
Embedding and Attending:

Two Hearts that Beat as One

Stanford CS224N Default Project, ID SQuAD

Manuka Stratta Raymond Yao
Department of Computer Science Department of Computer Science

Stanford University Stanford University
mstratta@stanford.edu ryao28@stanford.edu

Abstract

Neural attention mechanisms have proven to be effective at leveraging relevant
tokens of the input data to more accurately predict output words [1]. In this paper,
we implement three different attention mechanisms (co-attention from Dynamic
Coattention Networks [2], key-query-value self attention, and R-Net self-attention
[3]) in the domain of the Question-Answering (QA) paradigm. Our goal was

to produce a model that is highly performant compared to the baseline BiDAF
model on the Stanford Questioning Answering Dataset (SQUAD 2.0) [4]. We

combine these attention mechanisms with character-level embeddings to provide
more local contextual information, and finally enhancing these embeddings by
including additional input features (part-of-speech and lemmatized forms of words).
Augmenting the baseline with these techniques produces a significant improvement
compared to the baseline and results in an F1 score of 65.27 and EM score of 61.77
(an increase of 5.6% and 5.5%, respectively).

1 Introduction

The Question-Answering task has seen widespread interest among the NLP community in recent
years due to its far-reaching applications (search engines, database entry retrieval, etc.), especially
with the release of the SQUAD/SQuAD 2.0 data sets [4]. While QA (and more generally, reading

comprehension as well) appears straightforward and simple for humans, it has proven to be a rather
difficult task for machines to accurately process/understand a context passage & query, and output
the span of the correct answer (if the answer exists at all). Numerous state of the art techniques have
emerged, some utilizing transformer architectures, neural attention mechanisms, LSTMs, reformers,

and countless other techniques, each with their unique benefits and drawbacks.

In this paper, we explore current performant methods in the QA space. We were particularly intrigued
with the concept of neural attention mechanisms, which have seen tremendous growth in recent years
in the ability to "look back" on words of the input sequence [1]. Namely, we experimented with
different types of attention: co-attention [2], self-attention [5], and R-Net self-attention [3]. We were

also motivated by feature engineering in the embedding layer, integrating character-level embeddings
to condition on the morphology of tokens [6] and investigating the effectiveness of additional input
features (the part-of-speech tag and lemmatized forms of words) [7]. Additionally, we were curious as
to exploring the most ideal hyperparameters that produced the highest EM/F1 scores for our model by
modifying different values of the learning rate (i.e. learning rate annealing) and dropout probabilities.

Our model performed best with the configuration of character-level embeddings and RNet self-
attention, producing competitive EM/F1 scores of 61.771/65.268, respectively, on the dev set leader-
board. In our analysis of the results, we also qualitatively evaluate key characteristics of the errors
of our outputs, noting cases where our model excelled in particular linguistic conditions as well as
situations where our model performed poorly. Additionally, we reflect on the benefits/trade-offs of
feature engineering, as well as detailing limitations and avenues for future courses of work.

Stanford CS224N Natural Language Processing with Deep Learning

2 Related Work

This paper lies in the space of question answering (QA), and more generally, machine comprehension.
This field has seen great leaps of progress to not only increased amounts of data (e.g. with the
100k examples in SQuAD), but particularly thanks to neural attention mechanisms. Attention
is a means by which a model can utilize specific aspects/words of the input sentence (by
“attending” to input words), which also resolves the issue of semantic loss in longer sentences
being compressed into a fixed-length vector during the encoding process. Numerous types
of attention exist, such as self-attention, two-way attention, global attention, local attention,

hierarchical attention, and so forth. Our baseline model uses the Bidirectional Attention Flow

(BiDAF) implementation [8], which utilizes a bidirectional context-query attention mechanism

and character-level/word-level embeddings. Exploration in attention mechanisms have been extensive.

In the field of coattention, Xiong et. al. [2] proposed the concept of Dynamic Coattention
Networks (DCN) composed of a coattentive encoder that represents the co-dependent relationships
between the query and context, as well as a dynamic decoder that modulates between estimating
the beginning and end of the answer span. The authors are interested in evaluating how utilizing
a specific variety of attention, namely coattention, can yield improved results by computing an
alignment matrix on every pair of context and query words. Coattention is unique in that the words
in the query inform on the words in the context words, and crucially, vice versa as well. They
propose the concept of Dynamic Coattention Networks (DCN) composed of a coattentive encoder
that represents the co-dependent relationships between the query and context, as well as a dynamic
decoder that modulates between estimating the beginning and end of the answer span.

Another type of self-attention is leveraged in R-net [3], which poses the idea of coupling a
Context-to-Question attention layer (to obtain the question-aware passage representation), with a
self-matching attention mechanism (to refine the representation by matching the passage against
itself). We were interested in implementing the self-matching layer from R-Net.

Finally, we took inspiration from the paper by Chen et. al [7], which pioneered the con-
cept of leveraging manual token features (i.e. part-of-speech, named entity recognition tags, and term
frequency) to aid learning by the machine comprehension system.

3 Approach

At a high-level, we focused on implementing models that concern primarily 1) the embedding layer
(character-level embeddings, input features) and 2) attention techniques (coattention, key/query/value
(KQV) self-attention, and RNet self-attention). Additionally, we ran hyperparameter tuning
experiments (learning rate, dropout probabilities).

Baseline: We utilize the provided baseline that implements the BiDAF model specified by Seo et al.
[8] (without character embeddings). Based on our initial training, the baseline model produced the

following metrics (maximized across all values except minimized for NLL): AUN A = 66.91, EM =
56.24, Fl = 59.69, NLL & 3.013. For the implementation of our model, we seek to improve across
these metrics on the SQUAD 2.0 dataset.

Character-Level Embeddings: As proposed by Seo et al. [8], our model implements character-level
embeddings, in addition to word embeddings, to obtain a more nuanced context representation of the
input sequence. This additional level of granularity provided by the character embeddings serves to
add robustness on out-of-vocabulary terms and enables us to condition on the morphology of words.

We follow a similar approach to the BiDAF paper by using character-level convolutional neural
networks (CNN) [6]. We pass our pre-processed context words cy, ..., cj and query words qi, ..., diz
into a CNN that produces our character-level embeddings Cemp,.1, ---; Cemb,N aNd Gemb,15 «++; Temb,M

for each word. We proceed to max-pool across the width of each embedding to find the maximal
vector values for each word. Then, we concatenate the resulting character embedding with our word
embeddings, and pass the result into a Highway Network for future processing.

Input Features: In taking inspiration from DrQA [7], we integrated the input features of part-of-
speech (POS) and the lemmatized form of the context/query tokens into our model. Our reasoning
was that including the part-of-speech feature provides useful information for our model to generalize
patterns such as the order of parts-of-speech in identifying the answer. Similarly, utilizing lemmas
may aid the model in understanding when word forms differ in the context and query. For example,
with the context passage of "Godzilla ate a plane..." and the query of "What did Godzilla eat?", the
system may be able to see that the lemmatized form of "ate" (namely "eat") is a direct match for a
token in the query ("eat"), which may yield a more "directed search" for the eventual answer.

Heeding guidance from our TA, for each word in the context/query, we tokenize on the POS and
lemmas of each token, in addition to obtaining the unmodified token text. We create maps from the
POS/lemma to their respective indices, as well as POS/lemma embedding matrices that we eventually
pass to our embedding layer. Finally, we concatenate POS/lemma embeddings with the word &
character-level embeddings. While there is the added benefit of more embeddings for our model to
process and extract patterns from, this significantly increased our setup running time by a factor of
two.

Co-attention: We sought to implement a coattention mechanism akin to the one described by Xiong
et al. [2] and the project handout.

Let ci, ...,c denote the context hidden states and let qi, ..., ¢@¢ denote the question hidden states,
both in R!. We first apply a linear layer with a tanh nonlinearity to produce question hidden states
4; ++-» diz. After we append sentinel vectors to each hidden state, we compute an affinity matrix
L to describe the similarity between the pairs of context and hidden states. Next, we take the
masked softmax of L row-wise to produce a, then take the weighted sum with each question hidden
state to obtain the Context-to-Question attention output A. We also take the masked softmax of L
column-wise to produce (3, then take the weighted sum with each context hidden state to obtain the
Question-to-Context attention output B. Crucially, we take the weighted sum of the C2Q attention
distributions with the Q2C attention outputs to produce our second-level attention outputs S:

S=aQ@B,

where @ represents the batched matrix multiplication operation. Finally, we concatenate the second
level attention output with our C2Q attention outputs and feed the result through a bidirectional
LSTM layer, which is part of the modeling layer.

KQV Self-Attention: This is the second type of attention that we implemented, the "vanilla"
key/query/value self-attention from lecture. We decided to apply the KQV self-attention layer right
after the embedding layer becuase in lecture we saw that self-attention can be useful towards the
beginning of the model. We could have experimented by placing the layer elsewhere, however. We
made use of existing Assignment 5 code [9] to build the KQV self-attention block, while adapting to
our model configurations, number of attention heads, and removing additional layers to focus on just
the linear normalization and residual connection steps. The primary equation for self-attention is the
following:

att = softmax(on)V

where f is a normalization factor dependent on the size of K. Following what we learned in
Assignment 5, we preceded this step by a normalization layer and completed the KQV self-attention
layer with a residual connection as follows:

att = « + L(z),

where z is the input to the KQV self-attention layer and L is a LayerNorm.

RNet Self-Attention: To experiment with a third and final type of attention, we implemented the
self-attention layer described in the RNet paper [3] (which they call Self-Matching Attention). This
layer is an application of additive attention (coupled with a gated layer which resembled our BiDAF
attention layer) whose goal is to refine the question-aware passage representation by matching the
passage against itself. We took inspiration from an existing RNet implementation which we found
online [10]. Our approach consists in keeping the BiDAF attention layer and then passing the output
into the RNet self-attention layer to further enhance the question-aware passage representation. In
our self-attention layer, we implement the following steps (where v”’ is the question-aware passage
representation obtained by previous attention layer, W” and W”’ are learnable linear layers, and v7

is a learnable vector parameter):

8 i v'tanh(Wj'u; +WPoP)

a, = exp(s;)/25_1exp(s})
c, = Datu?

We finally pass the concatenation of v? with scores c into a "gate", which is defined as:
g = sigmoid(W,|[v?’, c])

g=9*|v",¢],
which gives us our final output of the self-attention layer g.

Hyperparameter tuning: Our approach consists of picking the model with character-level embed-
dings (and BiDAF attention only) and varying the hyperparameters of learning rate and dropout rate.
We decided to focus on just 1 model (instead of trying with a few of our models) for straight-forward
comparison, so as to clearly identify the impact of varying a hyperparameter. We run a dozen ex-
periements increasing/decreasing the learning rate and dropout rate separately. We also try annealing
the learning rate, as to manually decrease it once the training loss stabilizes.

4 Experiments

4.1 Data

We use the SQuAD 2.0 dataset which contains ~150k total questions, with ~ 5 of the questions
unanswerable. The dataset consists of (context, question, answer) triplets, to which we will separate
into training and dev sets. We made use of the start code which helped us preprocess the data. We
use this dataset to build a model that performs the question answering task—answering a question
by determining the start and end position of the answer (a span of text) from the context paragraph
provided.

4.2 Evaluation method

We use the automatic evaluation metric that is standard for machine comprehension / question-
answering tasks: Fl score and Exact Match (EM). Combining F1 and EM provides a reasonable
metric to evaluate the performance of our model. We also consider the metrics of NLL (negative
log-likelihood loss) and AVNA (Answer vs. No Answer).

To understand the evaluation of one of our specific models, we compare our scores to the baseline’s,
but also to the scores obtained by our other models. Indeed, to evaluate the effectiveness of the tech-
niques we implement, we integrate aspects of an ablation study to present different scores with/without
a particular technique technique. This provides great insights into which of the techniques are most
successful.

4.3 Experimental details

We ran all of our models on NC6Promo and NC6sv3 Azure machines, resulting in training times of
- 15+ hours and * 6 hours, respectively. Each completed experiment ran for thirty epochs. For our

self-attention models, our batch size was 32, as our VMs were consistently running out of memory,
and 64 for the rest of the models that we tested. As we had conducted a series of hyperparameter
tuning experiments, our learning rates differed model to model (refer to Section 4.4: Results for more
details), but we ended up using the default values of a learning rate of 0.5, dropout probability of 0.2,
kernel size of 5 (for character embeddings), hidden size of 100, character limit of 16, paragraph limit
of 400, question limit of 50, and character dimensions of 64.

4.4 Results

After implementing each of our models following our approach detailed above, we evaluated their
performance on the validation set. We summarize our quantitative results in the following table,

where each row presents a particular model’s metrics. The color-coding indicates in blue models that
applied techniques to the embedding later, and in green models that applied attention techniques.

Model Fl EM NLL AvNA

Baseline 59.69 56.23 373 66.71

Character-Level Embeddings 63.19 59.81 2,93 69.79

Character-Level Embeddings + POS 63.44 60.14 2.82 69.84

Character-Level Embeddings + Lemma 62.13 58.78 2.81 68.98

Character-Level Embeddings + POS + 61.86 58.73 2.85 68.91
Lemma

Character-Level Embeddings + 61.49 58.09 3.20 68.32
KQV Self-Attention for context

Character-Level Embeddings + 63.46 60.11 2.95 69.72
KQV Self-Attention for context & query

Character-Level Embeddings + 65.27 61.77 2.77 71.79
Self-Matching Attention (RNet)

Character-Level Embeddings + 61.39 S57 3.10 68.46
Coattention

Coattention (without char-level 59.23 55.44 3.20 66.48
embeddings)

Table 1: Model performance results on the validation set

Here are the Fl and EM scores we obtained on the test leaderboard for our best model:

Character-Level Embeddings Fl EM NLL AvNA
+ Self-Attention (RNet)

Baseline (Dev) 59.69 56.23 3:13 66.71

Dev Set 65.27 61.77 2.77 71.79

Test Set 63.99 60.14

Table 2: Test leaderboard results

We also ran a series of hyperparameter tuning experiments, where we varied learning rate and
dropout rate, summarized in following table:

Model LR Dropout Fl EM NLL AvNA

Baseline 0.5 0.2 59.69 56.23 3.13 66.71

0-Character-Level 0.5 0.2 63.19 59.81 2.93 69.79
Embeddings

1-Character-Level 0.9 0.3 60.74 57.67 2.74 67.23
Embeddings

2-Character-Level 0.7 0.3 61.34 58.14 2.77 67.40
Embeddings

3-Character-Level 0.05 0.2 52.19 52.19 5.83 52.14
Embeddings
(stopped half-way through)

4-Character-Level 0.3 0.2 62.28 58.90 2.99 69.15
Embeddings

5a-Character-Level 0.5, then 0.3 (at 0.2 61.62 58.14 3.30 68.56

Embeddings: LR annealing | 1.5mil iterat®)

5b-Character-Level 0.5, then 0.3 0.2 62.74 59.33 3.16 69.70
Embeddings: LR annealing | (at 3 mil it)

6- Character-Level 0.2 0.2 60.84 57.07 3.31 68.19
Embeddings

Table 3: Hyperparameter tuning results

Results analysis for character-level embeddings and input features: Our results reveal that
character-level embeddings produce a drastic improvement on EM/F1 scores, producing an ap-
proximate 5.7% increase in F1 and 6.4% increase in EM scores from the baseline. However, we were
rather disappointed with results for input features; while POS produced a slight increase in FI/EM to
63.44/60.14, the integration of lemma features reduced scores to 62.13/58.78, and the combined POS

+ lemmas produced a rather unimpressive 61.86/58.73 (see Appendix for more details). We think that
this may be an indication that we are "over-engineering"” our model, and that it might be best for the
model to extract its own patterns in an "end-to-end" manner.

Results analysis for attention models: Our table shows results for three types of attention:
coattention, key/query/value (KQV) self-attention, and RNet self-attention. Each of these attention
techniques had significantly different results. Coattention performed worse than we expected, with
lower results than with BiDAF attention (see Appendix for more details). However, the other two
types of attention performed quite well. To better visualize the differences, displayed below is a
graph plotting RNet self attention in pink/gray , KQV self attention (applied to context + query) in
blue, and KQV self attention (applied to context only) in orange :

AvNA EM Fl
tag: dev/AVNA tag: dev/EM tag: dev/F1

M 5M 2M 2.5M 3M IM (OK IM 1.5M 2M 2.5M 3M M QO 500k 1M 1.5M 2M 2,5N IM 3.5M a

i a il A

NLL
tag: dev/NLL

500k 1M 1.5M 2M 2.5M 3M

Ey

Figure 1: Graph of R-Net self attention vs. KQV self attention (context and query) vs. KQV self
attention (context only)

Examining the two KQV experiments, we notice that KQV self-attention performed much better
when applied to both context and query (blue) than just context (orange), with a difference of nearly
2 percentage points for the F1 score. This highlights that attending to just one of the inputs is not
enough and that it possibly even worsens results as perhaps the embeddings of context/query are no
longer very comparable or scaled the same way if only one is passed through the KQV self-attention
layer.
Finally, we can compare the results from KQV self-attention (blue, both applied to context + question)
to the self-attention from the Rnet paper (pink/gray). We saw a large improvement with the RNet self-
attention, obtaining an F1 score of 65.27. The Fl score for RNet self-attention is almost 2 percentage
points greater than the score for KQV self-attention. KQV may have not performed as well as ex-
pected, mainly because when transformers use this technique, they have dozens of layers, whereas we
only have 1. We believe the strong performance of RNet self-attention is due to the attention layer’s
increased level of nuance in obtaining question-aware representation for the passage, which could
have helped the model gain a better contextual understanding of the passage which led to better results.

Results analysis for hyperparameter tuning: The results we obtained in our dozen of hyperparam-
eter tuning experiments were rather disappointing. We ran these experiments on the model with just
character-level embeddings for easy comparison. We tried independently increasing or decreasing the

learning rate and the dropout rate, but none of our results improved upon the default parameters for
the character-level embeddings model. This appears to suggest that the default parameters provided
in the starter code (learning rate of 0.5, dropout of 0.2) were very ideal hyperparameters for our
task and dataset, and that varying them did not lead to immediate improvements. It was interesting
to perform the experiments of learning rate annealing, where we started the run at LR of 0.5 but
then decreased the LR when the training loss started to stabilize. With more time, we would have
experimented with different types of annealing (cosine, linear, etc).

5 Analysis

In this section, we do an initial quantitative analysis but then spend time qualitatively evaluating our
best model (which incorporates character-level embeddings and RNet self-attention).

It is valuable to break down the different kinds of questions. Examining the validation evaluation set,
we obtain the following percentages of questions by type ("how", "what", etc):

"How": 9.7%, "What": 57.7%, "Why": 1.5%, "Which": 4.5%, "Who": 10.6%, "When": 9.1%,
"Where": 4.4%, other: 6.7%,

We then calculated the F1 scores of our model on the dev set, broken down by question type. We
obtain the following F1 scores, in decreasing order:

"Which": 78,
"When": 72.6,
"Who": 65.5,
"What": 64.7,
"Where": 64.3,

"How": 62.5,

other: 62.5,

"Why": 61.1,

The break down is quite interesting. We can notice that our model performs the best on "which"
questions, obtaining the highest F1 score of 78. This makes sense, as in a way, "Which" questions
often contain a lot of information that gives the answer away. For example, in the question "Which
character is known for being small and having blue skin?" there’s a lot of information about the
characteristics of that character (small, blue skin) that the model could easily find in the passage and
use to correctly predict the answer.
Our models also performs extremely well on the "When" questions, obtaining a very high F1 score of
72.6. This suggests that our model successfully captures temporal dimensions. This is also perhaps
because many of the "When" questions have the answer follow the pattern "in..." (like "in 1999", or
"in May"), a pattern that could be easily learned by the model.
On the other hand, our models performs poorly on the "Why" questions, obtaining a low F1 of 61.1.
This actually isn’t that surprising, since "Why" questions often have a more complex answer that
requires a much deeper level of understanding of the passage and question. With more data available,
it would be interesting to increase the number of "Why" questions in our training set so our model
can hopefully better grasp a true semantic understanding of the passage and question.

To further qualitatively understand our system (e.g. when it succeeds and when it fails),
we will look at a few interesting examples of correct/incorrect predictions.

Correct predictions:

« Question: How many people were at a Harvard sponsored regatta in 1875?
« Context: Harvard's 2,400 professors, lecturers, and instructors instruct 7,200 undergraduates and 14,000 graduate students. The school color is crimson,

which is also the name of the Harvard sports teams and the daily newspaper, The Harvard Crimson. The color was unofficially adopted (in preference to
magenta) by an 1875 vote of the student body, although the association with some form of red can be traced back to 1858, when Charles William Eliot, a
young graduate student who would later become Harvard's 21st and longest-serving president (1869-1909), bought red bandanas for his crew so they
could more easily be distinguished by spectators at a regatta.

« Answer: N/A
« Prediction: N/A

This correct prediction is interesting because it demonstrates that the model isn’t just trying to find

words from the question in the passage and select a substring that is near it. Indeed, although the
word "regatta" is present in the passage, the model understands the semantic difference between the
type of answer the question is expecting ("how many", which is a quantity), and the type of answer
that the passage seems to suggest ("who", as in the crew and spectators who were at the regatta). The
understanding of the mismatch between these two types enables the model to correctly predict N/A.

Incorrect predictions:

Question: What can the exhaust steam not fully do when the exhaust event is insufficiently long?
Context: The simplest valve gears give events of fixed length during the engine cycle and often make the engine rotate in only one direction. Most
however have a reversing mechanism which additionally can provide means for saving steam as speed and momentum are gained by gradually
"shortening the cutoff" or rather, shortening the admission event; this in turn proportionately lengthens the expansion period. However, as one and the
same valve usually controls both steam flows, a short cutoff at admission adversely affects the exhaust and compression periods which should ideally
always be kept fairly constant; if the exhaust event is too brief, the totality of the exhaust steam cannot evacuate the cylinder, choking it and giving
excessive compression ("kick back").[citation needed]
Answer: evacuate the cylinder
Prediction: N/A

This is a very interesting incorrect prediction. While the question contains "insufficiently long",
the answer in the passage is preceded by "too brief". It seems like the model did not realize that
"insufficiently long" and "too brief" actually mean the same thing (just flipping antonyms around),
leading to the incorrect prediction of N/A. If the model could better encode the similarity of phrases
that contain different words that together build up the same meaning, we believe this would lead to
better results in these types of scenarios.

Question: Who was Kaidu's grandfather?
Context: Instability troubled the early years of Kublai Khan's reign. Ogedei's grandson Kaidu refused to submit to Kublai and threatened the western
frontier of Kublai's domain. The hostile but weakened Song dynasty remained an obstacle in the south. Kublai secured the northeast border in 1259 by
installing the hostage prince Wonjong as the ruler of Korea, making it a Mongol tributary state. Kublai was also threatened by domestic unrest. Li Tan,
the son-in-law of a powerful official, instigated a revolt against Mongol rule in 1262. After successfully suppressing the revolt, Kublai curbed the influence
of the Han Chinese advisers in his court. He feared that his dependence on Chinese officials left him vulnerable to future revolts and defections to the
Song.
Answer: Ogedei
Prediction: Kublai

This is a relatively simple example that the model failed to succeed on. The answer lies in the
phrase "Ogedai’s grandson Kaidu": any human can immediately tell that Ogedai is the grandfather
of Kaidu. But the model did not pick up on the semantics of "’s" and did not understand how to
relate "grandfather" from the question to "grandson" from the passage. If the model’s embeddings
for "grandson" and "grandfather" had greater similarity, the model would be more likely to pro-
cess the question-aware passage representation and predict the correct answer for this type of scenario.

Question: Abilene was a prime investor in what project?
Context: Internet2 is a not-for-profit United States computer networking consortium led by members from the research and education communities,
industry, and government. The Internet2 community, in partnership with Qwest, built the first Internet2 Network, called Abilene, in 1998 and was a prime
investor in the National LambdaRail (NLR) project. In 2006, Internet2 announced a partnership with Level 3 Communications to launch a brand new
nationwide network, boosting its capacity from 10 Gbit/s to 100 Gbit/s. In October, 2007, Internet2 officially retired Abilene and now refers to its new,
higher capacity network as the Internet2 Network.
Answer: N/A
Prediction: National LambdaRail

This is a complex example, which could probably actually fool some humans. The subtlety lies in
grammatical structures and subject/verb linking. The model seems to focus on local, smaller chunks
of the sentence and loses the larger picture. Zooming out, one can see that the subject of "was a
prime investor" is "the internet2 community", and not "Abilene" as in the question. The model was
also probably thrown off by the length of the sentence, broken up into chunks separated by commas.

6 Conclusion

In this paper, we evaluated the results of experimenting with embeddings, with regards to character-
level embeddings and POS/lemma input features, as well as exploring unique neural attention
mechanisms (i.e. co-attention, key/query/value self-attention, and R-net self-attention). Our highest-
performing model ended up being the configuration of character-level embeddings with R-net
self-attention, producing F1/EM scores of 63.99/60.14 on the leaderboard test set (and scores of
65.27/61.77 on the leaderboard dev set). We also conducted hyperparameter tuning experiments, and
found that the best-yielding results were the default parameters provided in the starter code (LR =
0.5, dropout = 0.2).

We were rather pleased with our high EM/F1 scores, producing increases of nearly 6% from the
baseline for both EM/F1. Moreover, we were satisfied with the sheer number of models we imple-
mented (6 models + a dozen hypertuning experiments), exploring various attention techniques and
achieving good performance on the SQuAD 2.0 data set. Our implementation of different types of
attention cemented our understanding that "Attention is *pretty much* all you need" (a reference to
[1]), although results with attention aren’t as performant with fewer layers and model complexity.
We also learned that different embedding techniques may produce varied results; character-level
embeddings resulted in immense improvements to our model, but POS/lemmatization of words, for

the most part, did not.

Additionally, we were able to reflect over the tradeoffs between feature engineering (as we had
done with the POS/lemmatization input features) and end-to-end learning. Based on our results, we
concluded that feature engineering may enable the machine to target specific features and extract
patterns with human intervention, resulting in improved pattern recognition. However, it may be
dangerous to "over-engineer"; features that one may believe to be optimal may end up not being
particularly useful for the model, and in turn may end up hurting results. Additionally, human-chosen
input features may result in correlated/redundant features, which may be damaging as the system
may erroneously pick up on correlations between features that are unimportant details. End-to-end
learning allows for the natural extraction of features, but oftentimes such features may be rather
trivial and insignificant.

One limitation of our study was that we did not get the opportunity to tune hyperparameters for
our most performant model (due to time constraints); instead, we solely tuned our character-level
embedding model. It would be interesting to explore as to whether our results hold true (that the
default learning rate/dropout probability parameters are most ideal) when we implement different
attention mechanisms/input features. Another limitation is that we run KQV self-attention only after
the embedding layer; however, results may have panned out differently if we were to run vanilla
self-attention in other locations (such as after the encoding layer).

Future courses of action include what is listed above, as well as experimenting with a greater variety
of input features (such as term frequency and named entity recognition).

References

[1] Ashish Vaswani. Attention is all you need. In NeurIPS, 2017.

[2] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. In ICLR, 2017.

[3] Microsoft Research Asia Natural Language Computing Group. R-net: Machine reading
comprehension with self-matching networks. In ACL, 2017.

[4] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable

questions for SQUAD. In Association for Computational Linguistics (ACL), 2018.

[5] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,

and Quoc V. Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. In JCLR, 2018.

[6] Yoon Kim. Convolutional neural networks for sentence classification. In EMNLP, 2014.

[7] Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer
open-domain questions. In ACL, 2017.

[8] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirz. Bidirectional

attention flow for machine comprehension. In JCLR, 2017.

[9] CS224N Assignment 5 code. http: //web.stanford.edu/class/cs224n/assignments/

a5. pdf.

[10] Existing R-net code. https: //github.com/tailerr/R-NET-pytorch.

A Appendix

dev

AVNA —M Fl
tag: dev/AWNA tog: deve tog: dev/F1 tag: dev NLL

| so | —| i
a t 4a

| ea wit 8 4
0 att 36

\ = 56 «{—] 32 ff
82 «|_| a 28

0 80k IM 16M 2M 26M OM 35M 0 80k 1M 18M 2M 26M aM 35M 0 800K 1M 18M 2M 25M aM 35M 0 80k 1

train

LR ‘NLL
tag: traivir tog: ran

| 2 a

1M 18M 2M 25M aM 35M

Figure 2: Graph of input features with POS and lemmatized words

dev

AvNA EM Fl NLL
tag: dev/AVNA tag: deviem tag: dev/Ft tag: dev/NLL

é |
| }

E |

3 |
| k \

|}

! ace |

Ok 1M 15M 2M 25M 3M 35M) 50k 1M 15M 2M 25M OM 95M) S00k IM 1M 2M 25M M SBN ae

train

LR NLL
tag train/LR tag train/NLL

fo |

\

) 500 1M 1.8M J aM 35M sok th M
nS66 020

Figure 3: Graph of baseline (orange) vs. character-level embeddings (red)

dev

AvNA —M Fl
tag: dev/AVNA tag: dev/EM tag: dev/F1

68 60

58 +
64

5 56
6c

6 =

49 5

> 500k 1M 1.5M 2M 25M 3M 3.5M O 800k 1M 1.5M 2M 2.5M 3M 3.5M O 500k 1M 1.5M 2M 25M 3M 3.5M

220 neo neo
NLL
tag: dev/NLL

3.6

QO 500k 1M 1.5M 2M 2.5M 3M 3.5M

Figure 4: Graph of baseline (orange) vs. coattention (blue)

10

dev

AVNA EM FI NLL
tag: dev/AvNA tag: dev/EM tag: dew/F1 tag: dev/NLL

| |
| | |

|

4 |
|

: |
|

0k IM 1.5K Mah K \ |) 500K IM 15h 0 500k 1.5M M 35h

train

LR NLL
tag: train/LR tag: train/NLL

i) ie BEG

i. 086

Figure 5: Graph of baseline (orange) vs. character-level embeddings + coattention (green)
dev

AVNA EM FI NLL
tag: dev/AvNA tag: dev/EM tag: dev/F1 tag: dev/NLL

é] |
|

|

It
| i

|
KIM 45h A oh 4 A) M1EM 2h ,

20 20 o360 20

train

LR NUL
tag: train/LR tag: traln/NLL

Figure 6: Graph of character-level embeddings (red) vs. character-level embeddings + coattention
(green)

11

