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Abstract 

Machine reading comprehension is an exceedingly important task in NLP and is a 
desired feature in many of the latest consumer and research projects. Therefore, 
using this task as motivation, we set out to build a reading comprehension model 
that performed well on the SQUAD 2.0 question answering dataset. To do this, 
we built upon the existing BiDAF [1] machine comprehension model given to 
us through the CS224n staff. Our contributions to this model are a character 
embedding layer on top of the existing word embedding layer, a self attention layer, 
and added features to the character and word embeddings which include Part of 
Speech tags (POS), named entity recognition (NER) tags, and dependency tags. 
As a result of implementing these layers we found that character embedding with 
additional input features performed the best with an F1 dev score of 64.38 and an 
EM dev score 61.29. On the test set we achieved Fl and EM scores 62.17 and 
59.04 respectively. 

1 Introduction 

From the search engine’s we use everyday to the chatbots we interact with on websites to the 
personal assistants in our rooms, question answering systems have become a staple of modern NLP 
technologies. Not only is the question answering task useful in a variety of different applications, it is 
an important tool for evaluating how well machines can "understand" text. Therefore, working on 
improving and fine-tuning these systems has been a major focus of NLP research and has led to many 
state of the art systems in the space. As part of our venture into the space, we built upon one of the 
most popular models in the space, Bi-Directional Attention Flow (BiDAFP), which is a hierarchical 
multi-stage architecture for modeling the representation of context paragraphs at different levels 
of granularity [1]. Although there are many datasets that have been created for the exact task of 
question answering, we used the Stanford Question and Answering Dataset (SQuAD), particularly, 
version 2.0 which includes questions that cannot be answered through the context provided. 

Looking at the BiDAF model we were provided by CS 224n, we noted that we could improve upon 
the model using new question answering methods that have been published since the release of the 
BiDAF model. For starters, we noticed that the BiDAF model given to us did not have the character 
embeddings discussed in the BiDAF paper [1], therefore, we looked towards adding the functionality 
to see how scores improved. From there, we took inspiration from the seminal "Attention is all you 
need paper" [2] and noted that self attention could be a useful layer to add onto our model. In doing 
research for this model involving self attention, we found that the RNET self attention layer for 
question answering [3] had derived excellent results in the question answering domain and thus 
would be a good fit for our self-attention purposes. Additionally, we looked into the embedding layer 
and noted that adding sentence and word structure information to our embeddings could help the 
model learn, and thus decided to research into feature engineering. In this research, we found that the 
feature engineering found in the DrQA [4] paper could be helpful in our own model. 
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As a result, our model incorporated a character embedding layer, a self matching layer as specified 
in the RNET [3] paper, as well as feature engineering that included Part of Speech Tags (POS) for 
words, Named Entity Recognition (NER), and dependency tags. These contributions gave us better 
results over the baseline BiDAF model provided and resulted in the highest Fl and EM scores of 
64.38 and 61.29 on the dev set and 62.17 and 59.04 on the test set respectively. 

2 Related Work 

2.1 Baseline 

Our baseline is inspired from the BiDAF model [1]. BiDAF is a hierarchical multi-stage architecture 
for modeling the representation of context paragraphs at different levels of granularity. This model, 
as described in the paper, uses word-level and contextual embeddings as well as a bi-directional 
attention flow to obtain query aware representations. This paper’s major contribution was the creation 
of a novel attention mechanism detailed within the paper which is hypothesized to force the attention 
layer to focus on learning the attention between the query words and the context words, and allows 
the modeling layer of the model to focus on learning the interaction within the query-aware context 
representation (the output of the attention layer). Prior to Transformer models and other pretrained 
models BiDAF achieved state of the art results and is thus a great starting point for improvements. 

2.2 Self Attention 

In our BiDAF baseline, the attention performed within the model is between context words and query 
words which then generates query aware feature vectors which are modeled later on [1]. However, 
recurrent models such as these can only memorize a limited amount of passage context and thus may 
lose out on answer clues that are found in other parts of the passage. As a result, the RNET [3] paper 
proposes a self matching attention layer which aggregates evidence from the whole passage to infer 
the answer. It does so by taking the output of context query attention, similar to that of the baseline 
model, and performs self attention on these outputs to aggregate information relevant to each passage 
word from all other words in the passage. In this way, we add an extra layer of information to our 
previous attention layer which can be useful in training. 

2.3 Feature Engineering 

In natural language processing feature engineering involves generating input features for a model 
based on a certain word or words in a corpus of text. In "Reading Wikipedia to Answer Open-Domain 
Questions" [4] Chen et al. utilizes a novel document reader to parse through Wikipedia articles and 
generate context paragraphs in which the answers to given questions can be found. Each word in a 
context paragraph is processed to generate features. 

In Chen’s approach, the first feature involves having each word in the paragraph embedded using 
the 300-dimensional Glove word embeddings trained from 840B Web craw] data (Pennington et al., 
2014). The second feature involves having three binary values for each word. The first binary value 
indicates whether the exact match of the word is found in the question, the next binary value indicates 
whether the lemma form of the word is found in the question, the last binary value indicates whether 
the lowercase form of the word is found in the question. The third input feature involves storing 
additional token features. Some token features include part of speech, named entity recognition 
and normalized term frequency. Lastly, the final feature involves generating an aligned question 
embedding where an attention score (a,;,;)) captures the similarity between paragraph token (p;) and 
question token (q;). 

As a result of using these features, Chen saw excellent results on question answering datasets and 
thus is an avenue that is worth considering for our approach.



3 Approach 

3.1 Baseline 

Our baseline is the Bidirectional Attention Flow Model (BiDAF) with word level embeddings as 

described in the default project handout provided by the CS224n teaching team [1]. 

3.2 Character Embedding 

As described in the introduction, the BiDAF model given to us by the CS 224n teaching team lacked 
the character embeddings that are found in the original BiDAF paper. Due to the fact that words at 
training and test time can be out of the vocabulary and that character composition can provide more 
information about a given word, we found that it would be useful to use character embeddings for our 
model. 

To do this, we took the pretrained character vectors provided by the teaching team and used those vec- 
tors, as well as the prepared character indices provided by the teaching team, to pass to our embedding 
layer. In our embedding layer we followed the character embedding conventions described by Kim 
in Convolutional Neural Networks for sentence classification [5]. More precisely, we embedded the 
character indices using an embedding layer. We then performed dropout on this embedding. After 
this process, we passed the embedding through a | dimensional convolution (although in code we use 
torch.Conv2d due to the 4-dimensional shaping of the character embeddings) and then performed 
max-pooling after the convolution. Finally, we took this result and concatenated the character vectors 
onto our word vectors to generate the new input for the model. This code was written originally by 
the team. 

3.3 Self Matching Layer (Self attention) 

Our self attention layer is built off of the description and math described in the RNET paper. After 
we go through the embedding layer we pass the input to the BiDAF Attention layer [1]. The 
BiDAF attention layer performs Context-to-Question attention on the input similar to that of the 
Context-to-Question attention layer detailed in the RNET paper. For the sake of time as well as 
development resources, we decided to use the provided BiDAF attention layer instead of the attention 
layer described in the RNET paper as both layers produce similar attention outputs with some 
implementation details different between the two. 

Once we have the output from the Context-to-Question layer we pass the question-aware passage 
representation {v/’ }?_, to the self attention layer. This self attention layer works by matching the 
question-aware passage representation against itself and thus can gain awareness of the passage 
itself which can help in providing question answering context. The layer thus produces the passage 
representation using the following process [3]: 

hP = BiRNN (h?,, [v?,ce]) 

where ct = att(v”, v?’) is an attention-pooling vector of the whole passage (v”’): 

si =v" tanh (wPoP + Weep’) 

t t t a; = exp (s;) [Rey exp (s5) 

c= Etat? 

We then concatenate v?’ with c; and run this through an additional gate to control the input to the 
modeling layer as so: 

gt = sigmoid (W, (vf, ce]) 

[uP c]” =40 [v?’, ce] 

[uP , cr] ” is then passed to the modeling layer provided by the CS224n teaching team. The output 
is then conditioned off of the BiDAF attention layer and the modeling layer described above. The 
implementation of this self-attention layer is done originally by the team.



3.4 Feature Engineering 

For additional input features we decided to incorporate part of speech tags, named entity recognition 
tags, and dependency tags. There are two main parts involved with generating these features: running 
the document through spaCy and encoding the string tokens into numbers. 

To run the document through spaCy, we first generated a new spaCy document tokenizer by loading 
the "en_core_web_sm" language model from spaCy. This language model contains the tokenizer, 
dependency parse, and named entity recognizer for the English language. In the process_file function 
of setup.py, we run each context paragraph and question through the new spaCy document tokenizer. 
From this document, we are able to loop through each token and construct arrays containing the text, 
part of speech, named entity tag, and dependency tag for each token. Each of these arrays are stored 
in the example which is returned by the function. 

Next, we encode the features into numbers in the build_features function. For each unique feature, 

we assign an integer value representing the type of each feature. We do this by keeping a dictionary 
that contains a key that corresponds to a part of speech, dependency tag, or named entity tag and the 
value of each key maps to a unique integer. If the tag already exists in the dictionary, we return that 
value else we create a new value and add that tag to the dictionary. After constructing these arrays 
they get stored to the output file as specified by the build_features function. These features then get 
concatenated with the word indices and character indices in the forward function of the model. This 
code was written originally by the team. 

4 Experiments 

4.1 Data 

We are using the SQuAD dataset. The SQuAD dataset is a set of paragraphs from Wikipedia. The 
questions and answers in the dataset are crowdsourced using Amazon Mechanical Turk with around 
150k questions in total. Roughly half of these questions cannot be answered using the paragraph 
that is provided. Preprocessing is done through the setup.py file provided which will download 
GloVe 300-dimensional word vectors and prepocesses the SQuAD dataset for efficient data loading. 
Additionally, the data will be split according to the project handout to create class leaderboard 
rankings. 

4.2 Evaluation Method 

For evaluation methods we will be using Fl and EM scores as specified in the default handout project 
description. 

The F1 score is the weighted average of precision and recall when it comes to the the predicted outputs. 
Precision is calculated as the ratio between the correctly predicted positive observations and the total 
predicted positive observations. This is calculated using the following equation, Tas Fonte tositive 
Recall is the ratio between correctly predicted positive observations to all the possible observations. 

+ z ‘ i True Positive ; é This is calculated using the following equation, True Positive-+False Negative” Using both of these equations 
A : + 2-(Precision-Recall) 

we can calculate the F1 score using the following equation: ‘TPrecision-+Recall) * 

The EM score is defined as the percentage of questions that the model generated a predicted answer 
that exactly matched the actual answer. Every character of the predicted answer must match the 
actual answer for a certain question answer pair to be correct. 

4.3 Experimental Details 

In running experiments we decided to follow the following format. After running the baseline model 
we wanted to see what improvements we would get from solely adding character embeddings to the 
model. After getting the results from this model, we decided to add the self-attention layer and the 
feature engineering separately on top of the character embedding model to see how both perform 
individually on top of the baseline with the character embeddings. Finally, we added all of the 
different features we implemented together to see how they interacted.



Although hyperparameter tuning is important and can lead to better results for all of the models stated 
above, we chose not pursue this path. The reasoning being that training time for most of the models 
we implemented was about 12 hours with self attention running from about 16 to 24 hours dependent 
on the tests we were trying to run. Once we upgraded to larger computers the training times would 
take about 6 to 8 hours but computation costs went up so we decided to stick to model testing and not 
hyperparameters. 

As a result, the learning rate we used was 0.5, the dropout probability was 0.2, and the hidden size 
was 100. For the convolution layer for the char embeddings we used a 1D filter of size 5 and for the 
self attention encoding layer we used 2 layers (although 3 were specified in the RNET paper). 

All of the models were trained on the dev set provided by the teaching team and then tested separately 
on both the final leader board test set and dev set. 

4.4 Results 

Once we trained on the dev set and tested all of the trained models on the dev set, we took the 

best scoring model and tested it on the leader board test set. The following are the results from the 
experiments: 

Table 1: Results 

  

DevEM DevFl_ TestEM Test Fl 
  

Baseline (BiDAF) 58.360 61.478 - - 
Baseline+Char-Embeddings 59.973 63.362 - - 
Baseline+Char-Embeddings+Self-Attention 60.612 63.876 - - 
Baseline+Char-Embeddings+Features 61.284 64.379 59.036 62.171 
Baseline+All 60.007 63.557 - - 
  

As can be seen in the table, both the self attention layer and the added features produced better results 
over simply adding character embeddings to the BiDAF model. In our research, we found that adding 
features performed the best as opposed to the self attention model as well as the final aggregate model. 
However, in running the feature model on the test set we ended up seeing worse results than with our 
dev set. This will be explored in our analysis. 

5 Analysis 

Figure 1 demonstrates the breakdown of questions within the evaluation set. As is seen in the graph, 
the largest percentage of questions are "what" questions which constitute over half of the questions 
in the evaluation set. The second largest group of questions comes in the "who" questions which 
constitutes 10%.
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Figure 1: Breakdown of questions in the dev evaluation set 

5.1 General Analysis of Models 
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Figure 2: How each model variant performed on different question types (F1) 
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Figure 3: How each model variant performed on different question types (EM) 

The figures above represent how each model performed on different question types. As noted in 
Figure 1, "what" questions constituted the majority of the questions in the data and we observed 
that the features model did do the best of all the other models on those types of questions which 
follows it being the best model trained. Something interesting that was noted was the performance 
on the "who" questions and the "where" questions by the features model. Here we substantial gains 
in the features model over the other models which leads us to hypothesize that the Named Entity 
Recognition Feature did help the model understand questions involving names and places. As a result, 
in questions dominated by answers requiring names as answers, we saw substantial gains over other 
models. We also see that the self attention model performs well on the "why" and "other" questions 
which leads us to hypothesize that running self attention over the context helps the model learn about 
the context and cues in the passage outside its surrounding window which therefore helps it solve 
more complex "why" and "other" questions. 

5.2 Best Model Analysis 

step 1,900,454 

Question: What president eliminated the Christian position in the curriculum? 
Context: Charles W. Eliot, president 1869-1909, eliminated the favored position of Christianity 

from the curriculum while opening it to student self-direction. While Eliot was the most crucial 
figure in the secularization of American higher education, he was motivated not by a desire to 
secularize education, but by Transcendentalist Unitarian convictions. Derived from William Ellery 
Channing and Ralph Waldo Emerson, these convictions were focused on the dignity and worth of 
human nature, the right and ability of each person to perceive truth, and the indwelling God in 
each person. 
Answer: Charles W. Eliot 
Prediction: Charles W. Eliot 

Figure 3: An example with question, context, answer and prediction 

Our Baseline+Char-Embedding+Features performed best out of all of our model that we trained 
having a Test F1 score of 59.036 and a Test EM score of 62.171. While this was our best performing 
model there are some persistent problems that occur in the test examples. 

The first issue that is repeated by the model is the tendency to underweight adjectives or descriptive 
properties within the question. A good example of this is in the question,"What can be viewed as 
a limited collection of instances together with a solution for every instance?". The first sentence 
of the context paragraph states, "A computational problem can be viewed as an infinite collection 
of instances together with a solution for every instance." In this example, the italicized portions 
of the text are identical. Given that this part of the context is identical as the question, the weight 
of the adjective limited and infinite which are opposites, are not valued as much as the rest of the 
sentence. Due to this the subject of the sentence "A computational problem" is returned as the 
correct answer when in fact no correct answer is found in this passage. Another example of this is in 
the question," What is the oldest work of Norman art?". The first sentence of the context question 
states,"By far the most famous work of Norman art is the Bayeux Tapestry, which is not a tapestry 
but a work of embroidery." Similar to the previous example, not enough attention is placed on the 
adjectives, resulting in the model returning a noun that does not answer the question correctly. 

The next issue that is repeated by the model not being able to connect synonyms. One example of this 
is in the question,"Which directive mentioned was created in 1994?" The context passage states, " 
The UK subsequently adopted the main legislation previously agreed under the Agreement on Social 
Policy, the 1994 Works Council Directive, which required workforce consultation in businesses, and 

the 1996 Parental Leave Directive." In this example, the model failed to connect the verbs created 
and adopted which can be viewed as synonyms given the context. Another example of this occurs 
in the question, "What can the exhaust steam not fully do when the exhaust event is insufficiently 
long?" The context passage states, "... if the exhaust event is too brief, the totality of the exhaust 
steam cannot evacuate the cylinder." Again, in this example, the model failed to recognize that the 
adjectives insufficiently long and too brief are very similar.



The final issue that is repeated by the model is not being able to properly determine the noun that is 
connected to a pronoun. An example of this is in the question,"How did peace start?". The passage 
states,"It began with a dispute over control of the confluence of the Allegheny and Monongahela 
rivers." The model fails to recognize that It referrers to war in the previous sentence. Since it 
fails to recognize this, the model returns "a dispute over control of the confluence of the Allegheny 
and Monongahela rivers" as the incorrect answer. Another example of this issue is found in the 
question," What percentage of electrical power in the United States is made by generators?" In this 
question the subject is generators. The answer returned by model is, "Today most electric power is 
provided by steam turbines. In the United States 90% of the electric power is produced in this way 
using a variety of heat sources." Heat sources is the subject that generates 90% of the power for 
the United States yet the model returns 90% as the answer for how much power generators create. 
The model has an issue where it has difficult using the context of the passage to determine which 
pronouns refer to which nouns, results in incorrect answer. 

6 Conclusion 

In this project we tackled several modifications on top of provided BiDAF model in order to boost 
question answering performance on the SQuAD 2.0 model. Specifically, our model added character 
embeddings, input features, and self attention to the model. After extensive research, it was found 

that the input features were able to improve upon the baseline model, with the best overall scores 
being an FI Score of 64.38 and EM Score of 61.28 on the dev set. When running on the test set, this 
model ended up scoring a F1 score of 62.17 and and EM score of 59.04. Due to time constraints we 
were not able to experiment with model hyperparameters nor implement the Context-Query attention 
layer of the original RNET paper discussed. These explorations could lead to better results and could 
be experimented on for future work. 
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