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Abstract 

An ensemble of MAML-type algorithms are finetuned to improve the accuracy 
of DistiIBERT on low-resource data. A weighted expert model is found to have 
superior test set performance and analysis confirms that MAML-based training 
algorithms tend to be sensitive to a choice of hyperparameters. 

1 Key Information to include 

e External collaborators (if you have any): N/A 

e Mentor (custom project only): N/A 

e Sharing project: N/A 

2 Introduction 

Deep learning methods have achieved strong performance in a variety of application domains in part 
due to their ability to create rich representations of their inputs. In many cases, these representations 
can be fine-tuned to adapt to tasks similar in nature to the original task the representation was trained 
for. Examples include representations obtained by ResNet, a deep residual neural network trained on 
the ImageNet dataset for predicting across 20,000 image categories [1], Word2vec, a procedure that 
embeds a large corpus of words such that semantic relationships are preserved, Node2vec, which 
embeds nodes in a graph in a way that captures neighborhood similarity and is often used as the 
initial feature vector to a graph neural network [2], and UniRep, which embeds DNA sequences in a 
way that captures phylogenetic similarity of different organisms [3]. 

Beyond word2vec, there is significant interest in learning rich representations of full sentences or 
paragraphs. Such applications have included sequence-to-sequence models like neural machine 
translation (NMT) systems, and, for a long time, state-of-the-art performance was achieved by recur- 
rent neural networks (RNNs) and long short-term memory models (LSTMs) [4]. Recently though, 

with the advent of attention for processing sequences, bidirectional transformers have outperformed 
recurrent models on a variety of different sequence-to-sequence and sequence representation tasks 
[5]. 

One such model, called BERT (Bidirectional Encoder Representations from Transformers), has 

achieved current state-of-the-art on metrics such as GLUE score, MultiNLI accuracy, and F1 score 

on the SQUAD v1.1 and v2.0 question answering datasets [6]. BERT is pre-trained using unlabeled 
natural language data via a masked language model (MLM) method, it is then fine-tuned for next- 
sentence prediction and question answering tasks (see Figure 1). 

Successfully adapting BERT to low-reource natural language domains remains an open problem. 
Previous approaches have included using multitask [7] and meta-learning [8] fine-tuning procedures. 
Using a variant of the Model Agnostic Meta Learning (MAML) algorithm from [9], the authors of 
[8] were able to show that meta learning procedures had a slight advantage in low-resource domain 
adaptation than multitask models. However the authors of [8] experimented with only a few task 
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Figure 1: Unsupervised pre-training plus supervised fine-tuning of BERT, image from [6] 

distributions p(T’) for the MAML algorithm (see Section 4), and while the results did show an 
improvement over [7], performance for certain task distributions on specific tasks was somewhat 
counterintuitive. 

In this paper, suggestions from a recent paper [10] in the International Conference on Learning 
Representations (ICLR) are implemented to stabilize training of a MAML-type algorithm on a 
pre-trained variant of BERT called DIstilBERT. Several task distributions and other MAML-specific 
hyperparameter initializations are implemented and analyzed and a classifier is trained to predict 
out-of-domain dataset type to better leverage task-specific fine-tuning. 

3 Related Work 

3.1 Multi-Task Deep Neural Network (MT-DNN) 

Multi-Task models refer to a class of models where tasks share a relatively deep "bulk" set of layers 
that creates a generic representation of the input. Task-specific "heads," normally much smaller than 
the shared bulk layer, serve to further process the generic representation to be more tailored to their 
respective head. In many different application areas, it has been found that training tasks jointly in this 
fashion can help improve generalization and improve performance by leveraging similarity between 
tasks [11]. The authors of [7] create a Multi-Task Deep Neural Network (MT-DNN) that uses BERT 

as a shared text encoder, and task-specifc layers to train for four natural language understanding 
(NLU) tasks. Some of these tasks are Jow—resource, meaning that there are relatively few training 
examples associated with them. On these tasks, MT-DNN performs reasonably well - indicating that 
the representation created by MT-DNN’s now-augmented, shared BERT layer is a good initialization 
that can generalize to data it has not seen a lot of. 

3.2 Meta-Learning Algorithms 

While MT-DNN performs fairly well on low-resource tasks, the authors of [8] point out that Multi- 
Task models learn representations that favor high-resource tasks over low-resource ones. This was 
first noticed in [12], and is visualized in Figure 2. 

The authors vary p(T), the task distribution for the MAML algorithm (see Section 4), to be Uniform, 
Probability Proportional to Dataset Size, and Mixed. The latter indicating that the tasks are initially 
selected Uniformly, but that over time a certain "target task" is focused on more. The authors use 
four high-resource tasks and four low-resource tasks and found that in general the meta-learning 
algorithms outperformed MT-DNN. Probability Proportional to Dataset Size was apparently the 
most successful task distribution in terms of performance. The authors also tested the efficacy of the 
transfer learning potential of this MAML-based method and found that it outperformed the MT-DNN 
baseline when used to pre-train a model for the SciTail dataset. 

While this paper is very interesting in that shows that MAML-based approaches can work in low- 
resource natural language understanding domains, the results of the model for the three task distribu- 
tions are very similar and do not necessarily indicate that Probability Proportional to Dataset Size
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Figure 2: Multi-Task learning may favor high resource tasks over low resource ones, from [8] 

is the best option. While performance was better than MT-DNN, it was not by much. Given that 
the authors indicated that a multitask model learns a learning representation that is biased towards 
high-resource tasks / domains, I feel that using probability proportional to dataset size would have 
a similar effect. This would indicate that the most successful MAML-based approach would have 
similar characteristics to MT-DNN, thus contradicting the supposed representation benefit MAML 
provides. It is also noteworthy that when using a mixed distribution, which iteratively focuses on a 
given task, the authors of [8] indicate that performance on the respective task does not increase more 
than other types of distributions that do not focus on task. This seems counterintuitive and worth 
looking into further. 

3.3. Model Agnostic Meta Learning (MAML) 

Finn et al. in [9] developed a highly cited generic method for doing meta learning when certain tasks 
are low-resource. They benchmarked MAML across several different application areas - sinusoid 
wave prediction, few shot image classification from the Omniglot and MiniImagenet datasets, and 
reinforcement learning tasks with the MuJoCo simulator. Details of the algorithm are given in Section 
4, see Figure 3 for visualization. For this project, a closely related variant of MAML developed by 
OpenAI called Reptile [13] is used as it is relatively simple to implement and has similar or superior 
performance to regular First-Order MAML. 
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Figure 3: MAML optimizes to find parameters / representation @ that can quickly adapt to new tasks, 
from [9] 

4 Approach 

4.1 Background 

A description of MAML is given in Figure 4. 

As part of the Reptile optimization in [13], the equation from Figure 1:



Require: p(7): distribution over tasks 
Require: a, 3: step size hyperparameters 

1: randomly initialize 0 

2: while not done do 

3: Sample batch of tasks J; ~ p(T) 
4: for all 7; do 

5: Evaluate V»£7; (fo) with respect to K examples 

6 Compute adapted parameters with gradient de- 

scent: 0 = 0 — aVoLlrt,(fo) 

7: end for 
8: Update 6 — 0 — BV» TT) Lr; (for) 

9: end while 

Figure 4: Model Agnostic Meta-Learning training procedure. From Finn et al. 
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Can be replaced with: 

6=0+6 S~ (6,-8) (2) 
T,€p(T) 

Where @ is the "generic" set of parameters, 0; are the task specific parameters for task i, L; is the 
task-specific loss function and fg is our given model with parameters 0. Intuitively, the model fine 
tunes for each task, aggregates over the changes to the model parameters for each task, applies this 
aggregate to the generic parameters and repeats. 

Dou et. al. in [8] vary p(T), the task distribution, to be Uniform, Probability Proportional to Dataset 
Size, and Mixed. 

4.2 Implementation 

Code was developed for implementing and testing a MAML / Reptile algorithm on the SquAD 
Dataset [14]. The learning rate for updating task-specific parameters, a, was not changed from the 
default rate used to train the DistiIBERT transformer. However, the implementation allowed for 
and experimentation was done on different rates of annealing to the hyperparameter 3, which was 
recommended by [10]. For Mixed task distributions p(T’), where the distribution starts uniform or 
probability proportional to dataset size and then over time changes to favor one task, the update to the 
distribution - which is done after each main parameter update of 6 - is given by as follows: 

Let p(T) = [pi, p2, p3] where p; > 0 and p; + po + ps3 = 1 (we have only three domains / tasks we 
fine-tune on) 

If seeking to iteratively focus more on task 1, update p(T) like so: 

— CHP P2 p2 
p(T) ~~ laptpetps’ cxpi+p2t+ps3’ pi tpat pel 
  where c > 1 another hyperparameter. 

kK, the number of steps of gradient descent done when adapting 6 to task 2, is also set as a configurable 
hyperparameter that can be increased over time - another recommendation of [10] for improving 
stability. 

A novel classifier for predicting dataset membership of an input example was also developed and 
tested, the idea being that it could help act as a wrapper for three models, each model fine-tuned to 
give optimal performance on exactly one of the input datasets / domains. 

All code for MAML / Reptile updates was developed by the author, the method for varying the 
rate c to determine how p(T) converges to a certain task and the the classifier for predicting dataset



membership have not been tried in recent MAML-based approaches in natural language processing 
and understanding. 

4.3 Baselines. 

The main baseline will be a regularly fine-tuned version of DistiIBERT for the out of domain datsets. 
The code for constructing / training this model is provided in the Robust QA project handout. 

5 Experiments 

5.1 Data. 

Most data comes from the specified in-domain datasets: Natural Questions, NewsQA, and SQUAD 

[14, 15]. A small number of training examples came from the specified out-of-domain datasets: 
RelationExraction, DuoRC and RACE. 

5.2 Evaluation. 

The evaluation metrics are the same ones used on the SQUAD leaderboard: Exact Match (EM) and 

F1. 

5.3. Experimental Details 

DistiIBERT was pre-trained for 3 epochs on the whole corpus of in-domain data. Performance 
on out-of-domain datasets was then measured. A main result of [10], expanding the number of 
task-specific updates K as a function of the number of main parameter updates. This helps stabilize 
the MAML training process, which is known to be very sensitive to a choice of hyper-parameters. 
Different Annealing rates for the 3 hyperparameter were tried on fixed task distributions Uniform 
and Probability Proportional to Dataset Size (PPDS). task-specific F1 was also reported for a PPDS 
distribution with the best 3 annealing rate. Hyperparameter optimization was done for mixed task 
distributions and task-specific F1 is reported for the best observed models for the relation extraction 
and duorc datasets. Best task-specific F1 is also reported for the race dataset, which did not respond 
well to any MAML-based training given the ensemble of hyperparameter combinations used. A 
classifier to predict dataset membership is trained, and accuracy on all three datasets over the number 
of training iterations completed is reported. This classifier is then used as a wrapper for a Mixture of 
Experts (MoE) that leverages models each specifically optimized to a given dataset. Predictions from 
the three models are then combined in two ways and validation F1 and EM is reported for each. 

5.4 Results 

"Normal DistilBERT" achieved a standard 48.18 Fl and 33.25 EM on out-of-domain test data 

(RobustQA). 

All task distributions performed relatively poorly and got worse over time on the race dataset. Best 
performance was on the original pre-trained DistiIBERT model, which gave an F1 score of 40.88 for 
the race dataset. 

Output from the dataset classifier was used in two ways. In the first approach, the argmax of the 
classifier’s predictions is used to select a task-optimized model (mixed task distribution trained 
for datasets relation extraction and duorc and the original DistilBERT model for the race dataset). 
Validation EM was 31.675 and Validation F1 was 47.568 on the entirety of the out-of-domain datasets. 
A secondary approach was then applied where the softmax function was applied to the classifier’s 
prediction vector to create a set of weights D. The final start and end logits prediction calculated for 
each example was then expressed as a weighted sum of each task-optimized model’s start and logits 
prediction, with D as the weights. This weighted expert approach got a validation EM of 33.769 and 
validation F1 of 48.138 on the entirety of the out-of-domain datasets. In terms of validation dataset 
performance, The model that performed the best was the Mixed-task distribution that focused on the 
relation extraction task, getting an EM socre of 34.03 and an F1 score of 49.01.



On the held out test dataset, a regular baseline model (pre-trained DistiIBERT), the relation extraction 
optimized model (see Figure 8), and the weighted expert model were evaluated. The baseline got EM 
= 40.872 and F1 = 58.305, the relation extraction optimized model got an EM = 41.468 and Fl = 
58.773, and the weighted expert model had EM = 41.537 and F1 = 59.300. 
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Figure 5: Performance data for Uniform Task Distribution. Improvement seems limited after many 
main parameter updates, best annealing rate for 8 seems to 0.99 
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Figure 6: Performance data for PPDS Task Distribution. Improvement seems limited after many main 
parameter updates, best annealing rate for 8 seems to 0.99 
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Figure 7: Task-specific performance data for PPDS Task Distribution using an annealing rate of 0.99 
to 8. Improvement was best for the relation extraction dataset, with gradually worse performance on 
duorc and race over time.
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Figure 8: Optimal hyperparameter choice involved setting C' = 1.1, K’s expansion rate = 1.025, and 
6’s annealing rate = 0.9, with initial value 6 = 1 
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Figure 9: Optimal hyperparameter choice involved setting C = 1.1, K’s expansion rate = 1.025, and 
8’s annealing rate = 0.9, with initial value 6 = 1 
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Figure 10: Architecture: Model is 2 layer neural network with 3 hidden units and uses the ReLU 
activation function. Training was done with the cross entropy loss function. 

6 Analysis 

The weighted expert model, while not having the best validation set performance, had the best 
performance on the test set and was significantly better than the baseline model. This indicates that 
the classifier was able to generalize reasonably well to the test set. Classifier performance (see Figure 
10) indicated that getting better at recognizing membership in the duorc dataset was directly correlated



with worse performance on recognizing membership in the race and relation extraction datasets. This 
result was not unique to the choice of classifier architecture shown, though the architecture for which 
accuracies are reported had the best max min of the three accuracies (roughly 550 iterations into 
the training process). Qualitatively speaking, these results would imply that the relation extraction 
and race datasets were strongly different in nature, as they could be told apart relatively easily by 
the classifier. This shows in some of the training / validation error in Figure 8, as fine-tuning for the 
relation extraction dataset did not improve performance for the race dataset. However, these results 
also imply that the duorc dataset is very similar to both relation extraction and race, but based off 
of Figure 9, weighting duorc training updates in the main parameter update of MAML had a slight 
negative effect on the other two datasets’ performance. 

It should be noted how hard it was to train a model that was specialized to the race dataset, as any 
choice of hyperparameters for a MAML fine-tuning algorithm to train for maximum performance 
on the race dataset did poorly. In practice, making the step size of the main parameter, (3, equal to 
a very small number like 0.1 or 0.01 (it was set to 1 for all models based off of a recommendation 
in [10]) reduced the performance drop. As the best performance on the race dataset came on the 
original baseline DistiIBERT model, it is possible that the original main parameters from pre-trained 
DistilBERT were the global optimum. 

In general, using a mixed task distribution created the best performance on the relation extraction and 
duorc datasets. While a task distribution consisting of probability proportional to dataset size (PPDS) 
did well (see Figure 7), a weighted expert model with a better classifier would have a considerably 
higher ceiling in terms of performance. This contrasts with the main result of [8], that the PPDS task 
distribution had the best task-specific performance. 

Numerous hyperparameter searches were done, as shown in Figures 6 and 5. These indicated 
that significantly annealing {, the step size of the main parameter update, did not result in better 
performance. 

7 Conclusion 

This paper showed that a weighted expert model could strongly outperform a baseline model on 
low-resource datasets. Given more time, a wider hyperparameter search could yield more consistent 
results as the training process of any MAML / Reptile algorithm is known to be unstable [10]. 
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