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Abstract 

Neural attention mechanisms have proven to be effective at leveraging relevant 
tokens of the input data to more accurately predict output words [1]. In this paper, 
we implement three different attention mechanisms (co-attention from Dynamic 
Coattention Networks [2], key-query-value self attention, and R-Net self-attention 
[3]) in the domain of the Question-Answering (QA) paradigm. Our goal was 

to produce a model that is highly performant compared to the baseline BiDAF 
model on the Stanford Questioning Answering Dataset (SQUAD 2.0) [4]. We 

combine these attention mechanisms with character-level embeddings to provide 
more local contextual information, and finally enhancing these embeddings by 
including additional input features (part-of-speech and lemmatized forms of words). 
Augmenting the baseline with these techniques produces a significant improvement 
compared to the baseline and results in an F1 score of 65.27 and EM score of 61.77 
(an increase of 5.6% and 5.5%, respectively). 

1 Introduction 

The Question-Answering task has seen widespread interest among the NLP community in recent 
years due to its far-reaching applications (search engines, database entry retrieval, etc.), especially 
with the release of the SQUAD/SQuAD 2.0 data sets [4]. While QA (and more generally, reading 

comprehension as well) appears straightforward and simple for humans, it has proven to be a rather 
difficult task for machines to accurately process/understand a context passage & query, and output 
the span of the correct answer (if the answer exists at all). Numerous state of the art techniques have 
emerged, some utilizing transformer architectures, neural attention mechanisms, LSTMs, reformers, 

and countless other techniques, each with their unique benefits and drawbacks. 

In this paper, we explore current performant methods in the QA space. We were particularly intrigued 
with the concept of neural attention mechanisms, which have seen tremendous growth in recent years 
in the ability to "look back" on words of the input sequence [1]. Namely, we experimented with 
different types of attention: co-attention [2], self-attention [5], and R-Net self-attention [3]. We were 

also motivated by feature engineering in the embedding layer, integrating character-level embeddings 
to condition on the morphology of tokens [6] and investigating the effectiveness of additional input 
features (the part-of-speech tag and lemmatized forms of words) [7]. Additionally, we were curious as 
to exploring the most ideal hyperparameters that produced the highest EM/F1 scores for our model by 
modifying different values of the learning rate (i.e. learning rate annealing) and dropout probabilities. 

Our model performed best with the configuration of character-level embeddings and RNet self- 
attention, producing competitive EM/F1 scores of 61.771/65.268, respectively, on the dev set leader- 
board. In our analysis of the results, we also qualitatively evaluate key characteristics of the errors 
of our outputs, noting cases where our model excelled in particular linguistic conditions as well as 
situations where our model performed poorly. Additionally, we reflect on the benefits/trade-offs of 
feature engineering, as well as detailing limitations and avenues for future courses of work. 
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2 Related Work 

This paper lies in the space of question answering (QA), and more generally, machine comprehension. 
This field has seen great leaps of progress to not only increased amounts of data (e.g. with the 
100k examples in SQuAD), but particularly thanks to neural attention mechanisms. Attention 
is a means by which a model can utilize specific aspects/words of the input sentence (by 
“attending” to input words), which also resolves the issue of semantic loss in longer sentences 
being compressed into a fixed-length vector during the encoding process. Numerous types 
of attention exist, such as self-attention, two-way attention, global attention, local attention, 

hierarchical attention, and so forth. Our baseline model uses the Bidirectional Attention Flow 

(BiDAF) implementation [8], which utilizes a bidirectional context-query attention mechanism 

and character-level/word-level embeddings. Exploration in attention mechanisms have been extensive. 

In the field of coattention, Xiong et. al. [2] proposed the concept of Dynamic Coattention 
Networks (DCN) composed of a coattentive encoder that represents the co-dependent relationships 
between the query and context, as well as a dynamic decoder that modulates between estimating 
the beginning and end of the answer span. The authors are interested in evaluating how utilizing 
a specific variety of attention, namely coattention, can yield improved results by computing an 
alignment matrix on every pair of context and query words. Coattention is unique in that the words 
in the query inform on the words in the context words, and crucially, vice versa as well. They 
propose the concept of Dynamic Coattention Networks (DCN) composed of a coattentive encoder 
that represents the co-dependent relationships between the query and context, as well as a dynamic 
decoder that modulates between estimating the beginning and end of the answer span. 

Another type of self-attention is leveraged in R-net [3], which poses the idea of coupling a 
Context-to-Question attention layer (to obtain the question-aware passage representation), with a 
self-matching attention mechanism (to refine the representation by matching the passage against 
itself). We were interested in implementing the self-matching layer from R-Net. 

Finally, we took inspiration from the paper by Chen et. al [7], which pioneered the con- 
cept of leveraging manual token features (i.e. part-of-speech, named entity recognition tags, and term 
frequency) to aid learning by the machine comprehension system. 

3 Approach 

At a high-level, we focused on implementing models that concern primarily 1) the embedding layer 
(character-level embeddings, input features) and 2) attention techniques (coattention, key/query/value 
(KQV) self-attention, and RNet self-attention). Additionally, we ran hyperparameter tuning 
experiments (learning rate, dropout probabilities). 

Baseline: We utilize the provided baseline that implements the BiDAF model specified by Seo et al. 
[8] (without character embeddings). Based on our initial training, the baseline model produced the 

following metrics (maximized across all values except minimized for NLL): AUN A = 66.91, EM = 
56.24, Fl = 59.69, NLL & 3.013. For the implementation of our model, we seek to improve across 
these metrics on the SQUAD 2.0 dataset. 

Character-Level Embeddings: As proposed by Seo et al. [8], our model implements character-level 
embeddings, in addition to word embeddings, to obtain a more nuanced context representation of the 
input sequence. This additional level of granularity provided by the character embeddings serves to 
add robustness on out-of-vocabulary terms and enables us to condition on the morphology of words. 

We follow a similar approach to the BiDAF paper by using character-level convolutional neural 
networks (CNN) [6]. We pass our pre-processed context words cy, ..., cj and query words qi, ..., diz 
into a CNN that produces our character-level embeddings Cemp,.1, ---; Cemb,N aNd Gemb,15 «++; Temb,M 

for each word. We proceed to max-pool across the width of each embedding to find the maximal 
vector values for each word. Then, we concatenate the resulting character embedding with our word 
embeddings, and pass the result into a Highway Network for future processing.



Input Features: In taking inspiration from DrQA [7], we integrated the input features of part-of- 
speech (POS) and the lemmatized form of the context/query tokens into our model. Our reasoning 
was that including the part-of-speech feature provides useful information for our model to generalize 
patterns such as the order of parts-of-speech in identifying the answer. Similarly, utilizing lemmas 
may aid the model in understanding when word forms differ in the context and query. For example, 
with the context passage of "Godzilla ate a plane..." and the query of "What did Godzilla eat?", the 
system may be able to see that the lemmatized form of "ate" (namely "eat") is a direct match for a 
token in the query ("eat"), which may yield a more "directed search" for the eventual answer. 

Heeding guidance from our TA, for each word in the context/query, we tokenize on the POS and 
lemmas of each token, in addition to obtaining the unmodified token text. We create maps from the 
POS/lemma to their respective indices, as well as POS/lemma embedding matrices that we eventually 
pass to our embedding layer. Finally, we concatenate POS/lemma embeddings with the word & 
character-level embeddings. While there is the added benefit of more embeddings for our model to 
process and extract patterns from, this significantly increased our setup running time by a factor of 
two. 

Co-attention: We sought to implement a coattention mechanism akin to the one described by Xiong 
et al. [2] and the project handout. 

Let ci, ...,c denote the context hidden states and let qi, ..., ¢@¢ denote the question hidden states, 
both in R!. We first apply a linear layer with a tanh nonlinearity to produce question hidden states 
4; ++-» diz. After we append sentinel vectors to each hidden state, we compute an affinity matrix 
L to describe the similarity between the pairs of context and hidden states. Next, we take the 
masked softmax of L row-wise to produce a, then take the weighted sum with each question hidden 
state to obtain the Context-to-Question attention output A. We also take the masked softmax of L 
column-wise to produce (3, then take the weighted sum with each context hidden state to obtain the 
Question-to-Context attention output B. Crucially, we take the weighted sum of the C2Q attention 
distributions with the Q2C attention outputs to produce our second-level attention outputs S: 

S=aQ@B, 

where @ represents the batched matrix multiplication operation. Finally, we concatenate the second 
level attention output with our C2Q attention outputs and feed the result through a bidirectional 
LSTM layer, which is part of the modeling layer. 

KQV Self-Attention: This is the second type of attention that we implemented, the "vanilla" 
key/query/value self-attention from lecture. We decided to apply the KQV self-attention layer right 
after the embedding layer becuase in lecture we saw that self-attention can be useful towards the 
beginning of the model. We could have experimented by placing the layer elsewhere, however. We 
made use of existing Assignment 5 code [9] to build the KQV self-attention block, while adapting to 
our model configurations, number of attention heads, and removing additional layers to focus on just 
the linear normalization and residual connection steps. The primary equation for self-attention is the 
following: 

att = softmax( on )V 

where f is a normalization factor dependent on the size of K. Following what we learned in 
Assignment 5, we preceded this step by a normalization layer and completed the KQV self-attention 
layer with a residual connection as follows: 

att = « + L(z), 

where z is the input to the KQV self-attention layer and L is a LayerNorm. 

RNet Self-Attention: To experiment with a third and final type of attention, we implemented the 
self-attention layer described in the RNet paper [3] (which they call Self-Matching Attention). This 
layer is an application of additive attention (coupled with a gated layer which resembled our BiDAF 
attention layer) whose goal is to refine the question-aware passage representation by matching the 
passage against itself. We took inspiration from an existing RNet implementation which we found 
online [10]. Our approach consists in keeping the BiDAF attention layer and then passing the output 
into the RNet self-attention layer to further enhance the question-aware passage representation. In 
our self-attention layer, we implement the following steps (where v”’ is the question-aware passage 
representation obtained by previous attention layer, W” and W”’ are learnable linear layers, and v7



is a learnable vector parameter): 

8 i v'tanh(Wj'u; +WPoP) 

a, = exp(s;)/25_1exp(s}) 
c, = Datu? 

We finally pass the concatenation of v? with scores c into a "gate", which is defined as: 
g = sigmoid(W,|[v?’, c]) 

g=9*|v",¢], 
which gives us our final output of the self-attention layer g. 

Hyperparameter tuning: Our approach consists of picking the model with character-level embed- 
dings (and BiDAF attention only) and varying the hyperparameters of learning rate and dropout rate. 
We decided to focus on just 1 model (instead of trying with a few of our models) for straight-forward 
comparison, so as to clearly identify the impact of varying a hyperparameter. We run a dozen ex- 
periements increasing/decreasing the learning rate and dropout rate separately. We also try annealing 
the learning rate, as to manually decrease it once the training loss stabilizes. 

4 Experiments 

4.1 Data 

We use the SQuAD 2.0 dataset which contains ~150k total questions, with ~ 5 of the questions 
unanswerable. The dataset consists of (context, question, answer) triplets, to which we will separate 
into training and dev sets. We made use of the start code which helped us preprocess the data. We 
use this dataset to build a model that performs the question answering task—answering a question 
by determining the start and end position of the answer (a span of text) from the context paragraph 
provided. 

4.2 Evaluation method 

We use the automatic evaluation metric that is standard for machine comprehension / question- 
answering tasks: Fl score and Exact Match (EM). Combining F1 and EM provides a reasonable 
metric to evaluate the performance of our model. We also consider the metrics of NLL (negative 
log-likelihood loss) and AVNA (Answer vs. No Answer). 

To understand the evaluation of one of our specific models, we compare our scores to the baseline’s, 
but also to the scores obtained by our other models. Indeed, to evaluate the effectiveness of the tech- 
niques we implement, we integrate aspects of an ablation study to present different scores with/without 
a particular technique technique. This provides great insights into which of the techniques are most 
successful. 

4.3 Experimental details 

We ran all of our models on NC6Promo and NC6sv3 Azure machines, resulting in training times of 
- 15+ hours and * 6 hours, respectively. Each completed experiment ran for thirty epochs. For our 

self-attention models, our batch size was 32, as our VMs were consistently running out of memory, 
and 64 for the rest of the models that we tested. As we had conducted a series of hyperparameter 
tuning experiments, our learning rates differed model to model (refer to Section 4.4: Results for more 
details), but we ended up using the default values of a learning rate of 0.5, dropout probability of 0.2, 
kernel size of 5 (for character embeddings), hidden size of 100, character limit of 16, paragraph limit 
of 400, question limit of 50, and character dimensions of 64. 

4.4 Results 

After implementing each of our models following our approach detailed above, we evaluated their 
performance on the validation set. We summarize our quantitative results in the following table,



where each row presents a particular model’s metrics. The color-coding indicates in blue models that 
applied techniques to the embedding later, and in green models that applied attention techniques. 
  

  

  

  

  

  

  

  

  

  

  

Model Fl EM NLL AvNA 

Baseline 59.69 56.23 373 66.71 

Character-Level Embeddings 63.19 59.81 2,93 69.79 

Character-Level Embeddings + POS 63.44 60.14 2.82 69.84 

Character-Level Embeddings + Lemma 62.13 58.78 2.81 68.98 

Character-Level Embeddings + POS + 61.86 58.73 2.85 68.91 
Lemma 

Character-Level Embeddings + 61.49 58.09 3.20 68.32 
KQV Self-Attention for context 

Character-Level Embeddings + 63.46 60.11 2.95 69.72 
KQV Self-Attention for context & query 

Character-Level Embeddings + 65.27 61.77 2.77 71.79 
Self-Matching Attention (RNet) 

Character-Level Embeddings + 61.39 S57 3.10 68.46 
Coattention 

Coattention (without char-level 59.23 55.44 3.20 66.48 
embeddings)               

Table 1: Model performance results on the validation set 

Here are the Fl and EM scores we obtained on the test leaderboard for our best model: 

  

  

  

  

Character-Level Embeddings Fl EM NLL AvNA 
+ Self-Attention (RNet) 

Baseline (Dev) 59.69 56.23 3:13 66.71 

Dev Set 65.27 61.77 2.77 71.79 

Test Set 63.99 60.14               

Table 2: Test leaderboard results 

We also ran a series of hyperparameter tuning experiments, where we varied learning rate and 
dropout rate, summarized in following table: 

  

  

  

  

  

  

  

  

Model LR Dropout Fl EM NLL AvNA 

Baseline 0.5 0.2 59.69 56.23 3.13 66.71 

0-Character-Level 0.5 0.2 63.19 59.81 2.93 69.79 
Embeddings 

1-Character-Level 0.9 0.3 60.74 57.67 2.74 67.23 
Embeddings 

2-Character-Level 0.7 0.3 61.34 58.14 2.77 67.40 
Embeddings 

3-Character-Level 0.05 0.2 52.19 52.19 5.83 52.14 
Embeddings 
(stopped half-way through) 

4-Character-Level 0.3 0.2 62.28 58.90 2.99 69.15 
Embeddings 

5a-Character-Level 0.5, then 0.3 (at 0.2 61.62 58.14 3.30 68.56 

Embeddings: LR annealing | 1.5mil iterat®) 

  
5b-Character-Level 0.5, then 0.3 0.2 62.74 59.33 3.16 69.70 
Embeddings: LR annealing | (at 3 mil it) 

  
6- Character-Level 0.2 0.2 60.84 57.07 3.31 68.19 
Embeddings                   

Table 3: Hyperparameter tuning results



Results analysis for character-level embeddings and input features: Our results reveal that 
character-level embeddings produce a drastic improvement on EM/F1 scores, producing an ap- 
proximate 5.7% increase in F1 and 6.4% increase in EM scores from the baseline. However, we were 
rather disappointed with results for input features; while POS produced a slight increase in FI/EM to 
63.44/60.14, the integration of lemma features reduced scores to 62.13/58.78, and the combined POS 

+ lemmas produced a rather unimpressive 61.86/58.73 (see Appendix for more details). We think that 
this may be an indication that we are "over-engineering"” our model, and that it might be best for the 
model to extract its own patterns in an "end-to-end" manner. 

Results analysis for attention models: Our table shows results for three types of attention: 
coattention, key/query/value (KQV) self-attention, and RNet self-attention. Each of these attention 
techniques had significantly different results. Coattention performed worse than we expected, with 
lower results than with BiDAF attention (see Appendix for more details). However, the other two 
types of attention performed quite well. To better visualize the differences, displayed below is a 
graph plotting RNet self attention in pink/gray , KQV self attention (applied to context + query) in 
blue, and KQV self attention (applied to context only) in orange : 

AvNA EM Fl 
tag: dev/AVNA tag: dev/EM tag: dev/F1 

M 5M 2M 2.5M 3M IM ( OK IM 1.5M 2M 2.5M 3M M QO 500k 1M 1.5M 2M 2,5N IM 3.5M a 

i a il A 

NLL 
tag: dev/NLL 

500k 1M 1.5M 2M 2.5M 3M 

Ey 

Figure 1: Graph of R-Net self attention vs. KQV self attention (context and query) vs. KQV self 
attention (context only) 

Examining the two KQV experiments, we notice that KQV self-attention performed much better 
when applied to both context and query (blue) than just context (orange), with a difference of nearly 
2 percentage points for the F1 score. This highlights that attending to just one of the inputs is not 
enough and that it possibly even worsens results as perhaps the embeddings of context/query are no 
longer very comparable or scaled the same way if only one is passed through the KQV self-attention 
layer. 
Finally, we can compare the results from KQV self-attention (blue, both applied to context + question) 
to the self-attention from the Rnet paper (pink/gray). We saw a large improvement with the RNet self- 
attention, obtaining an F1 score of 65.27. The Fl score for RNet self-attention is almost 2 percentage 
points greater than the score for KQV self-attention. KQV may have not performed as well as ex- 
pected, mainly because when transformers use this technique, they have dozens of layers, whereas we 
only have 1. We believe the strong performance of RNet self-attention is due to the attention layer’s 
increased level of nuance in obtaining question-aware representation for the passage, which could 
have helped the model gain a better contextual understanding of the passage which led to better results. 

Results analysis for hyperparameter tuning: The results we obtained in our dozen of hyperparam- 
eter tuning experiments were rather disappointing. We ran these experiments on the model with just 
character-level embeddings for easy comparison. We tried independently increasing or decreasing the



learning rate and the dropout rate, but none of our results improved upon the default parameters for 
the character-level embeddings model. This appears to suggest that the default parameters provided 
in the starter code (learning rate of 0.5, dropout of 0.2) were very ideal hyperparameters for our 
task and dataset, and that varying them did not lead to immediate improvements. It was interesting 
to perform the experiments of learning rate annealing, where we started the run at LR of 0.5 but 
then decreased the LR when the training loss started to stabilize. With more time, we would have 
experimented with different types of annealing (cosine, linear, etc). 

5 Analysis 

In this section, we do an initial quantitative analysis but then spend time qualitatively evaluating our 
best model (which incorporates character-level embeddings and RNet self-attention). 

It is valuable to break down the different kinds of questions. Examining the validation evaluation set, 
we obtain the following percentages of questions by type ("how", "what", etc): 

"How": 9.7%, "What": 57.7%, "Why": 1.5%, "Which": 4.5%, "Who": 10.6%, "When": 9.1%, 
"Where": 4.4%, other: 6.7%, 

We then calculated the F1 scores of our model on the dev set, broken down by question type. We 
obtain the following F1 scores, in decreasing order: 

"Which": 78, 
"When": 72.6, 
"Who": 65.5, 
"What": 64.7, 
"Where": 64.3, 

"How": 62.5, 

other: 62.5, 

"Why": 61.1, 

The break down is quite interesting. We can notice that our model performs the best on "which" 
questions, obtaining the highest F1 score of 78. This makes sense, as in a way, "Which" questions 
often contain a lot of information that gives the answer away. For example, in the question "Which 
character is known for being small and having blue skin?" there’s a lot of information about the 
characteristics of that character (small, blue skin) that the model could easily find in the passage and 
use to correctly predict the answer. 
Our models also performs extremely well on the "When" questions, obtaining a very high F1 score of 
72.6. This suggests that our model successfully captures temporal dimensions. This is also perhaps 
because many of the "When" questions have the answer follow the pattern "in..." (like "in 1999", or 
"in May"), a pattern that could be easily learned by the model. 
On the other hand, our models performs poorly on the "Why" questions, obtaining a low F1 of 61.1. 
This actually isn’t that surprising, since "Why" questions often have a more complex answer that 
requires a much deeper level of understanding of the passage and question. With more data available, 
it would be interesting to increase the number of "Why" questions in our training set so our model 
can hopefully better grasp a true semantic understanding of the passage and question. 

To further qualitatively understand our system (e.g. when it succeeds and when it fails), 
we will look at a few interesting examples of correct/incorrect predictions. 

Correct predictions: 

« Question: How many people were at a Harvard sponsored regatta in 1875? 
« Context: Harvard's 2,400 professors, lecturers, and instructors instruct 7,200 undergraduates and 14,000 graduate students. The school color is crimson, 

which is also the name of the Harvard sports teams and the daily newspaper, The Harvard Crimson. The color was unofficially adopted (in preference to 
magenta) by an 1875 vote of the student body, although the association with some form of red can be traced back to 1858, when Charles William Eliot, a 
young graduate student who would later become Harvard's 21st and longest-serving president (1869-1909), bought red bandanas for his crew so they 
could more easily be distinguished by spectators at a regatta. 

« Answer: N/A 
« Prediction: N/A 

This correct prediction is interesting because it demonstrates that the model isn’t just trying to find



words from the question in the passage and select a substring that is near it. Indeed, although the 
word "regatta" is present in the passage, the model understands the semantic difference between the 
type of answer the question is expecting ("how many", which is a quantity), and the type of answer 
that the passage seems to suggest ("who", as in the crew and spectators who were at the regatta). The 
understanding of the mismatch between these two types enables the model to correctly predict N/A. 

Incorrect predictions: 

Question: What can the exhaust steam not fully do when the exhaust event is insufficiently long? 
Context: The simplest valve gears give events of fixed length during the engine cycle and often make the engine rotate in only one direction. Most 
however have a reversing mechanism which additionally can provide means for saving steam as speed and momentum are gained by gradually 
"shortening the cutoff" or rather, shortening the admission event; this in turn proportionately lengthens the expansion period. However, as one and the 
same valve usually controls both steam flows, a short cutoff at admission adversely affects the exhaust and compression periods which should ideally 
always be kept fairly constant; if the exhaust event is too brief, the totality of the exhaust steam cannot evacuate the cylinder, choking it and giving 
excessive compression ("kick back").[citation needed] 
Answer: evacuate the cylinder 
Prediction: N/A 

This is a very interesting incorrect prediction. While the question contains "insufficiently long", 
the answer in the passage is preceded by "too brief". It seems like the model did not realize that 
"insufficiently long" and "too brief" actually mean the same thing (just flipping antonyms around), 
leading to the incorrect prediction of N/A. If the model could better encode the similarity of phrases 
that contain different words that together build up the same meaning, we believe this would lead to 
better results in these types of scenarios. 

Question: Who was Kaidu's grandfather? 
Context: Instability troubled the early years of Kublai Khan's reign. Ogedei's grandson Kaidu refused to submit to Kublai and threatened the western 
frontier of Kublai's domain. The hostile but weakened Song dynasty remained an obstacle in the south. Kublai secured the northeast border in 1259 by 
installing the hostage prince Wonjong as the ruler of Korea, making it a Mongol tributary state. Kublai was also threatened by domestic unrest. Li Tan, 
the son-in-law of a powerful official, instigated a revolt against Mongol rule in 1262. After successfully suppressing the revolt, Kublai curbed the influence 
of the Han Chinese advisers in his court. He feared that his dependence on Chinese officials left him vulnerable to future revolts and defections to the 
Song. 
Answer: Ogedei 
Prediction: Kublai 

This is a relatively simple example that the model failed to succeed on. The answer lies in the 
phrase "Ogedai’s grandson Kaidu": any human can immediately tell that Ogedai is the grandfather 
of Kaidu. But the model did not pick up on the semantics of "’s" and did not understand how to 
relate "grandfather" from the question to "grandson" from the passage. If the model’s embeddings 
for "grandson" and "grandfather" had greater similarity, the model would be more likely to pro- 
cess the question-aware passage representation and predict the correct answer for this type of scenario. 

Question: Abilene was a prime investor in what project? 
Context: Internet2 is a not-for-profit United States computer networking consortium led by members from the research and education communities, 
industry, and government. The Internet2 community, in partnership with Qwest, built the first Internet2 Network, called Abilene, in 1998 and was a prime 
investor in the National LambdaRail (NLR) project. In 2006, Internet2 announced a partnership with Level 3 Communications to launch a brand new 
nationwide network, boosting its capacity from 10 Gbit/s to 100 Gbit/s. In October, 2007, Internet2 officially retired Abilene and now refers to its new, 
higher capacity network as the Internet2 Network. 
Answer: N/A 
Prediction: National LambdaRail 

This is a complex example, which could probably actually fool some humans. The subtlety lies in 
grammatical structures and subject/verb linking. The model seems to focus on local, smaller chunks 
of the sentence and loses the larger picture. Zooming out, one can see that the subject of "was a 
prime investor" is "the internet2 community", and not "Abilene" as in the question. The model was 
also probably thrown off by the length of the sentence, broken up into chunks separated by commas. 

6 Conclusion 

In this paper, we evaluated the results of experimenting with embeddings, with regards to character- 
level embeddings and POS/lemma input features, as well as exploring unique neural attention 
mechanisms (i.e. co-attention, key/query/value self-attention, and R-net self-attention). Our highest- 
performing model ended up being the configuration of character-level embeddings with R-net 
self-attention, producing F1/EM scores of 63.99/60.14 on the leaderboard test set (and scores of 
65.27/61.77 on the leaderboard dev set). We also conducted hyperparameter tuning experiments, and 
found that the best-yielding results were the default parameters provided in the starter code (LR = 
0.5, dropout = 0.2).



We were rather pleased with our high EM/F1 scores, producing increases of nearly 6% from the 
baseline for both EM/F1. Moreover, we were satisfied with the sheer number of models we imple- 
mented (6 models + a dozen hypertuning experiments), exploring various attention techniques and 
achieving good performance on the SQuAD 2.0 data set. Our implementation of different types of 
attention cemented our understanding that "Attention is *pretty much* all you need" (a reference to 
[1]), although results with attention aren’t as performant with fewer layers and model complexity. 
We also learned that different embedding techniques may produce varied results; character-level 
embeddings resulted in immense improvements to our model, but POS/lemmatization of words, for 

the most part, did not. 

Additionally, we were able to reflect over the tradeoffs between feature engineering (as we had 
done with the POS/lemmatization input features) and end-to-end learning. Based on our results, we 
concluded that feature engineering may enable the machine to target specific features and extract 
patterns with human intervention, resulting in improved pattern recognition. However, it may be 
dangerous to "over-engineer"; features that one may believe to be optimal may end up not being 
particularly useful for the model, and in turn may end up hurting results. Additionally, human-chosen 
input features may result in correlated/redundant features, which may be damaging as the system 
may erroneously pick up on correlations between features that are unimportant details. End-to-end 
learning allows for the natural extraction of features, but oftentimes such features may be rather 
trivial and insignificant. 

One limitation of our study was that we did not get the opportunity to tune hyperparameters for 
our most performant model (due to time constraints); instead, we solely tuned our character-level 
embedding model. It would be interesting to explore as to whether our results hold true (that the 
default learning rate/dropout probability parameters are most ideal) when we implement different 
attention mechanisms/input features. Another limitation is that we run KQV self-attention only after 
the embedding layer; however, results may have panned out differently if we were to run vanilla 
self-attention in other locations (such as after the encoding layer). 

Future courses of action include what is listed above, as well as experimenting with a greater variety 
of input features (such as term frequency and named entity recognition). 
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Figure 2: Graph of input features with POS and lemmatized words 
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Figure 3: Graph of baseline (orange) vs. character-level embeddings (red) 
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Figure 4: Graph of baseline (orange) vs. coattention (blue) 
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Figure 5: Graph of baseline (orange) vs. character-level embeddings + coattention (green) 
dev 

AVNA EM FI NLL 
tag: dev/AvNA tag: dev/EM tag: dev/F1 tag: dev/NLL 

é ] | 
| 

| 

It 
| i 

| 
KIM 45h A oh 4 A ) M1EM 2h , 

20 20 o360 20 

train 

LR NUL 
tag: train/LR tag: traln/NLL 

  

Figure 6: Graph of character-level embeddings (red) vs. character-level embeddings + coattention 
(green) 
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