
Question Answering with Co-attention and

Transformer

Stanford CS224N Default Project

Xiran Shi, Xintong Yu
ICME

Stanford University
xiranshi@stanford.edu, xy10@stanford.edu

Abstract

In this project, we investigated the performance improvements of incorporating
coattention layer, QNet, and RNet to the basic Bidirectional Attention Flow model

for QA systems. We constructed the two models with one used QANet and the

other implements char embedding and self attention, trained on on SQUAD 2.0
dataset, and evaluated the improvements based on the Exact Match and F1 scores.

The two model respectively improve the EM from 57.39 to 64.49 (QANet), 62.03
(CharEmbed + Self Match), and F1 from 60.64 to 69.62 and 65.53. With the

evaluation results, we further analyzed the advantage and limitations of each
approach qualitatively.

1 Key Information to include

¢ Mentor: Daniel Do

2 Introduction

Since the release of Stanford Question Answering Dataset (SQuAD), rapid progresses in reading
comprehension style question answering have been made. The current state of art model can generate
90% of the answers exactly. [1]. Though many of the recent progresses utilized BERT, in this paper,
we focused on using transformer and additional attention layer to improve the performance of the
baseline model.

First, we implemented the co-attention layer, which captures the interaction between context and
question attention. The co-attention layer failed to improve the model performance but generated
very similar results as the baseline model. We will analyze the failure reasons later in the report.

Second, we implemented QA-Net which uses convolutions to capture the local structure of the context
and self-attention mechanism to model the global interactions between text. We were able to improve
the model performance significantly compared to the baseline model. The QA-Net is not built on the
top of baseline model but replaces the RNN in baseline with convolution network.

Finally, we implemented the self-matching layer and pointer network as described in RNet to the
baseline model. The self matching mechanism helps refine the attention representation by matching
the passage against itself, which effectively encodes information from the whole passage. The pointer
network, which is output layer of RNET, predicts a pointer to the start and end points of the answer
spans.

3 Related Work

Over the past few years, significant progress has been made in the question answer system, with
which the model generally employ two components: (1) a recurrent model that takes sequential inputs,

Stanford CS224N Natural Language Processing with Deep Learning

and (2) attention component. A successful employment of the two components is Bidirectional
Attention Flow (BiDAF) by Seo, Kembhavi, Hajishirzi 2016 [2], which is also the baseline model of

the project. The paper proposed a multi-layer hierarchical structures to give a bidirectional attention
flow network. This enables a query-aware context representation. The Dynamic Coattention Network
(DCN) by Zhong, Xiong, Socher, 2016, fuses the co-dependent representations of questions and
context and then predicts the relevant answer span, which enable the model to recover from local
maxima corresponding to incorrect answers. The Microsoft NLP group, 2017, introduced R-NET.
R-NET includes a self-matching attention mechanism to refine the representation by matching the
passage against itself, which effectively encodes information from the whole passage. Pointer
networks are employed to locate the positions of answers from the passage. All mentioned models
are primarily based on recurrent neural networks, while Yu & Dohan 2018, proposed a new QA
architecture that does not reply on recurrent networks. It employs convolution as local interaction
model and self-attention as global interaction models. The method is faster to train because of its
feed-forward nature, and the paper assumes it is 3x to 13x faster to train than BiDAF. The paper also
achieves a best published F1 score of 84.6.

In the related work, we only name a few papers relevant to our project but those are far beyond
exhaustive. By far, the highest Fl and EM score on the leaderboard has reached 90.87 and 93.18.
Many of those models uses ensemble models and utilize BERT.

4 Approach

We implemented: Character-level Embeddings, QANet [3], Co-attention Layer [4], and RNet
[5]. We wrote the code ourselves but did use online github code for reference.

We used the BiDAF model provided as our baseline model. The goal is to out perform the EM and F1
(evaluation metric) for the provided model.

4.1 Character-level embeddings

For Character-level embeddings, we first imported the pretrained GloVe character embeddings,
representing each character with a 60-dimensional vector. We then fed them into a 1D Convolutional
Neural Networks (CNN) layer. The resulting vector is then max-pooled along the dimension of kernel
applications which then produces character embedding vectors for the entire word. These vectors
are then concatenated with the projected pretrained GloVe word embedding vectors to form vectors,
which are then fed into the Highway Network.

4.2 Co-attention Layer

The co-attention layer performs a series of computation as described. This process computes the
context to question and question to context attention, concatenates the results together and outputs
that as a co-attention layer.

The co-attention layer first defines the Affine matrix L that composed the information from both
context and question. L = D7 Q, while D, Q are the document and question representation.
It then produces attention weights A, AP for the question and the document: A? = softmaa(L),
A® = softmax(L’)

The attention context, which is the attention of document in light of each question, is computed:
GF 5 DA® Similarly, attention to question in light of each document word is calculated: C? =
QA”.
We then compute C@ A? which is the attention summary of the question in the light of the previous
attention layer.
The final step is to apply a bidirectional LSTM layer as fusing the current information to the co-
attention layer.

uz = Bi — LST M((|d;;c?])

U = [ul, u2, ...,] is the output of the co-attention layer.

Since the bi-LSTM architecture is already implemented in the class RNNEncoder, the output is
[d; cP] and will be used as input to BiDAFOutput layer.

4.3 RNet

We implemented the self-matching layer and the pointer network proposed by RNet 2017 [5]. We
used the code [6] as reference for certain ambiguity in the paper.

4.3.1 Self Matching

The self matching layer enables a dynamic collection process of answer evidence from the passage.
It encodes the relevant evidence in current passage word to the whole passage.
{up }", is the attention vector, and we computes the followings:

T P P,P si, =v’ tanh(W, vf + W, %)

a! = softmaz(s')

Co = et abuy

hf = BiRNN (he, [v7 ,ce])

The above in sequence computes the connection between attention of word j and word t as Si. It

then obtains the distribution of s through computing a = softmaz(s), and finally computes c by
multiplying distribution of s and the attention vector. With trainable parameter W,, s can give a
representation of two passage words relation.

4.3.2 Pointer Network

The RNet adopts the same approach of Wang Jiang 2016 [7] and use the pointer newtwork Vinyals
et al., 2015[8] to predict the start and the end position in the answer. The pointer network uses an
attention-pooling over the question representation to generate the initial hidden vector for the pointer
network and select the start and end position.

The h?_, represents the last hidden state of the pointer network.

si =v" tanh(WPhP + Weht_,)

a! = softmaz(s')

p= argman(ak,..., a5)

Ce = i Guy

ht = BiRNN(h¢_, [h?_1,¢1])

at is the predicted distribution of the start position p,. With a has been calculated, we use that to
further compute the end position of answer by going though a bidirectional GRU. By repeating the
procedure, we obtion the predicted distribution of the end pointer.

To predict h?_,, we follow the procedure below. The h?_, is initialzed with quesiton vector r®,

which is an attention pooling vecotr of question based on a parameter V2

si =v tanh(WeuP + WEeV2)

a! = softmaz(s')

re = yiel ave

4.4 QANet

The model architecture of QANet is similar to BiDAF to some extent, but there are several major
differences.

QANéet contains the following five layers: input embedding layer, embedding encoder layer, context-
query attention layer, model encoder layer and output layer.

The input embedding layer makes use of character-level embeddings, the only difference is that
instead of pretrained GloVe character embeddings, 60-dimensional trainable vectors are used, which

is then fed into 1D CNN layer with 200 output channels, providing 200-dimensional character
embeddings.

In the embedding encoder layer, first, the sinusoidal position representations are obtained using the
following functions:

PE pos, 2i) = sin(pos/10000”* /dmodet)

PE,pos, 2i +1) = cos(pos/10000* /dimodet)

We used the implementation from PyTorch [9]. This is summed with the output from the input
embedding layer to incorporate positional information. Second, a stack of building blocks are built.
Each building block contains 4 depth-wise separable convolution layers. After that comes the self-
attention layer with multi-head attention mechanism. This part of the implementation is adapted from
the stencil code of Assignment 5. The number of heads is 8. Finally, a 1D CNN layer with kernel size
of | is applied. Each of these operations are preceded by layer normalization, and each combination
of layer normalization and operation is placed within a residual block with dropout (adapted from
[10]), which can we represented with f(layernorm(«)) + x. We directly used the original stencil
code for the implementation of context-query attention layer.

The model encoder layer consists of a linear feed-forward layer that converts the input into dimension
of 128, and a total of 7 stacked encoder blocks, each equivalent to the embedding encoder layer.
The input to model encoder layer goes through the stacked blocks a total of 3 times, giving outputs
ME1, ME2 and ME3. All three iterations share weights. Finally the output layer produces
probabilities of the starting position through concatenating ME1 and ME2 and then feeding it into
a linear layer followed by softmax, and probabilities ending position calculated in a similar way
but using concatenation of MEI and ME3 instead. The operations are represented with p) =
softmax(W,[ME1; ME2]), p2 = softmax(W2|M E1; M E3)),.

5 Experiments

5.1 Data

The dataset is the SQUAD 2.0 dataset as given. SQUAD 2.0 dataset consists of 100,000+ questions
and answers. The questions are posed based on Wikipedia acticles, and the answers can be found from
the corresponding article. The QA system is trained based on the triplet of given corpus, questions,
and corresponding answers.

5.2 Evaluation method

To evaluate the accuracy of the QA system, we adopt two metrics: Exact Match, (EM) score and F1
score. We average EM and F1 as the ultimate metric.

5.3. Experimental details

5.3.1 Character-level Embedding

For character-level embeddings, we used one 1D CNN layer with kernel size of 5, output channels
of100 and stride of 1, and one max-pooling operation. For all other parameters, we used their default
values from the provided code.

5.3.2 QANet

After implementing character-level embedding, we first implemented the embedding encoder layer
only and replaced the RNN encoder layer in the BiDAF model. The implementation (implementation
1) included depth-wise separable convolution layers, self attention layer and residual block structure
with dropout ratio of 0.2 adapted from [10]. We did not include positional encoder at this point. We
used default batch size of 64, and the training time was approximately 40 minutes per epoch. After
30 epochs, the EM score and F1 score on the dev set were 59.4 and 63.3.

After that, we implemented the model encoder layer (implementation 2), and the EM and F1 score
at | million iteration was only 55.81 and 57.68 (that of char-level embedding was 57.65 and 60.69).

Therefore we added positional encoder to see the effects ((¢mplementation 3), and the EM and F1
score were basically on par with the previous implementation. At this point, we reduced batch size to
16 because of memory issue, and the training time for each epoch was approximately 1.5 hours.

We then replaced the pre-trained character embeddings with trainable embedding vectors, and
removed dropout from the residual block structure (implementation 4). The results were were not
good, with F1 score of only 53.45 at epoch 6 (that of char-level embedding was 60.28). Since
we identified overfitting, we decided to reverse back to using pre-trained character embeddings
with dropout in the residual block and reduced the number of heads for multi-head attention to
4 (implementation 5). The results were satisfactory with EM and F1 score of 65.32 and 68.33 at
the highest. Up to this point, we did not add masking for the padding tokens in the multi-head
attention layer. Therefore we added masking and increased the number of heads back to 8 to boost
performance(implementation 6). This is our best-performing implementation with EM and F1 score
of 64.49 and 69.62 at the highest.

5.3.3 RNet

We built Self Attention with output from the BiDAF Attention layer. Rather than computing

si =v! tanh(WPv? + Wop) for each pair, we flattened the input attention and compute s; with
the flatted attention. ‘The original RNet utilized a gate attention-based recurrent networks for the final
output [uP , Cz] to control the input of RNN. The paper did not include enough details for the gate,
and we used Highway Encoder which served a similar goal. This step turned out to be crucial, and
improved both the EM and F1 by roughly 1%.

A further modification is to replace the LSTM in BiDAF Output with GRU. Such modification
reduces the per epoch time by about 10 minutes. The yields so far the best RNN performance: EM
and F1 are 62.06 and 65.53 respectively.

We implemented the Pointer Network afterwards. We used GRUCe11 for the RN N, and included 4
trainable weights. In one layer, we in sequence applied linear transform, dropout, gru, and softmax.
We included 3 layers here. This implementation causes vanishing gradients. The gradients decays to
zero rapidly.

5.3.4 Coattention Layer

The implementation of co-attention layer is relatively straightforward as the formula above described.
The input the is BiDAF Attention output and we applied dropout and masked softmax to prevent
overfitting. Inclusion of coattention layer to the baseline did not improve the performance. Even
worse, after incorporation Character Embedding, the performance downgraded. Failure reasons will
be analyzed.

5.4 Model Configuration

One distinct difference between QAnet and the RNet is that the RNet, same as the baseline and

many other QA system, uses RNN for modelling component but the QANet uses convolution instead.
Thus, it is not feasible to merge the architecture of QANet and RNet. Instead, we train each model

separately and compare their performance and efficiency.

5.4.1 Hyper parameter Tuning

Unfortunately, due to the credit budget, we were not able to perform many fine tuning on the hyper
parameter. We tested a very small set of hyper parameter, and do not run for 30 epochs. We left
the learning rate unchanged, but modified the hidden size to 128 for QANet. We also modified the
number of hidden layers to 3 for the self match output layer.

5.4.2 Training Time

We trained for 10-30 epochs for each model, which take from 10 hours to 40 hours. We would interrupt
the process if there is clear over-fitting. For instance, when the Dev Error increases substantially and
is much larger than the training error.

5.5 Results

5.5.1 Evaluation Metrics

The followings are results after 30 epochs.

| | Baseline | CharEmbed | CharEmbed+SelfMatch | QANet | Test Leaderboard (QANet) |

EM 57.39 60.59 62.06 64.49 62.502
Fl 60.64 64.17 65.53 69.62 65.953

Avg(EM, F1) 59.01 62.38 63.80 67.06 64.228

¢ QANet improves EM and F1 scores to 64.49 and 69.62. The results are satisfying.

¢ Self Match + Character Embedding. The result is slightly lower than expected. The RNet
achieves EM and F1 of around 75, 79. However, we failed to utilize the Pointer Network

and have some modifications in the model structure, so the result is acceptable.

5.5.2 Efficiency

We compared the training time of two models configurations. The QANet is relatively slow to train.

Baseline | QANet | CharEmbed + Self Matching

time/epoch (min) 22 100 65

5.5.3 Visualization

Visualizations are in appendix: QANet fig 1, SelfAtt + Char Embed fig 2.

6 Analysis

6.1 QANet

We can identify multiple interesting trends by examining the EM, F1 and loss curves (in Appendix).

In the results for implementation 4, we see that at the very beginning, the Fl and EM scores are much
higher and the loss is much lower for the dev set compared to all other implementations. However,
the scores stop to increase and fluctuate violently very soon, and the loss decreases much slower than
other implementations. This indicates that simply using f(layernorm(a)) + x for residual block
implementation without dropout, together with trainable character embeddings and 8 heads achieves
high performance early on with lots of learnable model parameters, but lacks momentum for further
improvements. It is possible, though, that if it was allowed long enough training time, performance
might boost.

When comparing the performances of implementation | and character-level embedding, we can see
that although character-level embedding achieves higher scores, the Fl and EM curves plateau and
even start going downwards after 3 million iterations, while the curves for implementation | go
up relatively steadily. Comparing implementation 3 with character-level embedding, we see that
although the scores are much lower, the loss curve plateaus and does not go back up. It seems
character-embedding has a more serious problem of overfitting.

There are multiple interesting observations for implementation 5. Examining the loss curve for
development set, we see that up to 1.6 million iterations, which is about half way into training,
compared with all other implementations, the loss first decrease most rapidly and plateaus the earliest,
showing signs of overfitting. This can also be observed in the EM and F1 curve where the scores
first increase rapidly and plateaus early. However after that there is a clear drop in the loss curve
from 2.8 to 2.6 from 1.6 million iterations to 1.9 million iterations where the curve plateaus again
and increases, again showing signs of overfitting. The drop in loss can also be observed in the EM
and F1 curves in the form of sudden increases. We are not completely sure about the cause of this
phenomenon, but we suspect that at 1.6 million iteration, gradient descent helps the model enter a
new landscape of parameter configurations that wasn’t explored before, and it might be related to the
decrease of learning rates in Adadelta.

Comparing implementation 5 and implementation 6, we can see that the increase in performance
from a combination of increasing the number of heads and adding masking does not seem to be large.
Although due to the long training time we are not able to explore the effects of these modifications
separately, we suspect that even without padding masking, the model learned to mask out the paddings
during training.

6.2 The Failure of Co-attention Layer

The addition of co-attention layer does not improve the performance, but outputs an almost identical
results as the baseline. This is probably because that the attention layer of the baseline has already
included interaction between question and context.
The output of baseline attention layer:

g = Bi-— LSTM |cq; ai; c+ ai; c; + bi]

Here, a; is the C2Q attention and b; is the Q2C attention. with the context embedding c;, C2Q

attention output a;, and the Q2C attention output b;.

The output of the coattention layer:

ut = Bi — LSTM(|d:; c?])
1

= Bi— LSTM(|d,; d; * softmax(D* Q]) us

with cP is attention of document in light of question and d, is attention of question in light of
document.
Since the baseline attention layer has already taken C2Q and Q2C into account, and a;, b; is calculated

in a very similar manner as c?, it is not surprising that including an additional coattention layer fails
to achieve further improvement.

6.3 RNet

The self-attention layer, unlike co-attention layer, focus on the Context to Context attention. Thus, it
provides additional information about attention to the QA system, thus improve the performance.

However, one significant drawback of the self attention layer is the computational cost. The com-
putation cost of one epoch increases by 30 minutes after incorporating the self attention layer. The
self-Matchin Layer computes the attention of each word in the context with the whole passage, and
train a linear transformation based on that. Even after replacing Bidirectional LSTM with GRU,
the computation speed is 2x slower. Unsurprisingly, the complexity of the model increases as well,
which, push back the overfit time from 2M to 3.5M iterations.

Both the RNet paper and the reference code achieved a F1 of 79, and EM of 71, which is significantly
better than our results. The possible reasons is that the Pointer Network does not work.After
implement the Pointer Network, the gradient will converge to 0 very fast. One possible explanation is
the extensive use of softmax. The gradient of the softmax function can be trivial when the value is
larger than 5 or smaller than -5. If there is more time, we would fix the Pointer Network and observe
the performance.

7 Conclusion

In this project, we implemented several improvement of question answering system based on SQUAD
database including: 1) QANet 2) coattention 3) RNet. We built the models from scratch and evaluated

against the EM and FI score. We first implemented co-attention layer, which did not improve the
model performance. We then added character-embeddings to the baseline model which improved
the EM score to 60.59 and FI score to 64.17. After that we implemented QANet incrementally and
eventually saw major improvements in both EM and F1 scores (64.49 and 69.62) compared to the
baseline BiDAF model and BiDAF with character-embeddings. Finally, we implemented the Self
Matching layer and Pointer Network described in RNet. This is implemented on the top of Character
Embedding and Baseline. We tested several modifications of the RNet architecture, e.g. different
gate attention recurrent network and output layer. While which the Self Matching improved the
performance, the Pointer Network caused vanishing gradients. The self match layer and character

embedding improve the performance to 62.06(EM) and 65.53(F1). Among all techniques, QANet
gives the best performance.

For future improvements on the QANet, we could make use of data augmentation through translating
English text to French and back to English using attention-based neural machine translation models.
Another possible improvement is to finish the pointer network of RNet. It can also be useful to
conduct more hyper parameters tuning on the hidden size, learning rate, and etc.

References

[1] https://paperswithcode.com/sota/question-answering-on-squad 11.

[2] Ali Farhadi Minjoon Seo, Aniruddha Kembhavi and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension. 2016.

[3] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,

and Quoc V Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. arXiv preprint arXiv: 1804.09541, 2018.

[4] Victor Zhong Caiming Xiong and Richard Socher. Dynamic coattention networks for question
answering. 2016.

[5] R-net: Machine reading comprehension with self-matching networks.

[6] Knowledge Computation Group@HKUST. https://github.com/HKUST-KnowComp/R-Net.

[7] Jing Jiang Shuohang Wang. Machine comprehension using match-lstm and answer pointer.
arXiv preprint arXiv: 1608.07905, 2016b, 2016.

[8] Meire Fortunato Oriol Vinyals and Navdeep Jaitly. Pointer networks.

[9] PyTorch. https://pytorch.org/tutorials/beginner/transformer;utorial.html.

[10] andy840314. https://github.com/andy8403 14/QANéet-pytorch.

A Appendix (optional)

AvNA EM
tag: dev/AVNA tag: dev/EM

74

70

66

62

58

54

oO 500k 1M 1.5M 2M 2.5M 3M _ 3.5M oO 500k 1M 1.5M 2M 2.5M 3M 3.5M

c= Eg [f= Ee

F1 NLL
tag: dev/F1 tag: dev/NLL

70 4.4

66 | 4

62 3.6

58 3.2

54 2.8

50 2.4

O 600k 1M 1.5M 2M 2.5M 3M _ 3.5M O S00k 1M 1.5M 2M 2.5M 3M_ 3.5M

2 = Ed 1=oQ

Figure 1: Character-level embedding: light blue, implementation 1: light grey right below light blue,
implementation 2: short light grey, implementation 3: red, implementation 4: pink, implementation 5:

dark blue, implementation 6: green

AvNA EM
tag: dev/AVNA tag: dev/EM

74 64

70

60
66

62 56

58
52

54

50 1——t 48

QO 600k 1M 1.5M 2M 2.5M 8M 3.5M O 600k 1M 1.5M 2M 2.5M 3M 3.5M

c = Ee a

FI NLL
tag: dev/F1 tag: dev/NLL

|
66 20.7

4.4

62 |

4]
58 3.6

3.2
54

2.8

50 2.4

QO 600k 1M 1.5M 2M 2.5M 3M 3.5M O 500k 1M 1.5M 2M 2.5M 3M 3.5M

bo =

Figure 2: Visualization of Self Match + Char Embedding. The green curve is for Self Match + Char

embedding, while the blue one is the baseline.

10

