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Abstract 

Question answering is a major challenge in Natural Language Processing. Exten- 
sive research covers setups where answers always exist. However, being able to 
differentiate answerable from unanswerable questions is of major importance, and 
recent datasets such as the Stanford Question Answering Dataset 2.0 SQUAD2.0 

include unanswerable questions that models need to handle correctly. Current state- 
of-the-art models for QA are based on Transformers. In particular, a top scoring 
model on the first SQUAD dataset, which did not contain unanswerable questions, 

was QANéet, first proposed in 2018. In this paper, we study an implementation of 
QANet on the SQUAD2.0 dataset to see how it performs on this more challenging 
task. We demonstrate that QANet can be adapted to the unanswerable setup but 
that its performance does not compare favorably with the Bi-Directional Attention 
Flow (BiDAF) model on this task. We then show that simple modifications allow 

the model to start outperforming the BiDAF model. We also confirm the benefits 
of model ensembling, which noticeably improves both EM and F1 scores, the two 
main metrics of interest for question answering. We achieve an EM score of 63.415 
and a FI score of 66.734 on the test dataset. 

1 Introduction 

Natural Language Processing (NLP), which deals with the processing of language by computers, is 
a subject of major importance, both from theoretical perspectives, but also for a lot of applications. 
While improvements were sparse for a long-time pre-2010s, recent advents in machine learning, and 
more particularly deep learning, allowed significant improvements in NLP and reignited research in a 
multitude of NLP applications. 

One such application is Question Answering (QA), which deals with the ability of models to both 
understand questions provided in natural language and provide answers to these questions. QA is 
in itself a large field composed of different applications. For example, in Open-Domain Question 
Answering, we do not provide the system with a specific context to answer the question so it needs 
to find the information elsewhere to generate the answer. Conversely, Closed-Domain Question 
Answering focuses on extracting answers from specific known context. A common approach to 
define this problem is to provide both a context that contains the answer and a question, and then ask 
a model to generate the corresponding answer if possible. 

In this paper, we’ll focus on this specific type of QA. This task is common in the QA field, with 
multiple existing datasets commonly used to test models such as the TriviaQA [1] dataset. Another 
such dataset is the original SQUAD [2] dataset, which is commonly used as base for any QA model 
due to its high-quality. In this dataset, answers are spans of the context that the model should predict. 
However, this dataset had only answerable question, and it is of major importance for models to 
be able to differentiate answerable from unanswerable questions to have true understanding of the 
problem. As such, an updated version that contains around 100000 answerable questions and 50000 
unanswerable questions, the SQUAD2.0 [3] dataset, is now a reference for evaluating QA models. In 

this work, we’ll study question answering models that will be evaluated on the SQUAD2.0 dataset. 
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In particular, we analyze the relative performance of two different models, Bi-Directional Attention 
Flow [4] (BiDAF) model and the QANet [5] model. We then explore the impact of some changes 

to the QANet architecture. Finally, we demonstrate that model ensembling, a common technique 
consisting in using answers from different models, improves generalization and overall performance. 

All the code used in this work is available on github’. 

2 Related Work 

The original SQuAD [2] paper introduced a baseline model based on a logistic model. It achieved an 
EM score of 40.4 and a FI score of 51.0 that where noticeably better than both random guessing or 
naive approaches such as sliding window algorithms. It demonstrated the usability of the dataset for 
data-based techniques. However, this score was still quite low compared with human performance 
(EM and F1 scores of 77.0 and 86.8). 

Since then, the apparition of more advanced deep-learning based techniques allowed to get closer 
to human performance. First, Recurrent Neural Networks and LSTMs [6] based models showed 

promising results for machine reading comprehension tasks [7]. When combined with attention 
mechanisms [8], it allowed great leaps in performance. For example, the BiDAF [4] model, based 
on LSTMs and attention with both self-attention and Context to Query and Query to Context cross- 
attention, achieved F1 and EM scores of 68 and 77.3 when used alone, or 73.3 and 81.1 with ensemble 

models, achieving state-of-the-art results at the time. 

Later on, the success of the Transformer architecture in [9], which did not used any recurrent model, 

sparked off interest in recurrent free models, which would allow to parallelize models and as such 
greatly reduce computational complexity. One such model for question answering was QANet [5], 
which merged Convolutional Neural Networks with self-attention to remove all recurrent layers. 
When originally presented, the computational advantage of this model allowed the use of extensive 
data augmentation to further improve overall performance. This model demonstrated EM and F1 
scores of 72.2 and 84.9 was state-of-the-art at the time of release. 

However, while such models provided great results, a question that appeared was whether they 
truly understood the questions. To try to give an answer, the SQuAD dataset was updated with 
unanswerable question designed to fool models that would have a too limited understanding of 
the context and questions [3]. They demonstrated that high-performing models such as BiDAF or 
DocQA [10] on the previous dataset now showed much lower results, while human performance was 

not much impacted. In particular, with these models, the gap with human performance was now four 
times higher than on the first version of the dataset. This demonstrated the limitation of prior models 
and that it constitutes a new challenge for question answering. The SQUAD2.0 dataset remains today 
a reference for question answering. 

Finally, in more recent years, the biggest leap forward was the advent of pre-training, with BERT [11] 
and subsequent models that built on their findings. These models are pre-trained on tasks for which we 
can generate a lot of data to learn general language models, and are then finetunned on specific tasks. 
Most if not all models currently at the top of the SQUAD leaderboard are models using pre-training, 
and some of them even achieve better than human performance on the dataset.Pre-trained models 
have significant difference with previous models both in terms of techniques used but also in final 
performance, and we don’t discuss them further in this work. 

3 Approach 

First, to provide a good baseline for any other models, we complete a provided BiDAF [4] model 
implementation with character embeddings based on Convolutional Neural Networks (CNNs), as 
presented in [12]. This model is a very common question answering model, and we refer the reader 
to the original paper for an in-depth description of its implementation. We also give a graphical 
overview of the architecture in Figure 3 in the Appendix. We expect character embeddings to improve 
performance. This implementation is then used in our model of interest, namely QANet [5]. These 
models, both BiDAF with and without character embeddings, will be used as comparison baseline for 

the QANet model. 
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The QANet model is implemented following the description given in the paper and the overall 
overview given in Figure | (taken directly from the QANet paper). This implementation is made 
trying to stay close to the original proposed implementation. We refer the reader to the corresponding 
paper for detailed implementation information. We only provide changes and particularities of our 
implementation, mostly caused by ambiguities in the original paper. First, for stochastic depth, we 
consider each encoder layer separately (so for the 7 stacked encoder layers, the first convolution layer 
has survival probability 1 and the feedforward layer 0.9). Furthermore, the integration of dropout 
with residual connection is not clear in the original paper. Following implementations of similar 
models that use LayerNorm [13] before as pre-normalization before the layer, each residual blocks 
performs the following operation: 

f(x) = «+ Dropout(Layer(LayerNorm(x))). 

The original paper suggests a size of 128 in all encoders, so resizing after embeddings and after 
Context-Query attention is necessary but how it is done in practice is not described explicitly. For the 
case after embeddings, a 1D convolution is suggested so we used this for both without non-linearity 
or dropout afterwards. We also use a linear warm-up for 2000 steps instead of a exponential warm-up 
for 1000 steps. Finally, due to smaller computation capability, we use smaller batch sizes and perform 
gradient accumulation. As in the original paper, convolutions are depthwise separable. 

We then propose changes to the original QANet problem. In particular, we experiment with using the 
AdamW [14] optimizer that exposed issues with traditional weight decay implementation with the 
Adam [15] optimizer. We also changed the momentum amounts, as it can impact training stability and 
final results. To further improve training stability, we perform gradient centralization [16] as it allows 
potential improvements at minimal cost. Additionally, we do not use stochastic depth, as it seemed in 
our experiment to make training less stable. Finally, in the original Transformer architecture and a 
lot of subsequent architectures, positional encoding is done right before self-attention or sometimes 
merged with self-attention. To mimic this, we add a second positional encoding in each encoder 
group right before the self-attention residual block. 

We then experimented with other additional changes changes. In particular, we replaced the relu 
activation by the Gaussian Linear Unit [17] (GELU) function, which is used in multiple current 

state-of-the-art NLP models, and we add a one-layer highway network after co-attention before 
resizing. 

Our code is made in a way that mimics the provided BiDAF implementation to be compatible with 
existing code. We use the same embedding layer as for the BiDAF model. We also reuse the provided 
attention layer for Context-Question attention, as it is the same in QANet. We list below code either 

partially or fully not written by us and obtained from open-sources. We use a memory efficient 
implementation of self-attention inspired from open-source code [18]. This partially alleviates the 
main limitation of QANet, which is its high memory cost. Using an implementation based on this 
code allowed noticeable improvements, especially when using multiple heads for attention. We also 
took the code for the AdamW optimizer from Pytorch source code as the Pytorch version used for 
development does not include it. The gradient centralization of AdamW is taken from the source 
code accompanying the original paper [16]. Finally, we use a predefined warm-up scheduler” openly 
available. Everything else is code made from the description in the paper. We also followed the 
Attention is all you Need [9] paper for the positional encoding implementation. Our model has the 
same output as the BiDAF baseline and as such no change after that is required in the provided 
code to generate the predictions. It also takes the same inputs, so no additional data processing is 
necessary. 

For the final results, we know that ensembling typically improve performance, so we tried to average 
the results of different models. We tested with either two QANet models, a QANet and a BiDAF 

model or two QANets and one BiDAF model. Using a BiDAF model makes sense as while worse on 
its own, the great difference in architecture might produce better generalization when ensembling 
than only QANet models. When ensembling, we give equal weights to all models. An 
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Figure 1: QANet architecture as proposed in the original paper [5]. 

4 Experiments 

4.1 Data 

In this work, we use the SQUAD2.0 [3] presented in the previous sections. More specifically, we use 
a slightly modified version of the dataset for the default project. 

4.2 Evaluation method 

We’ ll evaluate the models based on the dev and test sets EM and F1 metrics, two common metrics 

for question-answering tasks. We’ll also compare the training performance, to provide a fair com- 
parison. To do this, we use the number of iterations per second metric as it does not depend on the 
actual training time and is easier to compute. We also consider a metric called AVNA, for Answer 
vs. No Answer, which classifies whether models correctly differentiate between answerable and 
unanswerable questions. 

4.3 Experimental details 

For the baseline model and baseline with character embeddings, we used the proposed default values. 
The only change for the version with character embeddings was that we considered the hidden size 
as the combined size of the projected character and word embeddings, so as we added character 
embeddings word embeddings were projected to a lower dimension. In particular, we kept a hidden 
size of 100, used a projected size of 80 for the word embeddings and 20 for the character embeddings. 
Characters embedding dimension were left at the value proposed in the given code (64). However, 
as QANéet is a bigger model, to compare more fairly, we also experimented with a bigger baseline



models, with embeddings size of 300 for words and 200 for characters as in the QANet model. The 

hidden size is 150 instead of 100 and we use 2 layers in the encoder instead of 1. For the baselines, 
we use Adadelta with a learning rate of 0.5, dropout probability of 0.2 except for the character 
embeddings (0.05), no weight decay and EMA decay of 0.999. 

For the QANet, we mostly used default values proposed in the original paper: embeddings size of 500 
(300 for words and 200 for characters) and every hidden size is 128. In self-attention, we use 8 heads. 

The number of blocks and convolutions follows the original paper (4 and 2 convolutions, kernel size 
7 and 5 and | and 7 blocks). We use the Adam optimizer with a learning rate of 0.001, betas of 0.8 

and 0.999, weight decay of 3 x 1077 and epsilon of le~”. As said in the previous section, we also 
use a linear warm-up for 2000 steps. Dropout probability is 0.1 except for the character embeddings 
(0.05) and the EMA decay is 0.9999. 

For the modified QANets, we have the same sizes, but change the optimizer. We use AdamW with 
gradient centralization. We use the same parameters as for the original QANet, except the betas that 
are now 0.9 and 0.999. 

For all QANets, we do not perform any data augmentation as done in the original paper and only use 
the SQuAD2.0 dataset. 

We used different number of epochs and batch size for all models due to different models complexities. 
For batch size, we used 32 for baselines, and for the QANet models we used the maximum size 

that could fit in memory, typically between 9 and 16, and used gradient accumulation to bring the 
effective batch size close to 32. 

4.4 Results 

We give in Table 1 the AVNA, EM and F1 scores on the dev set along with the number of iterations 
per second for a batch size of 9 for our different models. These models are the baseline model, the 
baseline with character embeddings, the bigger baseline with character embeddings, the original 
QANéet, and the two modified QANets. We also give in Figure 2 the training history of these models. 
In Table 2, we give the scores of ensemble models between the two modified QANets, between the 

second modified QANet and big baseline with character embeddings and between these three models. 
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Figure 2: Training history for the different models. The colors for the models are, in the same order 
as in Table 1, orange, dark blue, green, grey, red and cyan.
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Several observations can be made from the obtained results. First, character embeddings plays an 
important role, as it noticeably improves performance. However, for the BiDAF model, increasing 
the size of the model provides limited performance gains compared with the increased computational 
cost. 

Secondly, we can see that the original QANet offers underwhelming performance compared with 
the BiDAF model with character embeddings. On the other hand, we can clearly observe the 
improvements in the two modified QANets that outperform both the original QANet and the BiDAF 
baselines. We believe that the improvement in performance comes from the added positional 
information, which is one of the main limitation of models without recurrence. We also hypothesize 
that the added stability from AdamW and gradient centralization might improve the ability of the 
model to differentiate between answerable and unanswerable question. Indeed, the AVNA metric for 
the original QANet model is noticeably lower and might explain the difficulties encountered when 
adapting the model for SQUAD2.0. 

Between both modified QANets, performance are similar at the end of training, though the second 
model has better behavior at the beginning of training but higher cost per iteration. This might 
come from the added stability of the GELU activation. Furthermore, we can see that the first 

modified QANet performance incurs no additional performance cost when compared with the original 
QANet, as the added gradient centralization is quick to compute and the position encoding is a fixed 
deterministic operation. We experimented with trainable position embeddings, but observed no gains 
which did not justify the added memory cost. One can also observe that the models did not finish 
training, as metrics were still improving when training was stopped. We expect even better results 
when training for longer. 

Finally, we can see that as expected, the ensemble model of the BiDAF model and the modified QANet 
model provides significant improvements though with an additional computational cost. Furthermore, 
performance is better than with the two modified QANets, despite the higher independent performance, 
which further strengthens our idea that the combination of different architectures is beneficial. 
Ensembling the three models provide additional small improvements but with a cost. As the ensemble 
of the three models provides the best performance on the dev set, we use this model for evaluation 
on the test set. On the test set, we obtain an EM score of 63.415 and a F1 score of 66.734 for the 
IID SQuAD track. 

5 Analysis 

We now study cases where the models work or fail and further expose the advantages of ensembling. 
We give in the table below four examples of context and question, along with the expected and 
predicted answers from the big BiDAF, second modified QANet and ensemble models. 

We can make several observations from these examples. First, both models are fooled by the first 
example. They both understand that the question expects a person as answer so they both predict the 
main personage discussed in the paragraph. However, this answer is actually wrong, which shows a 
limitation of the models: they detect that a person would be expected, but do not evaluate correctly 
whether it is the correct person. As both models make the same mistake, the ensemble model logically 
makes the same mistake. 

In the second example, the BiDAF model is fooled by the question that asks for a date, while the 
QANeéet accurately detects that the date is not the end date. The ensemble model correctly agrees 
with the QANet model, which can indicate that while BiDAF is wrong, it was uncertain about its 

prediction so when averaging the no answer prediction won.



In the third example, the BiDAF incorrectly detects the question as unanswerable, while the QANet 
model accurately detects that it is answerable and produces the correct answer. The ensemble model 
again agrees with the QANet. In general, we observe that as QANet typically produces better 
predictions, the ensemble model often agrees with it. 

However, in the fourth example, the QANet model makes a greatly incorrect prediction, seemingly 
only understanding that the question is related to the parliament meeting. On the other hand, the 
BiDAF correctly identifies the answer and the ensemble model agrees with the BiDAF model. 
This demonstrates the complementarity of both models in explaining the better performance of the 
ensemble model. 

Generally, these four examples reaffirm the previously obtained quantitative results: the QANet 
tends to perform better, but ensembling models allows to improve performance as for some specific 
questions, the BiDAF model outperforms QANet. However, both models can be fooled by some 
questions, and in particular can be fooled in the same way, so even ensembling has limits. 

  

  Context and Question Answers 

Context: In September 1760, and before any hostilities erupted, Governor Vaudreuil 
negotiated from Montreal a capitulation with General Amherst. Amherst 
granted Vaudreuil’s request that any French residents who chose to remain in the 
colony would be given freedom to continue worshiping in their Roman Catholic Truth: N/A 
tradition, continued ownership of their property, and the right to remain 
undisturbed in their homes. The British provided medical treatment for the 
sick and wounded French soldiers and French regular troops 
were returned to France aboard British ships with an 
agreement that they were not to serve again in the present war. 
Question: What British General negotiated at Toronto? 

BiDAF: Vaudreuil 

QANet: Governor Vaudreuil 

Ensemble: Governor Vaudreuil 

  
Context: The war was fought primarily along the frontiers between New France 
and the British colonies, from Virginia in the South to Nova Scotia in the North. 

It began with a dispute over control of the confluence of the Allegheny and 
Monongahela rivers, called the Forks of the Ohio, and the site of the French 

Fort Duquesne and present-day Pittsburgh, Pennsylvania. 
The dispute erupted into violence in the Battle of Jumonville Glen in May 1754, 
during which Virginia militiamen under 
the command of 22-year-old George Washington ambushed a French patrol. 
Question: When did violence end in war? 

Truth: N/A 

BiDAF: May 1754 

QANet: N/A 

Ensemble: N/A 

  
Context: For many years, Sudan had an Islamist regime under the leadership of 
Hassan al-Turabi. His National Islamic Front first gained influence when 
strongman General Gaafar al-Nimeiry invited members to serve in his 
government in 1979. Turabi built a powerful economic base with money 
from foreign Islamist banking systems, especially those linked with Saudi 
Arabia. He also recruited and built a cadre of influential loyalists by 
placing sympathetic students in the university and military academy while 
serving as minister of education. 
Question: Where did Turbani place students sympathetic to his views? 

Truth: university and military academy 
BiDAF: N/A 
QANet: university and military academy 
Ensemble: university and military acedemy 

  

  
Context: Parliament typically sits Tuesdays, Wednesdays and Thursdays from 
early January to late June and from early September to mid December, 
with two-week recesses in April and October. Plenary meetings in the debating 
chamber usually take place on Wednesday afternoons from 
2 pm to 6 pm and on Thursdays from 9:15 am to 6 pm. Chamber debates and 
committee meetings are open to the public. Entry is free, 
but booking in advance is recommended due to limited space. 
Meetings are broadcast on the Parliament’s own channel Holyrood.tv and 
on the BBC’s parliamentary channel BBC Parliament. Proceedings are also 
recorded in text form, in print and online, in the Official Report, 
which is the substantially verbatim transcript of parliamentary debates. 
Question: How much does it cost to gain entry to a parliament meeting?   Truth: free 

BiDAF: free 
QANet: 2 pm to 6 pm and on 
Thursdays from 9:15 am to 6 pm 
Ensemble: free 

   



From these few examples, we also see a tendency for shorter answers from the BiDAF models. To 
further analyze this phenomenon, we give in Table 3 the average number of words in the answers of 
the three models both including or not including the no answer predictions. We can indeed observe 
that the answers produced by the BiDAF model are typically shorter than that of the QANet model, 
perhaps because of the recurrent layers. When answering, the ensemble produces answers that sizes 
are between both models, which is expected. However, when including no answers, the average 
length is lower than both initial models. Looking at the proportion of no answers for the three models 
given in Table 4, this can be explained by the slightly higher proportion of no answers in the ensemble 
model, which can itself be explained through cases like the second example were one model might 
predict no answer and the other an answer for different questions. 

  
Average answer length | BiDAF | QANet | Ensemble 

Including no answers 1.55 1.62 1.53 

Excluding no answers | 3.03 3.12 3.06 

Table 3: Average answer length on the dev set. 

  

  

            

  
Model BiDAF | QANet | Ensemble 

Proportion of no answers | 0.488 0.481 0.502 

Table 4: Proportion of no answer response on the dev set. 

  

            

6 Conclusion 

In conclusion, we found in this paper that designing models for the question answering task with non- 
answerable questions is challenging and that specific changes in architectures might be necessary to 
adapt existing models. We observed that the original QANet, at least if not using data augmentation, 
can perform sub-optimally compared to the BiDAF model, despite being better on the original 
SQuAD dataset. However, some simple modifications allow substantial gains in performance which 
reaffirm the overall superiority of this architecture for question answering. We also further expose the 
advantages of ensembling techniques, especially with different architectures, bringing more than one 
point improvements in both EM and F1 metrics. Finally, our ensemble model achieves EM and F1 
scores of 63.415 and 66.734 on the test set of the ID SQuAD track. Nonetheless, some limitations of 

our work can be discussed. First, in our experiments, models were not trained until convergence or 
overfitting, meaning that performance might be further improved. Another limitation is that while 
the proposed changes improved performance, performing an ablation study might have allowed to 
differentiate the most useful ones. Future works would include answering the two main limitations, 
i.e. training models until convergence or overfitting and preforming an ablation study of the proposed 
modifications. 
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Figure 3: BiDAF architecture as presented in [4]. 
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