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Abstract 

Despite the stunning achievements of question answering (QA) systems in recent 
years, existing neural models tend to fail when they generalize beyond the in- 
domain distributions. This project seeks to improve the robustness of these QA 
systems to unseen domains through a combination of Easy Data Augmentation 
(EDA) and Mixture of Experts (MoE) techniques. As baseline, we finetuned a pre- 

trained DistiIBERT model with Natural Questions, NewsQA and SQuAD datasets 

using the default configurations and evaluated the model performance on the out-of- 
domain datasets, including RelationExtraction, DuoRC, and RACE. After obtaining 

our second baseline by including a small number of training examples from our 
out-of-domain datasets, we ran two rounds of hyperparameters tuning through 
random search. Based on the best performing set of hyperparameters, we then 
augmented our out-of-domain datasets using the EDA techniques and analyzed the 
effects of each technique through a series of experiments. Finally, we implemented 
an MoE model with three experts and a two-layer bi-directional LSTM followed by 
a linear layer as the gating function. Both the data augmentation technique and the 
mixture-of-expert approach demonstrated capability to improve the robustness of 
DistiIBERT-based QA systems, and a combination of the two methods brings even 
further improvement. The combined approach increased the Fl and EM scores on 
the dev set by 15.03% and 14.87%, respectively, compared to the baseline, and 
achieved an F1 score of 62.062 and an EM score of 42.317 on the test leaderboard. 

1 Introduction 

Since the birth of the Stanford Question Answering Dataset (SQUAD) in 2016, huge progress 
has been made in the field of natural language processing (NLP) for reading comprehension and 
question answering. From the earlier DCN, BiDAF, and LSTM-based architectures, to more recent 
Transformer-based models[1][2][3][4], large neural network models are achieving better performance 

on standard question answering tasks, becoming on par and even superior to human performance. 

Despite these stunning accomplishments, existing neural network models do not yet seem to have the 
capability to acquire transferable reading skills [5]. Unlike humans, who can easily complete similar 
tasks in different settings, neural network models are vulnerable to adversarial inputs [6] and tend to 
fail when asked to generalize beyond the in-domain distributions [7]. Such fragility poses a daunting 
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challenge to the deployment of NLP systems in the real world, where the training data and test data 
often do not come from the same distributions. 

Various techniques and novel architectures have been developed by researchers around the world 
to tackle this problem. In this project, we seek to make our contributions by combining techniques 
from advances in other NLP areas and building a QA system that is robust to out-of-domain tasks. 
Specifically, our team adapted the Easy Data Augmentation (EDA) techniques from Wei and Zou 
(2019)[8], implemented a mixture-of-experts model with three experts and a two-layer bi-directional 
LSTM followed by a linear layer as the gating function, and analyzed the results for using a 
combination of these techniques. Both approaches demonstrated some potential for improving 
the system performance on out-of-domain datasets, with a combination of the two most effective. 

2 Related Work 

Researchers have explored the efficacy of including more adversarial inputs in the training corpus 
to improve the robustness of NLP systems [9][10]. One such method is to augment the training 
samples with meaning-preserving perturbations, which has been shown to successfully ameliorate 
the brittleness of neural network models. Registering invariant features of the samples, the model 
becomes less likely to rely on superficial correlations. The approach that our team took was adapted 
from Wei and Zou (2019) [8], which introduces the easy data augmentation (EDA) techniques that 

modify data at a word level. This method is relatively easy to implement, but it falls short in produc- 
ing semantically equivalent paragraphs and sometimes produces sentences that are grammatically 
incorrect or meaningless to humans. Works described in Ribeiro et al. (2018) [9] improves upon 

that by introducing semantically equivalent adversarial rules for the samples. One other prevalent 
method for data augmentation relies on back translation [10], which involves translating samples in 
the current language to a pivot language, and back-translating the samples to obtain paraphrases of 
the original samples. 

Another class of methods that focuses on the model itself is the mixture-of-expert (MoE) approach. 
This approach was first described in detail by Jordan and Jacobs (1991)[11]. The initial model 

contains a simple tree-like architecture that involves three major components: 1) multiple experts, 
2) a gating function that partitions the input space and decides which expert output is reliable in 
different regions, and 3) a probabilistic model that combines the gating values and the expert outputs 
[12]. Such an architecture allows differentiated assignments: different inputs could be assigned to 
different "experts" and be evaluated with the most appropriate methods. We found this approach to be 
particularly promising for our task: by using a gating function to carefully control the weights given to 
each expert for a sample, the experts can hopefully learn different distributions of the out-of-domain 
datasets and give better predictions. Seeing that we only have a small number of out-of-domain 
training examples, we decided to replicate the EDA approach and study if the variations introduced 
by the augmented data can give the model new information and allow it to rely less on superficial 
correlations, thus further improving the MoE model performance. 

3 Approach 

3.1 Baseline 

Our basic baseline was established by a pretrained DistiIBERT model [13] finetuned with data from 
our in-domain datasets, namely, Natural Questions, NewsQA and SQuAD. 

3.2 Data Augmentation 

Our first attempt to improve the stability of our model is to incorporate the out-of-domain (OOD) 
data edited by simple techniques into the finetuning process. Specifically, we augmented the OOD 
datasets with random synonym replacement (SR), random deletion (RD), random insertion (RI), and 

random swap (RS) techniques based on the Easy Data Augmentation (EDA) methods from Wei and 
Zou (2019)[8]. Our team adapted the code snippets that perform specific SR, RD, RI and RS tasks 
from [8] to fit our task of question answering (https: //github.com/jasonwei20/eda_nlp). In 
particular, to ensure that we have the right index for the answers after editing the context, we wrote 
three control functions. The first extracts the context from each sample. The second divides the



sample context into three parts: before answer (context 1), answer (context 2) and after answer 

(context 3). Afterwards, this function calls a pre-specified data augmentation function on context 1 
and 3 with a user-defined target percentage of adjusted context. The third function calculates the new 
starting position of the answer based on the length of context 1 and combines the divided contexts to 
form a new augmented sample. This process is shown in Figure 1. 
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Figure 1: Context Division for Data Augmentation 

3.3 Mixture of Experts 

The mixture-of-experts method was implemented through two approaches: first, we tried out a naive 
model without a gating function. Specifically, instead of training a single model on three out-of- 
domain datasets, we trained three separate DistiIBERT models simultaneously, each on a different 

out-of-domain dataset (the starting point of all three models is our baseline model). During the 
evaluation process, examples from the three out-of-domain datasets are fed into their corresponding 
models to generate predictions. For performance evaluation, predictions from the three models are 
combined to calculate the EM and FI scores. 

Next, we tried out the more complex approach in alignment with the design from Jacobs et al. 
[11]. We again trained three DistiIBERT model based on the baseline model as our three experts. 

However, instead of manually feeding examples into their corresponding models, we designed a 
gating function which processes the inputs and decides how much weight to give each expert in 
formulating predictions, as shown by Figure 2. 
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Figure 2: Mixture of Experts structure 

For our specific implementation, we first converted the examples into token embeddings, which is 
then fed into the gating function. The gating function was designed to be a two-layered bidirectional 
LSTM followed by a linear layer and a softmax function, which transforms the outputs of the LSTM 
model into probabilities. The final predictions of the MOE model is the weighted combination of 
predictions for the three models, as shown by Equation 1: 

P(yilari,0) = D> plz: = hla, O)p(yilai, zi = k, 8) (1) 
k 

Here, p(z; = k\|a;,@) represents the probability given by the gating function to expert k and 
p(yi|xi, 21 = k, ) represents the probability for the ground truth to be the truth provided by expert k. 

For model optimization, the total loss of the MoE model was calculated by aggregating the negative 
log likelihood loss of both the start and end of the answers based on the final predictions. The gating 
LSTM, the linear layer and the three models are optimized simultaneously.



3.4 Mixture of Experts with Data Augmentation 

Finally, to see if utilizing the capability of the MoE model to specialize in different distributions 
together with the augmented data could facilitate the model to better learn the invariant features of 
the out-of-domain datasets, we used the mixture-of-expert models we built in the previous section on 
the out-of-domain datasets along with our augmented data in a series of experiments. 

4 Experiments 

4.1 Data 

We used three in-domain datasets, including Natural Questions, NewsQA and SQuAD, for training, 

and three out-of-domain datasets (RelationExtraction, DuoRC, RACE) for testing. Except for the 
baseline, a small number of samples from the out-of-domain datasets are also included during training. 

4.2 Evaluation method 

We used EM score, which measures the percentage of predicted answers that exactly match any one 
of the ground truth answers, and FI score, which is calculated based on the precision and recall 
scores, as our evaluation metrics. 

4.3 Experimental details 

4.3.1 Baseline Model 

For the baseline model finetuned with in-domain datasets, we used the provided configurations. 
Specifically, we used a batch size of 16 and 3 total number of epochs. The seed was 42, and the 
learning rate 3e-5. We evaluated the model and saved the checkpoints every 2000 batches. Based 
on this baseline model, we used the same configurations to further finetune the model on the few 
out-of-domain training examples we have and obtained baseline model 2. 

4.3.2 Hyperparameter Tuning 

Given the small size of the out-of-domain data, we further tuned our hyperparameters based on 
the baseline models to see if we could achieve better results. Specifically, we ran two rounds of 
hyperparameter tuning. In the first round, we used a random grid to test 20 sets of hyperparameters. 
Based on the results, we narrowed down the scope for the learning rate and number of epochs, and 
ran another round of hyperparameter tuning for 20 sets through a random grid and identified the top 5 
sets of hyperparameters from the two rounds. The specific configurations are the following: 

yperparameters 

num_epoc 

_S1Ze 

_every 

  

Table 1: Hyperparameters 

4.3.3 Data Augmentation 

For data augmentation, all techniques were performed with an alpha of 0.05, meaning that for each 
sample, 5% of the context was perturbed based on their context length (the total number of words). 
For model finetuning, we used the best performing set of hyperparameters and adjusted the eval_every 
parameter to maintain the same evaluation frequency for all of the experiment sets. Using baseline 
model | as a starting point, we ran a total of 8 experiments: experiment 1-4 use the original OOD 
datasets combined with the data augmented with each of the SR, RS, RI, RD techniques individually. 
Experiment 5 uses the original OOD datasets combined with out-of-domain data augmented by all of 
the methods. After seeing no significant improvement compared to experiment 1-4, we carried out



experiments 6-8, where we used the original OOD datasets, RD augmented data, along with one of 
RS, RI, SR augmented datasets. 

4.3.4 Mixture of Experts 

For the mixture-of-experts method, we first transformed our inputs through the tokenizer from the 
DistiIBERT model. Based on the vocabulary size, we used the Embedding class from the torch.nn 
module to obtain the text embeddings. To be consistent with the DistiIBERT model, we used an 
embedding size of 768. For the Bi-directional LSTM, due to virtual machine cuda memory constraint, 
we used a hidden size of 3. For the softmax function, we introduced a temperature to control the 
probability distribution over the experts and had the default set to 1. During learning, we optimized 
the overall model with one Adam optimizer, and give the option to vary the learning rate for the gating 
function with the default set to 3e-5. For the overall configurations, we used the best performing set 
of hyperparameters but adjusted the batch size to 10 due to cuda memory constraints. 

4.3.5 Mixture of Experts with Data Augmentation 

We used the same architecture and followed the same procedures as in the previous sub-section for 
this set of experiments. Specifically, we trained the models for 3 epochs with a learning rate of 3e-05, 
a batch size of 10 and set the evaluation frequency based on the overall size of the out-of-domain 
training data. The temperature was set to 1 and the learning rate for the gating function was 3e-5. We 
ran a total of 5 experiments, one for each augmented dataset along with the original out-of-domain 
training samples, and one for all of the augmented datasets combined. 

5 Results 

5.1 Baseline 

As a baseline, we finetuned a pre-trained DistiIBERT model with Natural Questions, NewsQA and 

SQuAD datasets. We evaluated the model performance on RelationExtraction, DuoRC, RACE 

datasets and obtained an F1 score of 47.10 and EM score of 31.68. By further finetuning the model 
with the few out-of-domain training samples we have using the same configurations, we obtained 
baseline model 2, which has slightly better results: the Fl score is 47.41 and the EM score is 32.20. 

5.2 Hyperparameter Tuning 

During our first round of hyperparameters tuning, we found learning rates of 3e-3 and 3e-4 perform 
particularly worse than others. After inspecting the negative log likelihood, F1, and EM plots for the 
training process, we also found that training for 3 epochs was enough for the model to converge, but 
training for up to 8 epochs could potentially lead to more stable performance. After discarding the 
two learning rate values and narrowing the scope for the number of epochs, we ran another round of 
random search. We identified the Top 5 best performing sets of hyperparameters in Table 2, which 
were ranked by their F1 scores. 

_every 

  

Table 2: Hyperparameters Tuning on OOD baseline model - Top 5 

Because the second set of hyperparameters achieves a similar level of Fl but higher EM score with 
much fewer epochs than the first set of hyperparameters, we decided to use this as the default setting 
for our data augmentation and mixture-of-experts experiments. These results are what we expected: 
rigorous hyperparameters tuning can often lead to superior performance. Performance should stabilize 
once training reaches convergence. Training beyond that could lead to overfitting.



5.3. Data Augmentation 

  

+ augmen 

Table 3: Models finetuned with Augmented Data 

Table 3 shows the results of the models finetuned on the original OOD data along with the augmented 
data. When only a single EDA technique is applied (experiment 1-4), the models all have moderate 
improvement for F1 score over their corresponding baseline. However, decrease in scores is also 
observed. The results generally match our expectations: introducing some variations to the data 
improves F1 score through reducing brittleness of the model in out-of-domain contexts, but also 
makes the answers less consistent with the standard format, thus decreasing the EM score. On the 

other hand, the result from experiment 5 did not match our expectation. We hypothesized that adding 
more data augmented by different methods would further improve the results. However, experiment 5 
shows that the model finetuned with all-method augmented datasets actually has a much lower EM 
score (31.41) despite a slightly improved F1 score (52.81). In order to understand where the drop in 
performance comes from, we further performed experiments 6 to 8 (See appendix A.3). Seeing that 
the results are quite similar to experiment 2-4, we theorize that the drop of EM score for trial 5 may 
be caused by overfitting since the model was trained with the most data, many of which have similar 
context and question with each other. 

5.4 Mixture of Experts 

5.4.1 The Naive Approach 

The Naive MoE model without the gating function achieved an FI score of 53.64 and an EM score of 
34.82, which are both higher than the scores from a single model with the same hyperparameters. 
Such results are what we expected: since we trained three separate models, each on a different dataset, 
the model can achieve better results by specializing in one of distributions. Our hypothesis was 
confirmed when we checked the performance of each individual model: the Fl and EM score can 
reach as high as 78.37 and 46.07 respectively for the Relation Extraction dataset, while falling as low 
as 39.33 and 24.20 for the race dataset. In comparison, the scores based on a single model are F1 of 
72.08 and EM of 51.56 for the relation extraction dataset and F1 of 35.89 and EM of 21.88 for the 
race dataset. In an ideal situation where we know the evaluation data distribution and do not need the 
model to be a generalist, this approach would perform well. 

5.4.2 The Main Approach 

  

Table 4: Mixture-of-Experts Models 

Table 4 shows the performance of the mixture-of-expert approaches with different temperature 
and gating function learning rates. Trial 1 is the plain vanilla version of our MoE model, which 
serves as a control. Trial 2-3 have the same gating function learning rate with the control model but 
different temperatures, while Trial 4-5 have the same temperature as the control model but different 
gating function learning rates. Trial 6 uses a combination of different temperature and learning rate. 
Compared to the base model with the same hyperparameters, Trial | sees slight but non-significant 
improvement. This goes against our expectation. The lukewarm performance could be due to the 
small out-of-domain sample size we have, which may not be enough to train a good gating function.



In future experiments, we would want to try out a different gating function such as MLP or slightly 
increase the training size and compare the results. Compared to the control trial (F1: 50.01, EM: 
35.86), we do not see significant improvement by modifying the temperature and the learning rate for 
the gating function. This again goes against our expectations. We originally thought the performance 
will be better when we decrease the temperature, which would assign a larger probability to the most 
probable expert and lead the experts to learn specialized behavior. However, our results suggest that 
the probability distribution could already be skewed. Visual inspection of a few matrices confirmed 
our suspicion. As a result, using a small fixed temperature will not change the performance much. In 
future experiments, performance of significantly lower and higher temperatures could be evaluated. 

5.5 Mixture of Experts with Data Augmentation 

+ 

+ . ] 
+ . + 

  

Table 5: Mixture-of-Experts Models with Augmented Data 

Table 5 shows the results of the mixture-of-expert models with augmented data. Model 2-5, which are 
finetuned with the original OOD and one of the augmented datasets show significant improvement 
over the performance of model 1, which is finetuned with only the original OOD datasets. Random 
insertion alone shows the most improvement. When evaluated on the test leaderboard, it achieved 

an F1 score of 62.062 and an EM score of 42.317. Our hypothesis for the good performance of the 
method is that random insertion gives more variations in answer positions and thus allows different 
experts of the MoE model to learn patterns not correlated with the answer positions. This advantage 
may not have been significant for EDA since signals from other datasets may distract the attention 
of the model. With multiple experts, this advantage becomes more significant. However, we will 
need more trials with similar methods such as random insertion of irrelevant sentences to confirm our 
hypothesis. For Model 6, similar to the results in Section 5.3, the F1 score only increased slightly, 
while the EM score drops significantly, which again could be due to overfitting. 

6 Analysis 

In order to understand the differences in scores behind our models, we visually examined the outputs 
of all of our approaches (See appendix A.4 for additional data). As a demonstration of our findings, 
we created Figure 3, which shows six representative samples that include the question, the ground 
truth, and the predicted answers by baseline model | and the model trained on OOD+RD datasets. 

1. The question: What year does J travel back to? 4. The question: Who does J reveal the mission to? 

true answer: 1969 true answer: Agent K 

baseline answer: 1969, baseline answer: Obadiah Price, a fellow inmate he'd made a deal with). His intention 

EDA_RD answer: in 1969 is to rewrite history, with Agent K 

EDA_RD answer: Obadiah Price 

True answer: Baltimore 5. The question: Who finds Rennes's corpse? 

baseline answer: Holy Cross true answer: Worth 
EDA_RD answer: in Baltimore baseline answer: Leaven 

EDA_RD answer: Quentin (Maurice Dean Wint), Worth (David Hewlett), Holloway 
3. The question: To whom Ivan Reynolds offer the drink? 

True answer: Poe 6. The question: Who escapes from a maximum-security prison on the moon? 

baseline answer: Emily Hamilton true answer: Boris the Animal 

EDA_RD answer: Poe and Fields baseline answer: Obadiah Price 
EDA_RD answer: Obadiah Price 

Figure 3: Sample Question-Answer Pairs 

After visually inspecting the answers, we divided them into four groups: first, the answer exactly 
matches the ground truth. The percentage of samples belonging to this category can be directly seen 
through the EM score, so we do not go into detail here for this group. Second, the answer is slightly 
different from the ground truth, but the meaning is the same. The answers in the first example of 
Figure 3 is representative of this category: the predicted answers are only different from the ground 
truth due to punctuation marks or preposition. Third, the answer contains not only the ground truth



but also other irrelevant words. The baseline answer in the fourth examples demonstrates this point. 
Finally, the answer could be completely wrong, which is demonstrated by answers in question 6. 

What we found in our analysis is that, the increase in Fl score for the EDA methods compared to the 
baseline could be largely explained by the third category. After noticing the prevalent presence of long 
answers containing the ground truth (like the baseline answer in Figure 3 question 4), we hypothesized 
that the worse performing baseline model could be giving a larger percentage of predictions of the 
third category. We thus analyzed and compared the average word count in predicted answers by 
models and the ground truth answers, the result of which is shown by Figure 4 and Table 6. 

Groud Truth Answer Baseline Answer     

Fr
eq
ue
nc
y 

5 8 

Fr
eq
ue
nc
y 

5 3 

0 5 10 15 20 5 0 10 ib 20 25 

Answer Word Count Answer Word Count 

wu 

Figure 4: Histogram of word count in answers predicted by different models 

  
Truth | Baseline | EDA_RD | EDA_RI | MoE_RI 

Average Word Count | 1.97 3.95 3.52 3.88 3.33 
  

                

Table 6: Average Word Count 

From the statistics and the histograms, we can see that the average word count of answers predicted 
by each model is about twice as much as the word count of the ground truth answers, and the worse 
performing baseline model indeed has a higher average word count for their answer predictions than 
the corresponding EDA predictions. This pattern is also reflected in the MoE models, as the best 
performing MoE-RI model has the lowest average word count among all models. More detailed 
distribution of word counts is included in Appedix A.4. Seeing that the model predicts the start and 
end positions of an answer to form an answer span, we suspect that the reason behind the model giving 
long answers is that the model may give a wrong token similar to the true end token a slightly higher 
probability. A qualitative, non-comprehensive analysis of the predictions supports our conjecture (for 
example, the baseline answer in question 4 starts and ends with nouns representing persons). A more 
rigorous linguistic analysis would be needed to draw a definitive conclusion. 

7 Conclusion 

This project implements and studies the efficacy of data augmentation techniques and the mixture- 
of-experts approach in improving the robustness of QA systems on out-of-domain data. Through a 
series of experiments, we demonstrated the effectiveness of the two methods and showed that their 
combination strengthens each other’s performance. Specifically, using random-insertion augmented 
datasets with the MoE model helped us achieve 15.03% and 14.87% gains for the Fl and EM scores 
on the dev sets, and reach an F1 score of 62.062 and an EM score of 42.317 on the test leaderboard. 

The intermediate results of the project also highlight some salient issues and limitations of our work. 
Through hyperparameters tuning, we found that having an optimal set of hyperparameters can non- 
trivially boost the model performance, giving us dev F1 scores in the low 50s. While demonstrating 
the importance of hyperparameter tuning, these results also raise some challenges for us to reach 
definitive conclusions on whether some of the methods actaully boost system performance, seeing 
that the scores are close for the size of our evaluation datasets. To confirm that the improvement was 
actually made by our methods, we would like to run multiple experiments for each of the methods, 
obtain the average score, and also bootstrap the samples to obtain a confidence interval for all of the 
methods. We leave these as our future work.
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Figure 5: Negative Log Likelihood loss for in-domain finetuning 
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Baseline Fl EM 

Baseline Model 1 with only in-domain datasets 47.10 | 31.68 

Baseline Model 2 with OOD-train-datasets, eval-every 200 | 47.41 | 32.20 
  

Table 7: Baseline Models: Pre-trained DistiIBERT finetuned with our training datasets 
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A.2 Hyperparameter Tuning 

  
Table 8: Hyperparameter Tuning Round | 
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Table 9: Hyperparameter Tuning Round 2 

Training Process 
  

35 7 

3.0 4 

254 

20 4 

Lo
ss
 

157 

10 4 

054     0.0 4 
  

0 50 100 150 200 

Steps 

Figure 6: Negative Log Likelihood loss for finetuning with the first set of hyperparameters in round 2 
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A.3 Data Augmentation Experiments 
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Table 10: Augmented Models. 
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Figure 7: Histogram of word count in answers predicted by MoE models with EDA
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