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Abstract 

In this project, we build a question answering system for the Stanford Question An- 
swering Dataset (SQuAD 2.0) [1]. We start with the ever-popular Bi-Directional 
Attention Flow (BiDAF) model [2] and explore few approaches to enhance them. 
Specifically, we introduce three enhancements, pre-trained character embedding 
representation that is acquired via existing pre-trained Glove word embedding, 
A Cross Attender using multi-head attention that replaces the typical query-to- 
context and context-to-query Attention Flow Layer, and a transformer encoder 
with multi-head self-attention that replaces the Word embedding Layer and Mod- 
elling Layer. we share the model performance with each enhancement and show 
that our final model achieves the score of x.xx Fl score and x.xx EM score, which 

outperforms the traditional BiDAF model. 
Our Codebase: https://github.com/Lawliet19189/The-Efficient-BiDAF 

1 Introduction 

For the past few years there have been a growing interest in the field of Question Answering. There 
are variety of tasks under Question Answering like Open-domain Question Answering, Closed-book 
question answering, abstractive QA extraction, Tabular QA extraction, etc. In this project we look at 
a specific QA task known as extractive Machine Reading Comprehension and we limit our dataset to 
only the Stanford Question Answering Dataset (SQuAD) 2.0. In recent years, the traditionally clever 
sequence-to-sequence approaches have been replaced with massive pre-trained models like BERT [3]. 
In this project, we look at one of the traditional approach known as Bi-Directional Attention Flow 
(BiDAF). BiDAF was one of the strong performing models on SQUAD 1.0 Dataset [4], which achieved 

SOTA but was soon replaced by other massive pre-trained models. Few of the huge bottlenecks 
with these traditional approaches are that they process the input sequence sequentially with the 
use of timestep-based networks like Recurrent Neural Network [5]. These seq-to-seq networks are 
non-parallelizable, occupies huge memory, and has problems with remembering the long term context. 
Their in-ability to make use of the transfer learning technique is also a cause for concern. 

In this work we experiment with the latest advancements since the original BiDAF and we implement 
few of the significant advancements that are beneficial to our model (Please refer Fig. 1). Specifically, 
we improve the contextual embedding layer with transformer encoders [6] and pre-trained character 
embedding, we improve the Attention Flow Layer by introducing Multi-headed Cross Attention 
and finally, we replace the modelling layer with another multi-headed self-attention encoder. The 
transformer encoders solves the underlying problems of sequence-to-sequence networks, like slow 
training and inference, in-ability to capture long-term memory succinctly and in-ability to make 
use of transfer learning. Due to the increased capacity of learning and extensibility, we believe 
the Multi-headed Cross Attention would be beneficial than the traditional query-to-context and 
context-to-query attention. Additionally, we also implement few of the recent beneficial transformer 
encoder techniques like GELU [7], scale-norm [8] and position infused Attention [9] [10]. 
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Figure 1: BiDirectional Attention Flow Model (best viewed in color) 
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Figure 1: An Overview of the original BiDAF model (left) and the Overview of our model (right). 

We showcase our experiments with respective metrics to signify each enhancements contribution. 
Our experiments shows that our model clearly outperforms the traditional approaches and also leaves 
room for improvement with more compute resource. 

Note: Due to the limitation with time and compute resource, our experiments are generally 
compared with 1/4 of full training. In most-cases, this is 8 epochs with 128 batch size and 100 
hidden dimension. We considered this to be okay since increase in model capacity and time 
would benefit transformer model more than seq-to-seq model due to efficiency and learning 
capability. Also, We are able to identify the pattern early whether the model is improving or 
not by inferring from the metric graph. 

2 Related Work 

Prior to the introduction of large pre-training models and transformer architectures, BiDAF introduced 
a strong approach to tackle reading comprehension which utilized multiple characteristics of the 
data (word embedding, character embedding and phrases), memory-less context-to-query and query- 
to-context Attention, and shallow recurrent neural networks. The model outperformed existing 
approaches and reached SOTA on SQuAD 1.0 leaderboard. The major disadvantage of this model 
was that it was non-paralleizable as it was using time-step based RNN. This resulted in huge training 
time and inference time. 

The significant variant of this approach (non-pretraining approach) came in 2018 (post transformers) 
called QANet, which removed the underlying problems of BiDAF by using encoders. The model 
captures both local features and global features by using convolution and self-attention, respectively. 
As the model was non-recurrent, it was easily paralleizable and therefore performed approximately 4 
times faster than the original BiDAF on training and 7 times faster on infererence. 

In this work, we will have the same goal, as on to improve the original BiDAF model with respect to 
accuracy, train/infer time and extensibility. 

3 Model Overview 

The high level Architecture of the model (as described in Fig. 1) is very similar to the tradition 
approaches, it is a hierarchical multi-stage process consisting of 6 layers: Character Embedding 
Layer, Word Embedding Layer, Contextual Embedding layer, Attention Flow layer, Modeling layer 
& Output layer. 

In Detail, the layers performs the below tasks: 

1. Character Embedding Layer: Both the Original BiDAF implementation and the subse- 
quent variants of it uses the same approach. The character embedding is obtained by using 
Convolution Neural Network as proposed by Kim (2014) [11]. Specifically, Characters are 
embedded into vectors, which can be considered as 1D inputs to the CNN, and whose size is 

the input channel size of the CNN. The outputs of the CNN are max-pooled over the entire



width to obtain a fixed-size vector for each word. Therefore, Each character is represented 
as a trainable vector. 

Our Approach is different from the existing approaches, We use the existing pretrained word 
embeddings (glove 840B 300d [12]) to extrapolate the corresponding character embedding. 
We iterate through all the characters present in the Glove word embedding corpus and extract 
it’s parent words, ie. glove words that consist the respective character. Then, we perform a 
simple averaging of these parent word embeddings. The resulting character embedding has 
been found to be effective [13] [14]. 

2. Word Embedding Layer: Our approach is same as the previous ones, We use pre-trained 
word vectors, GloVe (Pennington et al., 2014), to obtain the fixed word embedding of each 
word. 

The concatenation of the character embedding and the word embedding is passed to a 
two-layer Highway Network (Srivastava et al., 2015). The output is a d-dimensional vector 
representing the sequence input. 

We slightly divert a little during computation of character embedding for a sequence. To 
get a vector representation for a token in a sequence, we average their character embedding 
instead of using CNN. 

3. Contextual Embedding Layer: This layer is responsible for modeling the temporal inter- 
actions between words. The original BiDAF implementation used Bi-directional LSTM [15] 
to perform this. We replace this with transformer encoder [6]. Along with the traditional 
transformer encoder, we add few enhancements to optimize them for better performance. 
Refer Fig. 2. 
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Figure 2: An Overview of the traditional encoder stack (left) and the Overview of our encoder stack 

(right). 

Let’s look at the modifications one-by-one: 

(a) Spatial Positional Encoding: A positional encoding is a finite-dimensional represen- 
tation of the location or “position” of items in a sequence. Given some sequence A = 
[a_0, ...,a_n-1], the positional encoding must be some type of tensor that we can feed 
to a model to tell it where some value a_i is in the sequence A. The traditional way 
of doing this is by infusing fixed positional encoding based on the index of the token 
in the sequence. We implement a recent alternate approach which showed very good 
results. 
Independently introduced by two authors [10] [9], This technique injects fixed si- 
nusoidal position embedding into the input prior to their projection. The Positional 
embedding is added to the query and the Key vector at each layer. The outputs at each 
layer are the transformed, weighted sums of the value vectors. 

(b) Scale Norm: Introduced by Toan Q. Nguyen et al. [8], This technique proposes to 
replace the traditional Layer Norm with scaled 12 Normalization. Authors explain that



this is similar to projecting d-dimensional vectors on-to a (d-1) dimensional hyper- 
sphere with learned radius g. The results from the paper show that this technique leads 
to faster convergence. 
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(c) FeedForward Network with Gated Linear Unit: Introduced by Noam Shazer [7], 
The technique introduces Gated Linear Units that consist of the component-wise prod- 
uct of two linear projections, one of which is first passed through a RELU function. 
Specifically, The Traditional FFN takes a vector x (the hidden representation at a 
particular position in the sequence) and passes it through two learned linear transfor- 
mations and a RELU activation function is applied between these two. Refer Fig. 3 for 
comparison of different approaches. 
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Figure 3: comparable equations from the original paper. 

4. Attention flow Layer: Both the Original BiDAF implementation and the subsequent 
variants of it builds a similarity matrix between each pair of context and query words. The 
model uses C and Q to denote the encoded context and query. The context-to-query attention 
is constructed as follows: We first compute the similarities between each pair of context and 
query words, rendering a similarity matrix S € R”*™. We then normalize each row of S by 

applying the softmax function, getting a matrix S!. Then the context-to-query attention is 

computed as A = S!- Q¢ € R™4. The similarity function used here is the trilinear function 
(Seo et al., 2016): 

f(4, c) = Wo lq, c,qo c| (2) 

Our Approach is very simple, and similar to how transformer decoder network computes 
cross Attention between decoder hidden state and encoder hidden state, we computes cross 
attention between encoded context embedding and encoded question embedding. More 
specifically, we compute query vector (here, we refer encoder query representation as query 
vector and the encoded representation of SQUAD query as question vector) from encoded 
context embedding. We compute key and value vector from encoded question embedding. 
After this, we perform our usual multi-headed self-attention mechanism. The size of the 
final output would be (batch size, context seq len, hidden size) 

we then concatenate the encoded context representation and the cross-attention output. 

f(g.) = [c, cross Attention(q, c)] (3) 

5. Modelling Layer: Our Modeling Layer contains 3 stacked encoder blocks(Refer Fig. 2) 
with 8 heads. 

6. Output Layer: Our Output layer is more similar to QANet implementation than the original 
BiDAF model. We use the encoded representation of the cross attention from modelling 
layer to compute start token and end token probabilities. For start token, We do a linear 
transformation of the encoded vector and then take a log softmax. For the end token, We 
pass the encoded vector to another shallow encoder network and the resultant vector is 
passed through a log softmax.



4 Experiments 

4.1 Data 

Our Dataset is the modified version of official SQUAD 2.0 Dataset, that was provided to us for this 
default project. The Dataset is split into train, dev and test set. Where the train set is exactly the same 
as the official train-set but the dev and test set is a sample of the office dev set. The train and dev set 
consist of (context, question, answer) triples. 

4.2 Evaluation method 

We use the same metrics as the official SQUAD leaderboard, that is, exact match (EM) and F1 Score. 

Exact Match measures whether our answer span exactly fits with the annotated answer span, whereas 
F1 score takes partial scores by computing the harmonic mean of precision and recall, where precision 
is calculated as the number of correct words divided by the length of the predicted answer, and recall 
is calculated as the number of correct words divided by the length of the ground truth answer. 

Fl=2.- ( precision-recall ) 

precision+recall 

4.3 Experimental details 

For our Baseline model, we extend it to include char embedding as proposed in the original BiDAF 
model (from here on, when we refer to baseline model, it refers to this model with char embedding 

included). We train the model with a learning rate of Se-1, batch size of 128, hidden size of 100 (100 

word dim & 100 char dim concatenated in Contextual embedding layer), dropout of 0.1 and We use 
AdamW as the optimizer, and a scheduler to include a warm-up period of 3 epochs and reduce the 
learning rate linearly till 25 epoch after the warm-up period. 

For our subsequent attention models, we change the learning rate from 5e-1 to le-3, batch size of 
32, hidden size of 100, dropout of 0.2 and a warm-up period of 10 epochs. For our encoders and 
cross-attention, the number of stacked layers (depth) and the number of heads in Embedding layer, 
attention layer and Modelling layer is 1:3, 3:12, 1:8, respectively. 

The details are fully summarized in Fig. 2 

  

  

  

  

  

  

Models Baseline | Baselinet+char | baseline+char+crossAttention | baseline+char+crossAttention+encoders 

Batch size 128 128 128 32 
Hidden size 100 100 100 100 
learning rate Se-1 Se-1 le-3 le-3 

warmup-period. 3 epochs | 3 epochs 10 epochs 10 epochs 
L2 decay rate 0.001 0.001 0.001 0.001 
eps le-8 le-8 le-8 le-8 

Embedding Layer depth 1 1 1 1 
Embedding Layer Attentions heads - - - 3 

Attention Flow Layer depth 1 1 3 3 
Attention Flow Layer Attention heads | - - 12 12 

Modelling Layer depth 2 2. 2: 1 
Modelling Layer Attentions heads - - - 8 

Epochs trained on for comparison 8 8 8 8               

Table 1: Experimental details for various models 

We initially wanted our model to run with the batch size 128, hidden size 300 and encoders with 
more depth but that was too much for our compute resource, therefore we decided to experiment with 
the simpler version of it. 

Other parameters of the model are very standard, Adam optimizer with beta value of (0.8, 0.999), 
an moving average on all training variables with a decay rate of 0.999. We used 0.1 dropout in our 
embedding layers and 0.2 elsewhere. 

The maximum sequence length for our encoders were kept at 512 since 400 was the maximum answer 
token length we saw in the training set and the query lengths were less than 25 with few exceptions. 

We trained all of the models to 8 epochs and compared their performance. This was mainly due to 
time and resource constrain. We believe, with more resource and training time, capacity of our model 
will be much greater than the original model due to their bottleneck of RNN. In most of the cases,



we were able to infer patterns from the metric graph (FI score, NLL loss on dev & train set) that 
easily explains whether the model is still learning (positive line) or saturated (flat line) or degrading 
(negative line). 

  

  

  

  

          

4.4 Results 

Models Fl EM AvNA 

Baseline BiDAF (with char) 55.44 | 52.01 | 62.66 

BiDAF + Pretrained Char 58.77 | 55.59 | 65.55 

BiDAF + Pretrained Char + CrossAttention 59.66 | 56.67 | 67.21 

BiDAF + Pretrained Char + CrossAttention + encoders | 64 60.85 | 70.01     
Table 2: Comparison of Models’ performance on Dev set trained for approximately 1M steps 
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Figure 4: Our model scores charted at each iteration. 

As we can see from the table 2, the Pre-trained Character embedding really helps the model, and 
every enhancement we added, the model score improved. We didn’t expect the final model scores to 
be that close to the Baseline BiDAF approach but considering we built a very shallow encoder and 
used only 100 dim, it doesn’t suprise us that much. With enough compute resource, our model should 
easily outperform the BiDAF and maybe the QANet model. 

From the Fig 4, we can observe that the base BiDAF model is being outperformed by all other 
approaches and our BiDAF _crossAttention (BiDAF + char + attention) model hasn’t even started 
to degrade in it’s learning yet. Our fourth model BiDAF_mod_encoder was an experimental model 
which used the original BiDAF attention flow layer and along with it, included encoders instead of 
RNN’s. This model didn’t perform as expected, majorly due to the shallowness of our encoder. with 
few more extra depth and heads, the model should be able to perform way better than RNNs. 

During our Experiments we found lot of observations that are worthy to mention. 

¢ Adding a warm-up period to the optimizer made a huge difference in training time and 
it led the model to faster convergence. In our case, as the model has not been pre-trained, it 
helps to reduce the impact of deviating the model from learning on sudden new data set. 

¢ Learning rate makes all the difference. As we were on the clock, we initially wanted to 
fix the learning rate and experiment with other parameters like hidden size, encoder depth, 
number of heads in attention, etc. But it took a lot of time for us to just figure out the 
appropriate learning rate for RNNs and transformer encoders. We didn’t have enough time 
to train the model with multiple learning rates, therefore we implemented something similar 
to Cyclic LR [16] (Leslie N. Smith, 2015) with decreasing amplitude and set a high learning 
rate like 0.5 and observed the NLL and it’s variance over the course of iterations. 

¢ Except the difference in training and inference time, we didn’t observe that much dif- 
ference with swapping out RNN’s for encoders. At least, replacing them with shallow 
encoders didn’t help. You can observe this in Fig. “4, where the bidaf+mod+2encoder 
model didn’t exactly top off the chart. But we definitely think that increasing the encoder 
parameters like depth and number of heads would improve the scores. 

¢ Multi-head Attention is all you need!. When we initially designed the approach for 
Attention Flow Layer, we weren’t fully convinced that it would outperform the original 
implementation but the more experiments we did, we came to know that multi-headed



attention really helps to capture the context-to-query representation, and adding more heads 
is beneficial than increasing the depth. 

5 Analysis 

We didn’t have enough time to do a complete Qualitative Analysis on our models as our experiments 
took a big chuck of our allotted time (Our non-encouraging Experiments are listed in the Appendix). 
But we iteratively looked at the results our model was producing and tried to adapt our parameters by 
what we observed. 

Below are our observations: 

¢ The model performed extremely well on the answers to the “when“ questions. On the other 
hand, answers to the “Why“ questions were poor. The model was very likely to produce 
“No Answer“ to these questions. 

We found that majority of the answers in our dataset are of word length 5 or less. Answer 
word length of more than 8 are very low. When we looked at the answers for these questions 
(for which true answers of length more than 5), the model either provided shorter answers 
(span of the true answer) or gave “No Answer“. This shows that our model modelled the 
length of answers and as in our case, prefers answers with shorter length due to our dataset. 
One experiment which we wanted to do but didn’t do due to time constrain was to penalize 
the model when the difference of the predicted answers length and the true answers length is 
more. Another solution would be to augment the data by back-translation or text-generation. 

Based on the few examples we observed, we were able to say that the model lacked semantic 
context at times. We quickly hypothesised that this was due to our pre-trained feature 
embedding transformation. As our hidden size is only from 64-100. We transform our 
embedding of size 300 dimension to, say 100 dimension. This reduces the quality of the 
embeddings. The solution for this would be to either use higher hidden dimension or 
fine-tune an word embedding on our paragraph (context) data. 

¢ We observed our results to see how adding pre-trained character embedding helps and we 
found that it was really helpful when the words are used of regular context or it’s OOV. 

6 Conclusion 

In this project, we have explored the underlying problems of BiDAF, and explored the approach to 
enhance it with latest research techniques like encoders, multi-headed attention, etc. We started with 

the Baseline BiDAF model and then enhanced it by utilizing some of the mentioned techniques. We 
have built encoders, cross-attention, spatial positional encoding, etc. from scratch. 

We show that our modified simple end-to-end network performs better than the original BiDAF 
approach and has lots of room for improvement in the performance when model capacity is increased. 

We further wish to improve this model in the future by improving the modelling layer and the output 
layer. Additionally, approaches like Conditioning our end token based on the start token would help 
the model to predict better. 
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A Appendix 

We wanted to list down few other experiments we performed which didn’t work out very well. 

¢ Language model training We build a simpler version of the popular BERT LM [3]. We 
used the 2 training tasks masked language modelling (MLM) and Textual Entailment to train 
the model on our SQUAD dataset (only on context paragraph). Specifically, we extracted the 
context paragraph from all the samples in our train data-set and used that for feature training. 
We later added a simple classification head to predict the start-token and end-token. 
The model had high MLM loss and perplexity. Therefore, we hypothesised that the model 
is unable to learn the context due to the small training data, which seemed very likely and 
reasonable explanation. Still, our final Fl score on SQuAD dev dataset was 47.



¢ Fine-tuning glove word vectors We tried fine-tuning our word-vectors using an open- 
source implementation (mittens [18]). The results weren’t very encouraging, therefore we 
dropped it. 

¢ Augmenting Self-attention with Persistent Memory We tried to implemented a new 
approach introduced by Sainbayar et el [19]. The technique was to add learned memory 
key/value prior to the attention mechanism. We assumed we were a little out-of-depth on 
this theoretical implementation as the results which we received were not encouraging.


