
Sesame Street Ensemble: 

A Mixture of DistiIBERT Experts 

Stanford CS224N Default Project 

Tyler Consigny 
Department of Symbolic Systems 

Stanford University 
tconsign@stanford.edu 

Abstract 

In this project, I attempt to finetune a pre-trained DistiIBERT model to better 
handle an out of domain QA task. As there are only a few training examples 
from these outside domains, I had to utilize various techniques to create more 
robust performance: 1) implemented a mixture of local experts architecture and 2) 
finetuned a number of hyperparameters to perform best over this few shot learning 
task. Specifically, a separate DistiIBERT model was finetuned on each of the 
in-domain datasets to act as an expert. The finetuning approaches focused on 
reinitializing a variable amount of final transformer blocks and training for a longer 
period. These two approaches were then synthesized to produce the final model. 

1 Introduction 

The task of question and answering is one that points to many of the most intriguing questions at the 
heart of artificial intelligence. To perform well on these tasks, a model needs to ’understand’ the text 
in some manner. With the recent development of large-scale pre-trained models such as BERT, per- 
formance on these tasks has received a positive jolt. However, it has been observed that performance 
does not generalize well beyond the training distribution [1]. This marks a drastic bifurcation between 
human and model abilities. Humans are able to quickly apply knowledge to newly seen circumstances. 
This level of robustness has not been achieved in our NLP models as of yet. The approach in this paper 
attempts to address this problem in a small way. By implementing and synthesizing the approaches 
proposed in other papers [2,3,4], I attempted to make progress in this goal of robustness of QA models. 

In this project, a model is developed that is given a question and paragraph pair and returns a start and 
end location that represents the span of the answer in the provided paragraph. This format is based 
upon that used in the SQUAD 2.0 dataset [5]. The goal is to have performance transfer to datasets 
that were not used to train the model (or only with a few hundred training examples). If this transfer 
of performance is achieved, it demonstrates that the model is better suited for the real world where 

examples often come from distributions that do not strictly resemble those previously trained on. 
There have been various techniques proposed to address this task such as meta-learning, domain 
adversarial training, and mixture-of-experts. 

I chose to utilize two approaches that I thought would build on each other: mixture-of-experts [3] and 
few sample fine-tuning techniques [2]. Specifically, a pre-trained DistilBERT [6] model was finetuned 
on each of the in-domain datasets and the outputs of each expert’ were weighted by a gating network 
to produce a final output. This was combined with finetuning processes like training for longer and 
reinitializing a certain number of final transformer blocks. Ultimately, these two approaches were 
combined to produce the final proposed model. However, I found that both of these approaches 
actually had a detrimental effect on performance. The possible cause of this will be explored later in 
the paper. 

Stanford CS224N Natural Language Processing with Deep Learning



2 Related Work 

2.1 DistiIBERT 

As transfer learning from large-scale pre-trained models becomes more pervasive in NLP, the 
restrictions of storage and compute become more prevalent as well. The creation of DistiIBERT 
attempts to mitigate some of these issues [6]. This smaller pre-trained general-purpose language 
model provides a well-performing baseline that can then be fine-tuned to perform on other 
downstream tasks (sentiment classification, SQUAD, etc). While pre-training on the same corpus 
as BERT, the authors leverage various techniques to condense the size of the model and increase 
the inference speed while retaining much of the performance. These techniques include knowledge 
distillation, a novel triple loss function, and various architecture, initialization, and hyperparamter 
choices. 

In this project, a pre-trained DistiIBERT model is finetuned on the in-domian datasets to provide a 
baseline model for the QA task. The reduced size of DistiIBERT made finetuning and storage more 
feasible (especially while using multiple expert models). 

2.2 Mixture-of-Experts 

The mixture-of-experts approach is an ensemble method that attempts to divide up the input space by 
having separate expert models for different areas of the input regions. Discussions of this method 
can be found in Hinton et. al. [3] and Masoudnia et. al [4]. The task here is to learn two sets of 

parameters: those of the experts models and those of the gating function that weights the outputs of 
each expert. In this paper, each expert is a pre-trained DistiIBERT model that is finetuned on one of 
the in-domain datasets. The gating function used is a multi-layer perceptron. 

2.3. Few Sample Finetuning 

Zhang et. al. [2] identified three sub-optimal hyperparameter and architecture choices within common 
practices involving BERT. Two of these are relevant in this paper: training time and reinitialization 
of a variable amount of final transformer blocks. These observations were combined with the 
mixture-of-experts procedure form above. 

3 Approach 

3.1 Baseline 

Following the approach found at [7], I finetuned a pre-trained DistiIBERT model to act as baseline 
model. The implementation used also performs tasks such as chunking the question-paragraph pair 
and caching the tokenized representations of the data. The baseline was trained on examples from all 
of the in-domain datasets 

3.2 Mixture-of-Experts 

The main alteration to the architecture of the model took place through the implementation of mixture 
of local experts as described in Hinton et. al.[3]. Specifically, I trained 3 separate DistiIBERT models 
to act as ’experts’ for each of the in-domain datasets. Alongside these ’expert’ models, I trained a 
multi-layer perceptron (MLP) to act as the gating function to divide up responsibility to each expert. 
Through a softmax, the gating function output a probability to each expert model so that, 

3 

>) (2) =1 
k=1 

where x is the input vector and k is an expert model.



These probabilities, g(x), are then used to ’weight’ the respective probability distributions outputted 
by each expert model. Thus, we will have: 

lula) = > 9a) file) 
where f; (x) is the conditional distribution output by the i-th expert. 

In this specific implementation, this process takes the form of weighting the start and end location 
logits that are outputted by each expert for a given example. The weighted start and end logits of 
each expert are then summed together to produce the final outputted logits. The cross-entropy loss 
function 

—logpstart (i) _ logPena(J) 

where i and j are the gold start and end locations 

remained. It is now simply computed on the logits outputted from the mixture-of-experts process. 
The backpropogated error was used to alter the parameters of the gating function to produce a 
network that optimized the weight assigned to each expert for all examples in the training set. In 
regards to the expert models, these were trained one by one on their respective in-domain dataset. 
They were then retrieved and frozen during the training of the gating network. The architecture of 
this approach is shown below. 

Expert 1 
» 

DistiiBERT 

Abwadty (pre-jtrainect 

oe Expert2/ pstipeRT | 

   

    

    

Input \ 
Chunk C, of a given Output 

(q,p) pair / Weighted sum of 
expert logits 

  tag 
DistiBERT 

Aready (oe irene 

& 
- Expert 3 

  

Figure 1: The model architecture used for the implementation of mixture-of-experts 

Overall, this approach seemed a good fit for the robust QA task because the dataset contains several 
different regimes which have different relationships between input and output. The goal was that this 
ensemble of local expert models would be able to better capture these different relationships. In 
doing this, it was hoped that a more robust system would be achieved that could better describe a 
novel data distribution by selectively combining the distributions encapsulated by the three experts.



3.3. Few Sample Finetuning 

Inspired by Zhang et. al. [3], the next step I took was to finetune the hyperparameters and architecture 
to perform well on few sample datasets. The authors focus on three main choices: the gradient 
debiasing correction within the ADAM optimizer, the random reinitialization of layers before 
finetuning, and the amount of training time. As the baseline already utilized a dibiasing correction, 
I focused on the latter two. First off, I experimented with reintizializing a variable number of 
transformer layers before finetuning. Zhang et. al. found that randomly reinitializing 1-6 layers 
before finetuning leads to faster training and better performance. The type of reinitialization was 
dependent upon the type of layer at hand (i.e. Linear layer reinitialized with a normal distribution, 
Layer Norm layer reinitialized to ones, etc). Second, it was also found that the standard three epochs 
used for BERT fine-tuning is not optimal. Increasing the training time lead to increased performance 
on the majority of benchmarks. Presumably, the model was still under-fitting the training data. 
Following suit, this approach was attempted and various trails with increased number of epochs were 
undergone. 

Finally, these two methods were synthesized into a single approach. A number of the final transformer 
blocks of each expert were reinitialized and the finetuning time for the experts was increased. The 
hope was that the benefits of both methods would come through in the final model. 

4 Experiments 

4.1 Data 

The data used will be drawn from six datasets: three in-domain datasets (such as SQUAD [5] and 

NewQA [8]) and three out-of-domain datasets (such as DuoRC [9] and RACE [10]). The in-domain 

datasets contain 50,000 training examples whereas the out-of-domain contain only 127 training 
examples. This disparity is why the robustness of the model is essential. The model needs to use 
these scarce examples to few-shot learn and enable the ability to perform in these rarely seen domains. 
All the training sets are in the format of triples: context, question, and answer. During training and 
evaluation, the conventional input format of [CLS]q[SEP]p[SEP] is used. 

4.2 Evaluation method 

Two metrics were used to evaluate the performance on the QA task: Fl and EM. When evaluating on 
the validation and test sets, the maximum F1 and EM scores that were achieved are reported (based 
on the various answers that human annotators gave). The EM and F1 scores are then averaged across 
the entire evaluation or test dataset to obtain the final scores. 

4.3 Experimental details 

To train the baseline, we used the given model configuration and hyperparameters in [7]. 

Multiple approaches were attempted to improve on this baseline. The number of training epochs 
during expert finetuning was varied in the range of 3-5. The number of final transformer blocks that 
were reinitialized varied from 2-4. 

Because of memory and computing limitations, the expert models were finetuned individually and 
then loaded when training the gating network. The gating network was an MLP that consisted of 
three fully connected layers with a hidden layer size of 768. The ReLU activation function was used 
in the hidden layers. The output was through a softmax that gave the weights for each expert. During 
a specific run, the use mixture-of-experts, reinitialization, and number of epochs were all variable. 
All or none could be utilized.



4.4 Results 

The tables below describe the results of the different approaches on the oo-domain (out-of-domain) 
val and test sets as they compare to the baseline. The quantitative metrics used are EM and F1. 

As the scores show, the methods attempted in this paper do not show an improvement upon the 
baseline performance. On the oo-domain dev set, the mixture-of-experts implementation performs 
very close to the baseline but has a slight negative effect on EM and F1. Training for 4 epochs did not 
show any improvement over training for the standard 3. Reinitialization of the final 4 transformer 
blocks also showed a decline in performance. As seen in Figure 2, the EM and FI scores on the 
training set increased more quickly for the MoE + Reinit-4 model than the baseline. However, this 
model plateaued quite early and ended up with no performance improvement over the baseline model. 

  

  

  

            

Results (Validation) 

Model EM Fl 

Baseline 33.246 48.432 

MoE 31.952 47.129 

4 epochs 33.246 48.432 
Reinit-4 Layers 31.475 47.055 
MoE + Reinit-4 33.034 47.248 

Table 1: EM and F1 results on the oo-domain dev set 

60 -| 80 

60 
40 -| 

40 

20 
20 

0 0 

0 10k 20k 30k 40k 50k 60k 0 10k 20k 30k 40k 50k 60k 

(a) EM scores on the training set (b) F1 scores on the training set 

Figure 2: EM and F1 scores on the training set. 

Orange = Baseline, Blue = Baseline + 4 epochs, Teal = MoE + Reinit-4 

Similar to the performance on the oo-domain dev set, my implementation of the methods in this 
paper do not show an improvement in performance on the oo-domain test set. The synthesized model 
that was proposed here, MoE + Reinit-4, performs close to the baseline but with a small performance 
decrements. 

  

  

This decrease in performance was unexpected but there are possible reasons that may be pointed to 
for an explanation. For instance, it may be that the gating network for the mixture-of-experts model 

  

      
    

Results (Test) 

Model EM Fl 

Baseline 40.275 59.187 

MoE 39.768 58.768 

MoE + Reinit-4 40.013 58.781 

Table 2: EM and F1 results on the oo-domain test set 
 



did not sufficiently learn the correct mapping from input to expert weights. In future work, it may be 
useful to explore alternate architectures and hyperparameters for this gating function. This will be 
further explored in the Analysis section below. It may also be that the expert models did not partition 
into distinct local input regions. If this did not happen, many of the benefits of localization of experts 
would not be felt in the performance. Alternatively, the lost generalization benefits of training a 
single DistiIBERT model on all three in-domain datasets may not have been repaid through the 
localization of expert models. 

As the results in Zhang et. al. [2] showed an increased performance from reinitializing transformer 
blocks in BERT, it was surprising that these improvements were not also seen here. The BERT and 
DistiIBERT models were similar enough that I assumed these results would transfer. One possible 
reason may be that the generalized knowledge from pre-training that was lost during reinitialization 
had a more damaging effect than the domain knowledge gained during finetuning. Attempting 
different reinitialization techniques and/or training on larger training sets may be enlightening. 

5 Analysis 

To better understand why the final model (MoE + Reinit-4) does not succeed, it is insightful to look 
at specific examples. Take the example found at id a47ddebcc3b74dafa525 lef1137b5 160, 

"Where did Cassidy find strength after the tragedy?" 

The ground truth answer is, "in the words of a Harry Potter film". The predicted answer from the 
model is, "words of a Harry Potter film". This is close but not the ideal answer. Analyzing the 
response of each expert helps to understand why this occurred. 

  

  

  

  

Expert Outputs 

Expert Predicted Start Gating Weight 

SQuAD Expert "in" 0.15 
NewQA Expert "in" 0.21 
Natural Questions Expert "words" 0.64           

Table 3: The word with the highest probability for each expert’s outputted start logits and the weight 
assigned to each expert by the gating network. All networks has the correct end location prediction. 

From this, we see that two of the expert models actually predicted the correct answer span. However, 
these two correct predictions were outweighed by the model with the incorrect start prediction. This 
lends support to the theory that the gating network has not correctly learned a useful mapping from 
input to expert weights. This issue may be compounded by the possibility that the input spaces of 
each of the in-domain datasets are not sufficiently distinct. If this is the case, the experts would not 
be partitioned to distinct areas of the input space when finetuned. 

6 Conclusion 

In this project, I attempted to utilize various techniques to create a model that performed robustly on 
a QA task with out-of-domain examples. Specifically, I implemented a version of mixture-of-experts 
and applied various finetuning procedures to these expert models. These attempts did not produce 
performance improvements. Possible explanations for this negative outcome are proposed. 

In future work, I see various paths towards improving the approach in this paper. One option would 
be to use data augmentation methods on the few training examples given from the out-of-domain 
datasets. Using this increased quantity of examples, an attempt could made to train experts on these 
datasets alongside the experts for the in-domain datasets. To improve the MoE implementation, one 
could create a more focused method for grouping in-domain examples and experiment with new 
gating network architectures.



References 

[1] R Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing 
syntactic heuristics in natural language inference. In Association for Computational Linguistics 
(ACL), 2019. 

[2] Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Weinberger, and Yoav Artzi. Revisiting 
few-sample bert fine-tuning. arXiv preprint arXiv:2006.05987, 2020. 

[3] Geoffrey E. Hinton, Michael I. Jordan, S. Nowlan, and R. Jacobs. Adaptive mixtures of local 

experts. Neural Computation, 3:79-87, 1991. 

[4] Masoudnia, Saeed Ebrahimpour, Reza. (2014). Mixture of experts: A literature survey. Artificial 
Intelligence Review. 42. 10.1007/s10462-012-9338-y. 

[5] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions 
for machine comprehension of text. CoRR, abs/1606.05250, 2016. 

[6] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version 

of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv: 1910.01108, 2019. 

[7] https: //web.stanford.edu/class/cs224n/project/default-final-project-handout-robustqa-track. 
pdf 

[8] Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bachman, 

and Kaheer Suleman. Newsqa: A machine comprehension dataset. ACL 2017, page 191, 2017. 

[9] Amrita Saha, Rahul Aralikatte, Mitesh M. Khapra, and Karthik Sankaranarayanan. DuoRC: 

Towards Complex Language Understanding with Paraphrased Reading Comprehension. In ACL, 
2018. 

[10] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale 

reading comprehension dataset from examinations. In EMNLP, 2017.


