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Abstract 

The goal of our project is to build a question answering system that is robust to out- 
of-distribution datasets. Motivated by the Apple Inc. team’s approach at the 2019 
MRQA workshop [1], we paraphrased both the in-domain and out-of-distribution 
training sets by back-translating each query and context pair to multiple languages 
using architectures that include a two-layer neural machine translation (NMT) 
system and pretrained transformers. By finetuning the DistiIBERT baseline on 
these augmented datasets, our best model achieved 51.28 F1 and 35.86 EM on the 
development set and 59.86 FI and 41.42 EM on the test set. 

1 Introduction 

Despite all the hype about large pretrained transformers like BERT and ROBERTA, recent studies 
have suggested that domain-adaptive pretraining, followed by a more restrictive finetuning on task- 
relevant data may yield considerable performance gains [2]. This approach, however, is resource 
intensive and cannot be applied to the cases where only few examples of the target domain are 
available. 

To make things even worse, the neural networks tend to capture minuscule correlations in the text, 
leading to drastically different result when the input is slightly disturbed, which poses a significant 
challenge for the Question Answering (QA) task due to the large discrepancy between the training 
and test corpus. In fact, models that outperform human on SQuAD [3] are found to be overfitting and 
generalize poorly to out-of-distribution datasets [4]. 

To address these issues, we approach the robustness problem by augmenting both the in-domain (ind) 
and out-of-distribution (ood) training data. For each query and context pair (q, c) in the training set, a 
query paraphrase q’ and a context paraphrase c’ was generated by first translating (q, c) to a pivot 
language using either the 2-layer seq2seq NMT system or pretrained transformers and then translate 
it back to English. 

By adding these label preserving invariances to the finetuning procedure, we hope to reduce the 
learned features specific to the ind data, while increasing the number of the ood data so that our QA 
model can generalize more broadly. 

2 Related Work 

Existing works on the topic of improving robustness of the QA system diversify into multiple 
directions. Jacobs et al. [5] approaches this problem through the Mixture-of-Experts (MoE) method, 
where each of the datasets has its own DistilBERT model [6] with a multi-layer perceptron model 
as the gating function to decide the mixture weight of each of the dataset model. Zhang et al. [7] 
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Figure 1: Approach Overview 

instead focuses on using few-sample finetuning, where they explore the effects of hyper-parameters, 
such as learning rate and number of gradient update steps, on increasing accuracy. The most relevant 
work to our approach is Apple Inc. team’s paper at the 2019 MRQA workshop [1], where they 
explored three data augmentation and sampling techniques: negative sampling, augmentation through 
back-translation and weighted sampling motivated by active learning. We specifically implement the 
back-translation method in our project. 

There are also several other papers that purely look at the effect of back-translation. Edunov et al. [8] 
investigate the effect of sampling or noisy synthetic data compared to data generated by greedy or 
beam search. Poncelas et al. [9] examine the effect of back-translated data size on performances of 

the NMT systems. We extract partial methods from these papers and combine them to create our own 
method in implementing data augmentation for finetuning purpose. 

3 Approach 

3.1 Baseline 

The baseline model we used is the direct output from the finetuned DistiIBERT model [6] provided 
by the course staff member. We trained the model on Microsoft Azure and achieved an Exact Match 
(EM) score of 33.246 and an F1 score of 48.432 on the ood validation set. 

3.2. Preprocessing 

Due to computing resource constraint, we uniformly sampled 10% of the ind training examples (15K 
out of 150K total) and used all ood training examples (381 total) for paraphrasing. To conform to 
the input data format expected by the machine translation systems, the contexts were first split into 
sentences using spaCy [10]. We removed blank lines and special encoding tokens such as \u20x 
to avoid packing empty tensors during the translation. We also added questions marks to the end 
of queries if they did not exist already. Otherwise, the model would fail to recognize the end of 
the line and would keep repeating the last words. Meanwhile, we recorded the context sentence 
where the gold answer a is located in order to facilitate the search for approximate answer span after 
back-translation. 

3.3. NMT 

For both NMT models (English-to-Spanish and Spanish-to-English translation), we used a seq2seq 
network consisting of a Bidirectional LSTM Encoder and a Unidirectional LSTM Decoder with 
global multiplicative attention. 

The training corpus was sourced from the English-Spanish TED talks dataset (2OMB) available on the 
CS 224N Winter 2020 website [11], which contains 216,617 parallel sentences. Instead of adopting 
Byte Pair Encoding as the Apple Inc. team, we performed tokenization using SentencePiece since



it is whitespace agnostic and gives more stability. Using domain knowledge in linguistics, the size of 
the source language (English) vocabulary was set to 8,000 and that of the pivot language (Spanish) 
was set to 13,000. 

Using the paper by Luong et al [12] who built a English-Vietnamese NMT system using a TED 
talks dataset of similar size (133K parallel sentences), we experimented with various hyperparameter 
values and set learning rate = 7.5e-4, patience = 2, embedding size = 512 and hidden size = 512. 

For fast iterations of testing, we started with the 1-layer LSTM implementation in CS 224N Assign- 
ment 4 [13]. However, the 1-layer NMT model did not yield satisfying results: We observed lots of 
<unk> tokens and non-translatable sentences due to the discrepancy between the vocabulary used in 
the TED talks training corpus and the QA dataset which is extracted mainly from News articles and 
Wikipedia. To increase the expressivity of the NMT model, we adapted the code to build a 2-layer 
LSTM network with modifications to facilitate running experiments on English-Spanish translation 
(Table 1 shows the improvement compared to the 1-layer network). 

Once trained, the NMT model was used to translate the queries and context from the QA dataset. 
After each translation, we parsed the paraphrases and dropped the entire example if any sentence in 
the query or the context is non-translatable. 

Table 1: NMT Architecture Comparison 

  

  

  

Model Language Train Perplexity Val Perplexity BLEU 

English + Spanish 6.58 8.36 29.02 
I-layer NMT cs yanish > English 5.44 6.82 29.94 

English — Spanish 3.80 6.78 33.76 
2-layer NMT  Snanish —> English 3.62 6.16 35.29 
  

3.4 Transformer 

We still observed empty translations and numerous <unk> tokens in the back-translated examples. 
These problems can be ascribed to the small training corpus, significant differences in training sources 
and inadequate flexibility of our NMT model. Considering the time and computing resources to 
train larger-scale NMT systems, we leveraged the pretrained transformers by FAIRSEQ. Specifically, 
we utilized the winning model of the WMT19 Shared News Translation Task built by Facebook 
AI Research team [14] in two language pairs: English (EN) <+ German (DE) and English (EN) <> 

Russian (RU). The training corpus of these transformers come from the News Crawl, Common Crawl 
and Wikipedia, which is rather similar to our QA training data sources. The DE-EN translation task 
dataset has 38,690,334 examples (9.71GB) and RU-EN dataset has 38,492,126 examples (3.86GB). 

Due to the slow translation speed, we only included the first 1OK examples of the sampled 15K 
examples for back-translation using transformer. 

3.5 Approximate answer span 

Since the true answer span might be lost in the paraphrased context, we had to compute an estimated 
answer span after back-translation. We could locate the paraphrased context sentence containing 
the true answer rather easily since we recorded their positions in the preprocessing step. Then we 
iterated over all continuous subsets of words and find the span that is the most similar to the original 
gold answer. To characterize the pairwise similarity, we considered the Jaccard similarity measure J 
adopted by the Apple 2019 MRQA paper, which can be expressed as: 

_ |AnB 
~ |AUB 
  J(A, B) 

for two word sets A and B. However, we ended up using the Generalized Jaccard [15] because 
it is more robust to misspelling - a rather frequent situation in our case due to the subword-level 
embedding. By default, Generalized Jaccard uses the Jaro similarity function, which is defined 
as:



. ifm =0 
SUM; = 1 m m m—t : 
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where |s;| is the length of string 7, m is the number of matching characters and t is half the number 
of transpositions. 

To ensure the quality of the augmented samples, we investigated the distribution of Generalized 

Jaccard scores between the estimated answer spans and the original gold answers (see Figure 2), and 
we decided to filter out examples with scores below 0.65. In Table 2, the post-Jaccard filtering sample 
size column shows that at most 1/3 examples were filtered out, leaving us with enough examples for 
finetuning. 

(a) Before Jaccard Filtering (b) Post Jaccard Filtering 
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Figure 2: Before and Post Filtering Jaccard Score Distribution 

4 Experiments 

4.1 Data 

We used two sets of data to complete the project. The first set of data is provided by the course staff, 
where the ind preprocessed datasets, SQUAD, NewsQA, and Natural Questions, were used to train 

the distilled version of BERT as our baseline model. We used the ood datasets train/dev splits as part 
of our finetuning process. The second set of data was the English-Spanish TED talks dataset used to 
train our NMT system, as described in section 3.3. 

Table 2: QA Datasets Overview 
  

  

  

  

  

Dataset Train Dev Test 

ind 

SQuAD [3] 50000 10,507 - 
NewsQA [16] 50000 4,212 - 
Natural Questions [17] 50000 12,836 - 

ood 

DuoRC [18] 127 126 1248 
RACE [19] 127 128 419 
RelationExtraction [20] 127 128 2693 
  

4.2 Evaluation method 

We measured the QA task performance based on two evaluation metrics: Exact Match (EM) Score 
and Fl Score. The EM score measures the number of answers that are exactly correct, and the F1



Table 3: Back-translation Result 
  

Post-Jaccard 

  

  

  

  

Experiment Post-backtrans Filterin Query Context 
Configuration Sample Size 8 BLEU BLEU 

Sample Size 

ind 

NMT beam 1 14999 10231 24.07 18.87 
NMT beam 5 14857 10546 28.43 25.07 

NMT beam 1, no <unk> 14999 10232 25.07 23.05 

NMT beam 5, no <unk> 14857 10553 28.55 28.17 

Transformer DE 10000 9240 47.04 58.91 

Transformer RU 10000 8827 36.55 50.33 

ood 

NMT beam 1 381 261 27.50 26.55 
NMT beam 5 380 293 31.66 29.99 

NMT beam 1, no <unk> 381 260 28.18 29.07 

NMT beam 5, no <unk> 380 293 31.74 32.10 

Transformer DE 381 366 52.87 56.46 

Transformer RU 381 347 39.72 44.60 
  

score captures the harmonic mean of precision and recall to measure whether the chosen answer are 
actually part of the true answer. 

4.3 Experimental details 

4.3.1 Beam size 

Motivated by the research conducted by Edunov et al. [8] who showed that the searching approach 
used in the NMT decoding step can significantly influence the translation performance, we experi- 
mented with two searching approaches: greedy search and beam search with size of 5. We would like 
to investigate how different beam sizes could affect our back-translation results and thus affect the 
downstream QA task performance. 

4.3.2 Replacement of <unk> tokens 

The back-translated queries and context often output <unk> tokens. These <unk> tokens, however, 
represent different words and may convey different meaning across sentences. To prevent the QA 
model from being distracted to predict the <unk> tokens, we did a version of the back-translated 
query and context, where the <unk> tokens were replaced with empty spaces to test whether this 
could improve the QA learning. 

4.3.3. Back-translation 

In total we generated six augmented dataset using variants of the back-translation model including: 
(1) NMT model with greedy search (beam size = 1), (2) NMT model with beam search (beam size = 

5), (3) NMT model with greedy search (beam size = 1) and no <unk>, (4) NMT model with beam 

search (beam size = 5) and no <unk>, (5) Transformer DE and (6) Transformer RU. 

The training time for each NMT models was approximately 8 hours in total. The translation time was 
roughly 20 hours for greedy search NMT and roughly 28 hours for beam-5 NMT. For Transformer 
DE and Transformer RU, the translation time was around 36 hours. 

For each augmented dataset, we compute the BLEU scores for both the query and the context 
(measured at the sentence-level) before vs. after the paraphrasing as a measure of the translation 
quality. The results are summarized in Table 3. 

4.3.4 Finetuning 

For each of the six variants, we loaded the baseline checkpoint and finetuned the QA model on both 

the augmented ind (roughly 10K examples) and ood data (roughly 380 examples). Evaluated on



the validation set for every 100 steps, each finetuning process took approximately half hour. The 
hyperparameters were set to default with batch size = 16, Ir = 3e-05, and number of epoch = 3. 

In particular, both models with no <unk> token performed much worse than their counterparts. We 
suspected this might be because the <unk> token functions as a sentinel which marks the length and 
position of the missing subword. Once replaced, the model cannot distinguish such placeholders 
from a regular space which represents the separation of the words. As a result, the meaning and 
grammatical structure of the sentence become fragmented. In all subsequent experiments, we dropped 
these 2 variants with the <unk> token replaced. 

In addition to the individual models, we also tried ensembling NMT beam 1, NMT beam 5, Trans- 

former DE and Transformer RU. Since these augmented data were back-translated from the same 
set of training data, we sampled 1/4 from each in our ensemble to avoid finetuning to very similar 
examples repeatedly. 

To improve models’ performance on ood data, we first validated the model on the ood validation set. 
Given that we also augmented some ind training examples, it is reasonable to validate also on the 
ind validation set. It is worth noting that the ind validation set is much larger than and is likely to 
dominate over the ood validation set during the finetuning validation process. Therefore, we chose to 
sample 1.4% of the original size of the ind validation data and combined with all of the ood validation 
data so that the ind validation size (27,555 x 1.4% = 386 examples) roughly equal to vod validation 
size (382 examples). Introducing the ind validation could presumably act as a from of stabilization 
and prevent the model from choosing the best checkpoint solely based on the noise from the rather 
limited ood validation data. 

4.4 Results 

Our best model is obtained by finetuning on the augmented data generated by Transformer RU only 
and validating on the union of 1.4% ind and all ood validation data. It achieved 59.86 FI and 41.42 
EM on the test set and 51.28 Fl and 35.86 EM on the development set, ranked respectively at the 
27th and 26th position on the leaderboard by the time of writing. Unlike what we have hoped for, 
ensembling did not help with the QA performance. The ensemble model achieved 58.92 F1 score 
and 40.46 EM on the test set and 48.26 F1 score and 32.98 EM on the development set, which we 
suspect is because the NMT systems lag well behind the Transformer. The QA performance of other 
experiments on the development set can be found in Table 4. 

Table 4: QA Task Result on Development Set 
  

Validate on ood Only Validate on ind + ood 
  

  
F1 EM Fl EM 

NMT beam | 49.09 34.82 48.12 32.98 

NMT beam 5 49.98 34.29 48.44 33.25 

NMT beam 1, no <unk> 48.10 32.72 - - 

NMT beam 5, no <unk> 49.48 32.98 - - 

Transformer DE 50.51 36.65 48.09 32.98 

Transformer RU 51.28 35.86 51.28 35.86 

Ensemble 50.50 36.65 48.26 32.98 
  

1.Bolded model was used for submission to test leaderboard 

2.Ensemble model used the augmented training set which was sampled from aug- 
mented data generated by NMT beam 1, NMT beam 5, Transformer DE and 

Transformer RU with equal weights 

5 Analysis 

5.1. Comparison of back translation models 

As demonstrated by Table 3, Transformer DE and RU outperform all NMT models in terms of both 
the percent of translatable queries and the translation quality (as measured by the BLEU score). This 
aligns with our expectation since the transformer architecture, equipped with multi-headed attention



and position representation, is inherently more powerful than the 2-layer LSTM network. The training 
corpus used by both transformers also come from a similar data source as the QA dataset and is much 
larger in size, as noted in section 3.4. 

By inspecting the augmented datasets generated from the back-translation models, we note that 
transformers are also better at preserving the grammatical and logical structure of the sentence. The 
NMT systems, nonetheless, fail to translate most named entities like person, location and dates, which 

are often the gold answers of a question (see example below): 

Context: Lionel Messi continued his remarkable scoring streak ... 

NMT systems: Linel Messi continued his remarkable score of scored with ... 

Transformers: Lionel Messi continued his remarkable scoring streak ... 

5.2 Effect of BLEU score 

As discussed above, a low BLEU score as in the case of NMT beam | (around 27.0) and NMT beam 

5 (around 30.0) might signal a poor translation quality, which ultimately lad to lower performance on 
the QA task. In fact, beam | with no <unk> token performed worse than the baseline when finetuned 
on ood validation data only, while the other 3 variants only slightly outperformed the baseline. 

However, a high BLEU score isn’t necessarily better: If the augmented examples are too similar to 
the original examples, they don’t add much value to the learning of the QA model. This is likely what 
happened with the Transformer DE, which achieved a BLEU score of above 50 on both the query 
and the context, but only had fair performance on the QA task. 

Overall, there seems to be a sweet spot in between where the model is able to preserve the translation 
quality while introducing a fair amount of noise to the data. In particular, the Transformer RU, with a 
query BLEU of 39.72 and a context BLEU of 44.60 achieved the best development set performance 
among all models. 

50 F1 Score EM Score 
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48 33 

31 
46    29 

44 27 
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Figure 3: Model Performance on Development Set 

5.3. Choice of pivot language 

While we attribute Transformer RU’s outstanding performance mainly to its well-ranged BLEU score, 
we cannot disentangle the effect of the choice of the pivot language. 

Among all languages investigated, German is the most similar to English in that they not only both 
belong to the Germanic linguistic family, but also use the same 26-letter alphabet and assume a similar 
grammatical structure. Although the Spanish orthography includes 4 extra letters "ch", "II", "fi", and 
"rr" compared to the English alphabet, the spelling of many words are still similar to their English 
counterparts. Russian, however, uses the Cyrillic alphabet consisting of 10 vowels, 21 consonants, 
and 2 signs. It also has a more flexible word order: Although the SUBJECT-VERB-OBJECT structure 
is considered dominant, the SUBJECT-OBJECT-VERB is also valid. Except for the foreign words, 
the spelling basic Russian vocabulary are vastly different from the other languages considered in this 
project, as demonstrated by the example below:



English: person 

German: person 

Spanish: persona 

Russian: aenosex (chelovek) 

Therefore, it could be the case that the large linguistic distance between Russian and English compared 
to German or Spanish, making it a better pivot language choice because it can sufficiently disturb the 
inputs and thus contribute to the overall robustness of the QA model. 

5.4 Error analysis 

To understand what our best model, Transformer RU manages to solve and its limitations, we analyzed 
and compared performance of all models under different scenarios. 

Question: What was the score in semifinal game of Wales-Ireland? 
Context: ... Les Bleus avenged their 2007 semi defeat by the English on home soil with a 19-12 
victory in Auckland, setting up a last-four clash with Wales — who went through after beating Celtic 
neighbors Ireland 22-10 ... 
Answer: 22-10 
Transformer RU augmented model prediction: 22-10 
Other model prediction: 19-12 

Analysis: As discussed in Section 5.1, the NMT models fail to translate most person names and 
numbers, which can be illustrated by the above example. Not only does Transformer RU successfully 
restore the right numbers, the QA model tuned on this augmented dataset also understands 
the inner logic of the sentence. Specifically, the QA model with Transformer RU augmentation 
correctly matches the scored points with the corresponding teams; 22-10 is the score for the game 
Wales-Ireland, while 19-12 is the score for the game England-France. 

Question: What is the writer’s attitude toward madness? 
Context: It seems that great artists and scientists often suffer from mental problems. Both Einstein 
and Dickens had mental illness ... bad or just difficult to understand, but their discoveries have 
improved the world we live in. It seems that a little creative madness is good for us all. 
Answer: little creative madness is good for us all 
All model predictions: good for us all 

Analysis: All models are able to capture some information in the true answer but lose nuance 
attributes and definitions. In this example, all models are able to output the correct attitude "good for 
us all" but fail to qualify the "madness" as "a little creative" in their predictions. 

6 Conclusion 

In this paper, we implemented back translation as a method of data augmentation. By paraphrasing 
each query and context pair in the sampled in-domain and out-of-distribution training sets, we 
generated augmented datasets using one of the 6 variants including NMT beam | (with and without 
<unk> tokens), NMT beam 5 (with and without <unk> tokens), Transformer DE and Transformer RU, 

as well as an ensemble model with equal splits. Our best model, the Transformer RU, achieved 51.28 
FI and 35.86 EM on the development set and 59.86 Fl and 41.42 EM on the test set (respectively 
ranked 26th and 27th on the leaderboard). The results from our extensive set of experiments not 
only show that backtranslation helps boost the QA performance, but also that the backtranslation 
architecture and training corpus matter as they affect the translation quality. If given more time and 
computing resources, we would like to run experiments using the control variate method to isolate 
the effect of pivot language in backtranslation on the downstream task performance. If indeed the 
Transformer RU outperforms other variants due to the larger linguistic distance between Russian and 
English, then languages like Chinese may work even better because it uses the pitch of a phoneme to 
determine word meaning and does not use spaces to separate words.
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