized Google’s Google Translate API for translations, and originally, we chose spanish as our 
original pivot langauge. However, after qualitative analysis, we found that the back translation was 
much too similar to the original text. This can be attributed to how comprehensive Google Translate 
has become. To add another layer of noise, we decided to use two pivot languages: Russian and 
Japanese. This create an ample amount of noise while still preserving the structure of the questions 
and contexts. 

The second method as proposed by Wei et al. (5), is synonym replacement. To do this, you choose 
some parameter a such that 0 < a < 1. The number of synonyms that you replace, n can be 
expressed as n = a * len(sent). The words that are replaced are randomly selected, and the 
synonyms themselves come from the python dictionary API. If no synonym is found, then we keep 
the original word in. 

Below is an example augmentation for a context sentence. 

¢ Original: An enraged posse of men descend on the isolated Seven Doors Hotel deep in the 
swamps. 

¢ Back Translation: Restored Posse men are down on the 7 door hotel isolated on the depth of 
wetlands. 

e Synonym Replacement: An angered posse of personnel flop on medication isolated cardinal 
exterior stay over deep interior the swamps. 

4.4 Masked Language Modeling 

Due to the scarcity of the out of domain data, we need to be able to learn general features key to 
question answering, so that it can be translated well during a domain shift. By adding an additional 
pretraining stage of Masked Language Modeling (MLM) on the out of domain datasets, the goal is to 
learn these general features. We performed experiments of incorporating this additional pretraining 
stage by leveraging the DistilBertForMaskedLM model from huggingface. This model was then 
trained on the contexts of the out of domain datasets. 15% of the words in the context paragraphs 
were randomly chosen to be replaced. Of the words to be replaced, 80% were replaced with a 
[MASK] token, 10% were replaced with another random word, and the remaining 10% were chosen 

to be the same word. The model was then trained to predict the true context paragraph using a 
traditional MLM loss function similar to Figure 2. The process of transferring an input sequence into



a masked sequence was followed using Gururangan et al. Due to time and resource constraints the 
MLM pretraining stage was only run for 50 epochs as opposed to 100 epochs in TAPT [4]. 
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Figure 2: DistiIBERTMaskedLM process 

4.5 Loss Function Modification 

We experiment with an alternative loss function than the standard cross entropy loss function. 
Currently the loss function adapted to our BERT model is 

loss(start — logits, start — positions) + loss(end — logits, end — positions) 

where the loss is defined as the standard cross entropy loss of Hy (y) := — 0, yj log (y;) and 
codified by 

loss(x, class) = —a|class] + log S © exp(z[j]) 

j 

In examining our model performance, however, we note that the distribution of predicted start and 
end positions produces answers that while accurate, are often times significantly longer than true 
answer. Nearly all of the true answers are shorter than 5 words while our model yields answers of up 
to 10 to 20 words. As such, we were motivated to use a brevity regularization term that reinforces our 
model to predict shorter answers. 
Due to the nature of our model yielding start and end logits and the length of the answer being 
determined by the difference of the argmax of both logits, we are unable to create a direct penalty due 
to the lack of gradient produced by argmax. As such, we offer an alternative approach to reinforce 
this shorter length. We add an additional loss term with regularization hyperparameter of 

loss(x, mean — positions) 

where 
1 

L= 3 (start_logits + end_logits) 

1 
mean — positions = 3 (start_positions + end_positions) 

The current loss functions drive our model to correctly identify given some context the distribution of 
mean and variance that our true start and end are positioned at. Mathematically, the correct value f 
of the support of the BERT model can be computed from our model that predicts p and has variance 
o7, namely as such: 

1 (x — p(a))* 
f(@ip,0) = —5 (ioe (2n0*) + 3 

In examining this, we see that while this can collectively drive our model to predict the correct 
distributions of the start and end positions as well as understanding their respective variances - 
this process is largely done independently aside from the shared context and only implicitly drives 
the model to improve the predicted variance. Our loss function adapts both the start and end logit 
positions conditional on their final prediction and enforces that their distribution should collectively 
center around the correct answer. While this step of centering is implicitly achieved by the original 
loss function, this added loss incorporates the conditional variance of typical response answer by 
learning the average distribution between start and end directly. Mathematically, instead of learning 
simply Ostart and eng, we also place greater weight on our model to learn Ojengthofresponse- We 

see that in adding this loss function, we do in fact see brevity constraint enforced and shorter answers.



4.6 Upsampling training and validation datasets 

This was a specific approach we took to solely improve testing performance. We note that the 
distribution of the testing dataset on the robustqa task is substantially different than the distribution 
of the traininig and validation datasets provided. The out of domain datasets include samples 
from DuoRC, RACE, and RelationExtraction datasets and the breakdown of representation from the 

training, validation, and testing datasets is 127/127/127, 126/128/128, and 1248/419/2693 respectively. 
We can see that the training distribution and validation distribution are largely identical with even 
splits however the testing distribution is closer to a 3-1-7 split. To remedy this, we upsample our 
training and validation datasets. 

Note that a weighted loss function where missed predictions for classes with a higher frequency 
in the test dataset receive a higher penalty could have been utilized as well. However, we argue 
that upsampling can be more stable than weighted loss when training using mini batches. Instead 
upsampling and weighted loss are effectively the same when training using a single batch and updating 
your parameters once a epoch but without the unstable learning. We consider downsampling as well 
but considering the relative small size of our dataset, we simply upsample our datasets to reflect the 
same testing distribution. 

5 Experiments 

5.1 Data 

The datasets that we will be using are the Stanford Question Answering Dataset (SQuAD), Natural 

Questions, and NewsQA as our in domain information. Both the SQuAD and NewsQA datasets were 

crowdsourced while Natural Questions was stripped from Search Logs. The passage sources for 
both SQuaD and Natural Questions were from Wikipedia and NewsQA was sourced from various 

News articles. The train dev split for the SQUAD, Natural Questions, and NewsQA datasets are 

50,000/50,000/50,000 and 10,507/4,212/12,836 respectively. 

We will also be utilizing three different out-of-domain datasets to see how well our model can react to 
shifts in domain for testing. The out of domain datasets are DuoRC, RACE, and RelationExtraction. 

The question sources were crowdsouroced, from teachers, and built synthetically respecitvely and 
were collected from movie reviews, examinatiionis, and wikipedia respectively. The train dev test 
splits for the DuoRC, RACE, and RelationExtraction datasets are 127/127/127, 126/128/128, and 

1248/419/2693 respectively. 

For our augmented datasets, we perform back translation and data augmentation for each sample in 
the ood train sets. If the augmented data causes the answer index to fall out of range, we remove that 
sample from the dataset. Once we have the augmented data, we upsample it according to the test 
distribution. 

5.2 Evaluation method 

The main evaluation metrics for this project are Exact Match (EM) and F1. However, it is important 
to note that the EM and FI scores vary depending on which datasets and distributions you are 
evaluating on. The train and validation ood datasets have even distributions with the average F1 on 
the leaderboard around 50. The test set is from a distribution, and the average F1 on the leaderboard 
is around 60. Due to this disparity, we changed our evaluation metric to be representative of the test 
distribution. For the train and val ood datasets, we multiplied the duorc dataset by 3 and the relation 
extraction dataset by 7 which is a rough approximation of how they are distributed in the test dataset. 
When the EM and F1 on the validation set are mentioned, note that these numbers are referring to the 

upsampled ood validation set unless specified otherwise. 

We also look into the efficacy of our loss function in how it impacts the length of its predictions. So, 
we calculate the average length of the predictions with and without the custom loss function. We 
want to see how our model performs on each of the datasets specifically, so we look at EM and F1 
scores for each of the ood datasets. Lastly, we perform qualitative analysis on the predictions of our 
model to find patterns on the misses of our model.
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Table 1: Results of various experiments with optimized learning rate parameters and early stopped on 
upsampled out of domain dataset 

  

Table 2: Breakdown of performance on specific datasets 

5.3 Experimental details 

For our experiments we created a script to conduct a grid search over every added feature to try and 
identify the strongest combination of features and report our best models as a function of their F1 
performance on the upsampled dataset. For example, we conduct a grid search over the following 
features batch sizes of [8,16], learning rates of [le-6, 5e-6, le-5, 5e-5, le-4, 5e-4], patience [2,4], 

number of epochs, weight decay, number of output layers to fine tune on, and flags of whether we 
were or were not using MLM, back translation, synonym translation, or an added loss function. We 
note that we train to exhaustion, stopped only by a patience factor determined by F1 as suggested by 
the paper Zheng et al which advises training for as long as possible. 

5.4 Results 

In table 1, we report our best Fl and EM of our various models on our upsampled dataset. For our 
submission to the testing leaderboard, we selected to submit our baseline, Finetune 1LFDS, and 

Finetune 1LFDSL. Our best model on the testing leaderboard was our Finetune 1LFDS model with 
an El and FM of 38.165 and 57.608. This was slightly worse than anticipated from our prediction of 
performance compared to table 1. Overall, we see also that on the validation dataset, when using our 
new loss function, we have an average response length of 2.8 instead of 3.5. We analyze these results 
in the following section. 

6 Analysis 

One potential reason we perhaps seeing these underestimates of performance is that our upsampled 
dataset reinforces the collective overfitting on the validation Relation Extraction dataset which only 
had few samples to begin with and as such may suffer from relative performance on the testing 
dataset. We tried to diagnose why this occurred by analyzing performance on each of the individual 
datasets per table 2. We see that overall, we are seeing significant focus of performance on Relation 
Extraction dataset regardless of finetuning as indicted by the baseline. We see that this was likely due 
to these baselines being all together trained on the indomain datasets which were mostly consisting 
of samples drawn from Wikipedia, just as in the case of the relation extraction dataset. As such, our 
upsampling may have not been as effective as initially anticipated and instead lending our model to 
actually train more on the other two datasets may have been more effective to overall improving our 
model’s performance. In analyzing our average response length on the validation set, we see that



incorporating our added loss successfully drove down the average response length from the baseline 
model. We see that this loss also regularizes and generalizes improvement on the other two datasets, 
possibly supposing that understanding the underlying distribution of the response length of the minor 
out of domain datasets is important and a much more defining parameter for performance on these 
datasets. 

One pattern that we saw in the dataset was that most of the answers were 4 words or less. By looking 
at our model’s output, we saw that a lot of times, we were locating the right area of the text but the 
answer was too long. This is why we implemented the custom loss function so that the predictions 
are closer in length to the actual answers. An example of our loss function working was an example 
where the answer was "Santa Rosa". Before the loss function, our model predicted "Santa Rosa, 

California" and afterwards it predicted "Santa Rosa." An area of future work is to further optimize 
and refine the lambda parameter which penalizes the length of the predictions. 

Another pattern that we saw in our model’s misses was it really struggled with questions with long 
contexts. This can be attributed to the fact that the model is still overfitting to the data and lacks 
comprehension of the large contexts. There are examples in the dataset where the model gets tripped 
by synonyms. For example, one of the questions is "Who does J reveal the mission to?" The answer 
starts with "J tells K." However, the model predicts "Agent W. He notifies them of Griffin.” It most 
likely does this because 3 words earlier, the word "reveal" appears. The model is most likely searching 
equally for each of the words in the question. It should be able to recognize that "tells" and "reveals" 
are synonymous. This is a downfall with this model and is another area for future improvement. 

Lastly, When visualizing text predictions when finetuning our model on the out of domain datasets 
after MLM pretraining, we observed that many of our answers were far too short and often just one 
word. We also observed that the addition of this new pretraining step of performing MLM slightly 
reduced our performance in both F1 and EM in various setups. When pretraining using a different 
objective than the traditional task, it is important to analyze which layers to freeze or reduce learning 
rate on so no extra noise is added to the weights learned. Although we tried various setups with 
freezing different layers as well as varying learning rates during our grid search, we noticed the 
incorporation of MLM pretraining consistently provided worse results than the omission of this step 
when holding all other variables constant. We believe this to have been due to noise possibly in our 
new weights due to being adapted to a new task. This problem could be further exacerbated for two 
reasons: 1) due to the sparse nature of our out of domain datasets when finetuning for QA and 2) 
due to additional noise that can result from our data augmentation techniques to the out of domain 
datasets. 

7 Conclusion 

Our main conclusions support that fine tuning and data augmentation methods were the most critical 
in improving performance on question answering systems under domain shifts. We see that data 
augmentation (back translation and synonym translation) however can sometimes be too noisy 
depending on how many sequences of languages we filter through, suggesting that future work look 
into understanding an opotimal number of languages. We have inconclusive results on the quality 
of MLM and upsampling our dataset as we see marginal improvement at best from these methods, 
potentially suggesting that they are not worthwhile pursuing for such few sample finetuning. Lastly, 
we see that for future work further investigation into our added loss function could be potentially 
useful in regularizing response length. Lastly, given the large difference in response F1 score based 
on class, we suggest that by adding a classifier that first predicts the type of dataset the question came 
from can be useful and then having three separate models for each class could be one strong area of 
future research. 

8 Code 

https://github.com/pujanpatel24/cs224-robust-project
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