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Abstract

Our goal in this project is to improve the performance of the Bidirectional Attention
Flow (BiDAF) model for the NLP task of question answering on the SQuAD 2.0
dataset. To do this, we 1) integrate character-level embeddings into the baseline
BiDAF model and 2) replace the default attention layer with a coattention layer.
While adding character-level embeddings has shown to improve the baseline BiIDAF
model’s EM and F1 scores substantially, their addition to the DCN model actually
decreased its scores slightly. Moreover, transforming the BIDAF model into a
Dynamic Coattention Network (DCN) decreased the model’s performance. Thus,
the best model architecture we found is BiDAF with character-level embeddings.
Future work includes tuning hyperparameters, experimenting with data processing
techniques, adding optimizations like the Adam optimizer, and exploring different
forms of attention.

1 Introduction

As researchers have begun to tackle the task of machine Question Answering (QA), available datasets
have grown from small, hand-labeled ones to larger ones like the Stanford-released SQuAD. SQuUAD’s
magnitude introduces new challenges to the field of QA: it encompasses a diverse set of logic that
models need to accommodate to be successful. Training and testing a model on the SQuAD dataset
can reveal how well it "understands’ human text, and can indicate the degree to which it can help
humans accomplish tasks associated with information retrieval.

For this project, we built a question answering system based on SQuAD. First, we successfully trained
a baseline Bidirectional Attention Flow (BiDAF) model. After doing so, we endeavoured to improve
the BiDAF model’s performance—in terms of EM and F1 scores—by implementing character-level
embeddings, and by incorporating the encoder, coattention, and dynamic decoder layers introduced
in Dynamic Coattention Networks for Question Answering [4].

We chose to add character-level embeddings to the existing word-level embeddings in the baseline
model because they would allow our model to capture the internal structure of words in addition to
sentence composition, and provide our model with a framework with which to handle previously
unseen words [5]. Adding character-level embeddings improved our model’s EM and F1 scores by
2.07 and 2.435, respectively.

We then investigated the extent to which adapting layers from the Dynamic Coattention Network
(DCN) improved our model’s performance. The authors of Dynamic Coattention Networks for
Question Answering claim that a coattention layer is capable of contextualizing a given question
within its document, and that continuously predicting the beginning and ending of an answer span
with a dynamic decoder prevents predictions from being trapped within local maxima. They also
report that these changes yield significant F1 score increases [4].

However, after replacing the baseline model’s attention layer with a coattention layer and adding
an encoder and dynamic decoder to our model, we found that the DCN performed worse than the
BiDAF, both without character embeddings—which yielded an EM score of 47.811 and F1 score of
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47.811—and with character embeddings—which yielded an EM score of 47.489 and an F1 score of
47.513. These results are unsurprising: despite the advancements made by Xiong et al., their model’s
EM and F1 scores are still lower than that of the best-performing BiDAF model constructed by Seo
et al. Moving forward, we would like to explore hyperparameter tuning and preprocessing techniques
to improve the DCN'’s performance.

2 Related Work

The SQuAD dataset was first presented and freely released by Rajpurkar et al. in 2016 [2], who
created the dataset by posing over 100,000 questions, whose answers were contained in predesignated
Wikipedia articles, to crowdworkers. Rajpurkar et al. claimed that SQuAD’s magnitude could allow
it to serve as a large, foundational dataset that could accelerate and advance the field of QA, just as
ImageNet did for object recognition and Penn Treebank did for syntactic parsing [2]. The researchers
built SQuAD such that models must find an answer within an entire document instead of from a
limited list of options; this combined with SQuAD’s unprecedented scale and its diversity of question
and answer pairings indicate that training and testing with it could close the gap between human and
model performance in QA [2].

Rajpurkar et al. present a logistic regression model that relies heavily on lexicalized and dependency
tree path features, and that has an F1 score of 51%, which is significantly less than the human
performance score of 86.8% [2]. However, subsequent research has yielded models with greatly
improved performance: the baseline BIDAF model we use is based on the work done by Seo et al. in
Bi-Directional Attention Flow for Machine Comprehension. Instead of using on an attention layer
that summarizes context information in a fixed-size vector early in training, Seo et al. implement
a bidirectional attention layer that 1) independently computes Context2Query and Query2Context
attention at each time step, and 2) allows attention computations from every time step to flow through
every layer of the model to preserve information. This technique achieves an F1 score of 81.1%,
approaching human comprehension [3].

Seo et al. include character-level, word-level, and contextual embeddings [3], but our baseline model
did not contain character-level embeddings. In order to replicate the results from Seo et al., we
also followed the technique proposed by Kim et al. in Convolutional Neural Networks for Sentence
Classification. Kim et al. demonstrated in their 2014 paper that passing character vectors through
a CNN then max-pooling the CNN’s output improves model performance in a wide range of tasks,
from QA to sentiment analysis [7].

Finally, our DCN implementation is based on Dynamic Coattention Networks for Question Answering,
where Xiong et al. propose a coattention method that analyzes user-posed questions and reference
documents simultaneously, and a dynamic pointer decoder that constantly updates predictions for the
start and end of a answer through iterative calculations and a Highway Maxout Network [4]. Xiong
et al. report an F1 score of 80.4%.

3 Approach

3.1 Baseline Model

The provided baseline model, based on a Bidirectional Attention Flow (BiDAF) architecture [3], was
downloaded from github (https:://github.com/mingg/squad.git).

The baseline model consists of 5 layers: the word embedding layer, the phrase or context embedding
layer, the attention layer, the modeling layer, and the output layer where the phrase embedding layer
and the modeling layer are bidirectional RNNs (see Figure 1 in Appendex). Note that the BiDAF
model diverges from unidirectional attention models by representing the context of a query at different
granularity levels, and by performing both Question-to-Context and Context-to-Question attention.

3.2 Character-Level Embeddings

For our first improvement to the model, we implemented character-level embeddings from scratch.
We chose this because character-level embeddings enable us to capture information about the internal
structure of words—their morphology—and handle out-of-vocabulary words more effectively [3].



The baseline model represents each word in the vocabulary with a GLoVe word embedding of length
300 [5]. For each word, we lookup the individual character embeddings of length 64 and combine
them into a single 64 length vector using a 2-dimensional convolutional neural network (CNN). Then,
we perform a max pooling. Finally, we concatenate the word embedding vectors with their respective
character embedding vectors to obtain final embedding vectors of length 364 (see Figures 2 and 4 in
Appendix).

3.3 Dynamic Coattention Network

For our next enhancement, we implemented from scratch the DCN encoder, coattention layer, and
dynamic pointing decoder, which are based on the architecture of the Dynamic Coattention Network
(DCN) in the original paper [4]. Integrating these into the given baseline BiDAF model, we end up
replacing the attention flow layer, modeling layer, and the output layer of the baseline BIDAF model
(see Figure 3 in Appendix). Thus, our final DCN architecture consists of 5 layers: the embedding
layer, the phrase embedding layer, the DCN encoder layer, the coattention layer, and the dynamic
pointing decoder layer.

3.4 DCN Encoder Layer

The DCN Encoder takes as input from the phrase embedding layer the context hidden states
[c1, ...,cn] € RY and question hidden states [q1, ..., gas] € R

We first calculate Q" which is the final projected representation for the question hidden states by
applying a linear layer then a tanh nonlinearity.

Q/ = tanh(W * Qenc + b) = [q/17 7q;l] (])

Then, we concatenate sentinel vectors gy and ¢y to the context and question hidden states. This allows
the model to not attend to any particular word in the input.

C =le1y ey Cn, gl 2)

Q =11, 4 qp) 3)

Finally, using the final context hidden states C' and question hidden states )’ shown above, we
compute the affinity matrix L which contains affinity scores corresponding to all pairs of document
and question words.

L=0C"q 4

3.5 DCN Coattention Layer

The DCN Coattention takes as input from the DCN Encoder layer the affinity matrix L, context
hidden states C, and new question hidden states Q’.

On the high level, the coattention encoder simultaneously attends to the question and document and
then fuses the attention contexts.

We normalize L in both dimensions to get the attention weights across the document for each word in
the question (a) and weights across the question for each word in the document (3). We also obtain
the Context-to-Question (C2Q) attention outputs A and Question-to-Context (Q2C) attention outputs
B.

a = softmaz(L) )
A= aQ’ (6)
B = softmax(LT) @)
B = 8C ®)



Next, we calculate the second-level attention outputs S by taking the weighted sum of Q2C attention
outputs B with the C2Q weights a:

S =aB )

Finally, we concatenate the second level attention outputs S with the first-level C2Q outputs A and
feed it through a bidirectional LSTM. The output U is the coattention encoding.

U = biLSTM([S; A]) (10)

3.6 Dynamic Pointing Decoder

The Dynamic Pointing Decoder takes as input from the DCN Coattention layer the coattention
encodings U. The goal of the Dynamic Pointing Decoder is to predict the start and end indices of the
answer in the input context document. Consistent with the original DCN paper, the decoder performs
many iterations to select an answer span by alternating between predicting the start point and end
point of the span [4].

In each iteration, the decoder updates the hidden state of the LSTM, the estimate of the start
position, and estimate of the end position. It does so by taking into account the coattention encoding
corresponding to current estimates of the start and end positions and uses a Highway Maxout Network
(HMN), a multilayer neural network, to produce new estimates.

We start by initializing the start and end positions in the coattention encoding U: sp;.e, and €preq .
These positions correspond to representations us,,, ., and ue,, . We also initialize the hidden state of
the LSTM h;.

In the beginning of each iteration, we update the hidden state by inputting the concatenation of s, ,,
and u.,, ., into an LSTM:

hcurrent = LSTM([USP,«M ; uep,,wev]a hprev) (1 1)
Then we initialize tensors of the start scores aes and end scores s for each word in the document. We
iterate through the document twice, once to calculate the score a; and once to calculate the score [3;
corresponding to the ¢ word in the document. We calculate both these scores using an HMN, and

then concatenate them to our growing list of scores. The position scores correspond to the likelihood
of each word being the actual start or end position of the answer span.

ap = HMNalpha (ut7 hcurrenh usprm, 5 ueprm,) (12)
5t = HMNbeta (uh hcur'r‘entv usprw ) uepre,,) (13)

We calculate new estimates for the start and end positions by taking the argmax of «s and Ss.
At the end of the iteration, we update sprev, €prevs Us,,., and ue,,.,, and begin a new iteration.

Finally, after all the iterations, we perform a masked softmax on the as and s and output our results.

3.7 DCN Loss

We use a softmax cross entropy loss on both the start position scores and the end position scores
outputted by the HMN in the last iteration of the dynamic pointing decoder.

lossstart = CTOSSEntropyLOSS(ysta'r't\preda ysturt\actual) (14)
lOSSend = CTOSSEntTOpyLOSS(yend\preda yend\actual) (15)

The overall loss is the sum of the losses.

loss = l0SSgiart + 10SSend (16)



4 Experiments

4.1 Data

For our dataset, we use Stanford Question Answering Dataset (SQuAD 2.0) [2], which includes both
answerable and unanswerable questions. The official SQuAD dataset is split into train, dev, and test
sets [2]. We use the official SQuAD train set as our train set, half of the official SQuAD dev set as
our dev set, and the remaining half of the official SQuAD dev set as our test set. This leaves us with
129,941 examples (context, question, answer) triples for our train set, 6078 examples for our dev set,
and 5915 examples for our test set. To preprocess the datasets, we convert the raw data in the files
to example and evaluation sets. For the training set, we obtain word/character vocabularies which
contain their pretrained GloVe embeddings [5]. For the dev set, we drop examples that are too long in
either context, question, or answer size.

Context In meteorology, precipitation is any product of the condensation of atmospheric
water vapor that falls under gravity. The main forms of precipitation include
drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller
droplets coalesce via collision with other rain drops or ice crystals within a cloud.
Short, intense periods of rain in scattered locations are called “showers”.

Question ~ Where do water droplets collide with ice crystals to form precipitation?

Answer within a cloud

Table 1: Example of a (context, question, answer) triplet data entry of SQuAD

4.2 Evaluation method

We use the Exact Match (EM) score, which calculates the exact match between the model’s predicted
answer and the ground truth answer, the F1 score, which quantifies the overlap between them. Both
scores are official SQuAD 2.0 evaluation metrics.

4.3 Experimental details

Experiments were run on Microsoft Azure.

As a benchmark, we trained the given baseline model, and evaluated it on the dev and test sets. Then
we trained the given baseline model + character-level embeddings and evaluated it.

We then trained our DCN model with and without character-level embeddings separately using a
maxout pool size of 16 and running the dynamic pointing decoder for 4 iterations.

For all experiments, a learning rate of 0.5 and a dropout probability of 0.2 was used. We processed
data in batches of 64. The models were trained for 30 epochs each.

4.4 Results

Model EM Score F1 Score
Baseline BiDAF 56.895 60.058
Baseline BiDAF + Character-level Embeddings 58.965 62.493
Dynamic Coattention Network 52.092 52.092

Dynamic Coattention Network + Character-level Embeddings 51.672 51.708
Table 2: Model performance scores on Dev Set

The performance of the DCN was worse than the baseline BIDAF model, achieving on the dev set an
EM score that is 4.803 less and a F1 score that is 7.966 less, which mirrors the relative decrease in
scores on the dev set by the state of the art BIDAF model (EM: 68.0, F1: 77.3) [3] and the state of the
art DCN model (EM: 65.4, F1: 75.6) [4]. However, the decrease that we saw in our implementation
is larger than the decrease in the state of the art models.



Model EM Score F1 Score

Baseline BiDAF + Character-level Embeddings 59.51 63.17
Dynamic Coattention Network 47.811 47.811
Dynamic Coattention Network + Character-level Embeddings 47.489 47.513

Table 3: Model performance scores on Test Set

We see that we achieved the best results when adding character-level embeddings to the baseline
model, improving the EM score from 56.895 to 58.965 and the F1 score from 60.058 to 62.493 (Table
3), resulting in 2.07 and 2.435 increases, respectively. Another aspect to note is when examining
the performance of our best model, we notice that the model actually did better on the test set (EM:
59.510, F1: 63.170) than it did on the dev set (EM: 58.965, F1: 62.493). This is an indication that
our model is striking a good balance between variance and bias because it’s generalizing well to
unseen examples in the test set. However, this makes sense because both the dev and the test set are
apportioned from the official SQuAD dev set.

While adding character-level embeddings improved the baseline BiDAF model, adding character-level
embeddings to the DCN model did not improve the models performance. In fact, we see that the
character-level embeddings caused the DCN model to perform slightly worse. This can be explained
in that the original DCN paper actually foregoes character-level embeddings and instead uses only
word embeddings. This may be potentially because character-level embeddings further increases the
complexity of the embedding and attention layers while a coattention architecture tries to extract the
right context.

These results tell us that our approach of extending the baseline BiDAF model to a DCN is a
good effort in exploring the dynamics and implications of adding character-level embeddings to the
embedding layers of different Question Answering architectures and how the BIiDAF model and the
DCN model differ.

5 Analysis

Below are examples of when the baseline model with character embeddings and the DCN model
succeed and fail.

Context The simplest valve gears give events of fixed length during the engine cycle and
often make the engine rotate in only one direction. Most however have a reversing
mechanism which additionally can provide means for saving steam as speed and
momentum are gained by gradually "shortening the cutoff” or rather, shortening
the admission event; this in turn proportionately lengthens the expansion period.
However, as one and the same valve usually controls both steam flows, a short
cutoff at admission adversely affects the exhaust and compression periods which
should ideally always be kept fairly constant; if the exhaust event is too brief, the
totality of the exhaust steam cannot evacuate the cylinder, choking it and giving
excessive compression ("kick back").[citation needed]

Question  What can the exhaust steam not fully do when the exhaust event is insufficiently

long?
Prediction evacuate the cylinder
Answer evacuate the cylinder

Table 4: Successful example for baseline model with character embeddings succeeds

The baseline model with character embeddings successfully captured the answer to a multi-word
answer (Table 4), but failed to predict correctly when there are more than one word in the context
that matches the correct answer in terms of part of speech or format (Table 5). In the answer to a
"What King...", at first glance, Louis XII and Henry IV both seem like valid answers. But the model
fails to recognize the nuance in the rest of the question. This could be due to the fact that the BiDAF
model does not perform second-level attention, as the DCN model does, and thus does not capture as



much context in larger documents, or the fact that the BiDAF model is more susceptible to being
trapped in local maxima when making predictions.

Context By 1620 the Huguenots were on the defensive, and the government increasingly
applied pressure. A series of three small civil wars known as the Huguenot rebel-
lions broke out, mainly in southwestern France, between 1621 and 1629. revolted
against royal authority. The uprising occurred a decade following the death
of Henry IV, a Huguenot before converting to Catholicism, who had protected
Protestants through the Edict of Nantes. His successor Louis XIII, under the
regency of his Italian Catholic mother Marie de” Medici, became more intolerant
of Protestantism. The Huguenots respond by establishing independent political
and military structures, establishing diplomatic contacts with foreign powers,
and openly revolting against central power. The rebellions were implacably
suppressed by the French Crown.[citation needed]

Question  What King and former Huguenot looked out for the welfare of the group?

Prediction Louis XIII

Answer Henry IV

Table 5: Unsuccessful example for baseline model with character embeddings

Context Throughout the 18th century, Enlightenment ideas of the power of reason and
free will became widespread among Congregationalist ministers, putting those
ministers and their congregations in tension with more traditionalist, Calvinist
parties.:1-4 When the Hollis Professor of Divinity David Tappan died in 1803
and the president of Harvard Joseph Willard died a year later, in 1804, a struggle
broke out over their replacements. Henry Ware was elected to the chair in 1805,
and the liberal Samuel Webber was appointed to the presidency of Harvard
two years later, which signaled the changing of the tide from the dominance of
traditional ideas at Harvard to the dominance of liberal, Arminian ideas (defined
by traditionalists as Unitarian ideas).:4-5:24

Question  In what year was Henry Ware elected to chair?

Prediction 1805

Answer 1805

Table 6: Successful example for DCN

Context Today, Warsaw has some of the best medical facilities in Poland and East-Central
Europe. The city is home to the Children’s Memorial Health Institute (CMHI),
the highest-reference hospital in all of Poland, as well as an active research and
education center. While the Maria Sklodowska-Curie Institute of Oncology it
is one of the largest and most modern oncological institutions in Europe. The
clinical section is located in a 10-floor building with 700 beds, 10 operating
theatres, an intensive care unit, several diagnostic departments as well as an
outpatient clinic. The infrastructure has developed a lot over the past years.

Question ~ What is the highest reference hospital in all of Germany?

Prediction 700

Answer N/A

Table 7: Unsuccessful example for DCN

It appears that the DCN model performs well on one-word answers (Table 6), but oftentimes makes
a prediction even if the answer is not found in the context (Table 7). When the question asked for
the "highest reference hospital in all of Germany", the DCN model seemed to just search for a large
number in the context and predict that as the answer regardless of the meaning of that number. This
could be attributed to the fact that the DCN is "highly bimodal": Xiong et al. reported that it is either
right or wrong for the majority of questions posed and rarely provides a partial or incomplete answer
[4]. Our results mirror these findings and suggest that the model may be providing the wrong answer



type (ex. a number instead of a word) for the sake of providing an output, indicating that, despite the
coattention matrix, the DCN model is not capturing the diversity of question and context types in the
SQuAD dataset.

6 Conclusion

We successfully implemented three models: the baseline BIDAF with added character-level embed-
dings, the DCN model, and DCN model with character-level embeddings.

The baseline with character embeddings improved upon the baseline EM and F1 scores, however both
DCN models performed worse than the baseline BiDAF. It appears that the DCN encoder, coattention
layer, and the decoder are not necessarily compatible with the RNN Encoder used in the context
embedding layer used in the baseline model. Furthermore, it’s harder to train a the complicated
architecture of coattention and extract appropriate information given the relatively small amount
of data. Adding character-level embeddings to an under-performing DCN model intuitively won’t
improve results.

Despite the challenges in implementing a high-performing DCN model, this project allowed us to
transform our intuition behind the deep learning ideas of layers, encoders, decoders, and attention
into a fully functioning model, helping us understand how to translate every equation, diagram, and
flow into code.

There are many avenues for future work. We could go beyond the paper’s implementation and
examine the effect of changing the preprocessing techniques and tuning hyperparameters such as the
learning rate, dropout probability, max sequence length, the hidden state size, the L2 weight decay,
the number of epochs to train for, the maximum number of iterations for the dynamic encoder, and
the max pool size. We could also add optimizations such as the Adam optimizer which implements
an adaptive learning rate. Finally, we could explore different types of attention.
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