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Abstract 

The Stanford SQuAD challenge is a reading comprehension contest, which requires 
us to train a model which can understand the provided contexts and predict the 
answer correctly. The Stanford SQUAD dataset provides a thorough testing for our 
model. In this paper, we have explored various ways to achieve better performance 
to answer the questions from the SQuAD dataset, including BiDAF with character 
embedding, similarity score based attention layer and self attention mechanism. 
Our best model achieved the F1 scores = 64.186 and EM = 60.524 on the test set. 

1 Introduction 

Question and Answering is an important topic in Natural Language Processing field. And recently, 
we care more about reading comprehension style tasks, especially for machine to locate at a specific 
paragraph of the context when answering the questions (query). Stanford SQUAD challenge provided 
abundant resources and related data for research groups. In this project, we inspect the implementation 
of BiDAF paper[1]. We first explore what the impacts of character embedding on the model 
performance. BiDAF model already has bidirectional Context2Query and Query2Context attention 
mechanism in their implementation. So, we try to add additional self-attention mechanism to the 
BiDAF model to see if self-attention can help improve the BiDAF model performance or not, and 
then discuss the training and testing results in our experiments. 

2 Related work 

In this project, we explored various implementations for the SQUAD challenges. Here are what we 
have studied and explored: 

¢ Character-level Embeddings[1]: 
The first step we do is to further improve the baseline model. In addition to the word-level 
embedding, we add additional character-level embedding within the embedding layer to 
make our model back to the original BiDAF model[1]. This enables the model to process 
the words in the character level, so that we can better represent the unknown words. 

¢ Similarity Score Based Attention Layer[1]: 

The paper proposed the way to calculate the similarity score of two vectors first, then 
use the similarity scores to calculate the attention vectors. Besides Context2Query 
and Query2Context attention in the BiDAF model, this paper inspires us to implement 
an additional self-attention mechanism by using the similarity scores between context words. 

¢ Context2Context Self Attention[4]: 

This paper proposed to use self-matching (self-attention) mechanism in the SQUAD Chal- 
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lenge and they also reached the best leaderboard score at that time. They used additive 
attention mechanism, and we choose to use multiplicative attention and add it to BiDAF 

model to see how it compares to the results of obtaining self-attention vectors from similarity 
scores. 

Based on the papers and the baseline model, we added additional character embedding, and we added 
self-attention mechanism onto the BiDAF model with two different self-attention implementations. 
Then we discuss the experiment results and analyze the impacts of self attention on BiDAF model’s 
performance. 

3 Approach 

Figure 1: Model Architecture 
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¢ Main Approach 

   
1. Character Embedding 

We added a character embedding back into the original BiDAF without Character 
Embedding baseline model. We loaded the provided character embedding vectors file, and 
let the model keep updating the character embeddings during the training process. The 
dimension of the provided character embedding vectors is 64. And we used feed-forward 
neural network to projected the vectors into shorter vectors with dimension 8. Then we 
applied Convolution Neural Network (CNN) with kernel size (8, 5) on the 2-D vectors 
with (height, width) = (8, maxLengthOfCharsInAWord), so it could generate a 1-D vector 
with length maxLengthOfCharsInAWord. And we perform 1-D max pooling on it. After 
applying CNN and max pooling, the character embeddings can be concatenated with the 
word embedding and fed into LSTM encoders. And the remaining model structure is the 
same as the baseline model. 

2. Self Attention Based on Modified Similarity Scores 

In the original BiDAF model[1], it has Bidirectional Attention Mechanism after 

Word Embed Layer and and Contextual Embed Layer, which is Context2Query Attention 
and Query2Context Attention. The BiDAF paper[1] proposed a way to calculate the 

similarity score between a context vector and a query vector, each vector representing a 
context word or a query word. So, they would generate a similarity matrix with number of 
rows equaling to number of query words and number of columns equaling to number of 
context words. Using softmax on each row can get the attention scores of context words



when we look at a query word. Using softmax on each column can get the attention scores 
of query words when we look at a context word. 

In our approach, in addition to Context2Query and Query2Context, we also added 
additional Self Attention Mechanism, Context2Context Attention. We generated another 
similarity matrix with number of rows and number of columns both equaling to number of 
context words, basing on the modified similarity score calculating function in the BiDAF 
implementation we referenced[2]. So, taking softmax on each column can get the attention 
scores of context words. We would like to experiment whether adding Context2Context 
attention into the original BiDAF model can improve the model performance or not. 

3. Self Attention Based on Multiplicative Attention 

In addition to self attention based on similarity scores, we also experimented on 
multiplicative attention: e,; = c} We;, which is revised from the additive attention 

ei = v' tanh(W, c; + Wee;) used in paper [4]. We choose to implement multiplicative 

attention because it is more trainable than additive attention with the time and GPU 
memory limits of this project. We added multiplicative Context2Context attention to BiDAF 
model[1] to see how multiplicative self attention compares to modified similarity scores 
based self attention mentioned in Main Approach 2. 

¢ Baseline Model 

The baseline model is provided by Stanford CS224N in the default project starter 
code. It is revised from the BiDAF paper[1]. And the original BiDAF paper[1] described the 
model details. The BiDAF model includes character embeddings to be more representative 
about unknown tokens. And the baseline model removed the character embedding part to 
make the model training process more memory and time efficient. 

¢ Implementation 

We provided the Github Links to the baseline starter code[3] and the BiDAF model 

implementation[2] we have referred to and revised from. 

e Add Up from Our Team 

Since the reference implementation[2] used character embedding with dimension 
8, so we added a feed-forward neural network in our model to project the provided 
64-dimension character embeddings into dimension 8. 

We also added Context2Context Attention based on the modified similarity score 
calculating method in the reference implementation[2] to experiment on the effects of 
adding self attention mechanism into the original BiDAF model[1]. 

Finally, we added multiplicative Context2Context attention to the BiDAF model[1] 
to compare it with similarity-score-based Context2Context attention. 

4 Experiments 

¢ Data: The dataset we use are mainly from the official SQUAD 2.0 dataset with modifications 
by CS224n staff for course purpose. The details are as follow, 

- Train (129,941 examples): All taken from the official SQUAD 2.0 training set. 

- Dev (6078 examples): half of the official dev set, randomly selected. 
- Test (5915 examples): The remaining examples from the official dev set, plus hand-labeled 
examples



¢ Evaluation method: There are two evaluation metrics we use for our models. 

- F1 Scores: 
Fl= 2 x precision x recall 

(precision + recall) 

- EM (Exact Match) Scores: EM is a binary measure (i.e. true/false) of whether the system 
output matches the ground truth answer exactly. 

¢ Experimental details: We have trained 4 different models so far, including baseline model, 
BiDAF model with character embedding, attention layer with modified similarity score 
model and self-attention model. Here are the hyperparameters we used: 

— Learning rate = 0.5 

— Weight decay = L2 weight decay 

epochs = 30 

dropout prob = 0.2 

optimizer = Adadelta 

Training time: 

— Baseline model: 18 hours 

— character embedding model: 31 hours 

— Attention layer with modified similarity scores: 30 hours 

— Self-attention: 30 hours 

¢ Results: 

Figure 2: Comparison of baseline and character embedding model 
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¢ Baseline model - F1 scores = 60.86, EM = 57.40, AVNA = 67.69, NLL = 3.107 

(Results from validation leaderboard: Fl = 61.17, EM = 57.70.) 

¢ BiDAF with character embedding model - F1 scores = 64.40, EM = 60.76 , AVNA = 
71.25, NLL = 3.036 
(Results from validation leaderboard: F1 = 65.099, EM = 61.553, test leaderboard: Fl = 

64.186, EM = 60.524) 

As the figure shows, both Fl and EM scores have some increase after adding character 
embedding. Further, the AvVNA scores also gain improvement. Regarding the NLL loss, 
we can see that they both went into plateau after 2M. With character embedding, the 
model becomes more representative for words, especially for the unknown words, and has 
improvements in the Fl and EM scores. 

Figure 3: Comparison of different models 
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¢ Similarity score based self attention model - F1 scores = 63.41, EM = 59.89, AVNA = 
70.44, NLL = 3.235 
(Results from validation leaderboard: F1 = 64.153, EM = 60.948, test leaderboard: Fl = 

62.652, EM = 58.850) 

¢ Multiplicative self attention model - F1 scores = 62.91, EM = 59.54, AVNA = 69.25, NLL 
= 3.195 
(Results from validation leaderboard: F1 = 63.087, EM = 59.452, test leaderboard: Fl =



63.053, EM = 59.256) 

As the figure shows, adding Context2Context attention to BiDAF model with character 
embedding can not improve the Fl and EM scores. And the self attention based on modified 
similarity score has slightly better Fl and EM scores than multiplicative self attention. 

Our experiment results show that adding self attention will not necessarily improve the model 
performance. One of the possible reasons is that attending to additional context words may 
distract model’s attention and introduce some interference. The original BiDAF model has 
performed really well with Context2Query and Query2Context attention. Adding additional 
Context2Context may make the model unnecessarily complicated and can not generalize 
well on the validation and testing dataset. And there are more parameters in multiplicative 
attention (hiddenSize * hiddenSize) than similarity score based attention (3 * hiddenSize), so 

the performance slightly decreased with more parameters included and more complex model. 

5 Analysis 

Figure 4: Modified similarity score model paragraph comprehension 

Question: When did the South American French and Indian War end? 
Context: The war in North America officially ended with the signing of the Treaty of Paris on 10 February 1763, and war in the 
European theatre of the Seven Years’ War was settled by the Treaty of Hubertusburg on 15 February 1763. The British offered 
France the choice of surrendering either its continental North American possessions east of the Mississippi or the Caribbean 
islands of Guadeloupe and Martinique, which had been occupied by the British. France chose to cede the former, but was able to 
negotiate the retention of Saint Pierre and Miquelon, two small islands in the Gulf of St. Lawrence, along with fishing rights in the 
area. They viewed the economic value of the Caribbean islands’ sugar cane to be greater and easier to defend than the furs from 
the continent. The contemporaneous French philosopher Voltaire referred to Canada disparagingly as nothing more than a few 
acres of snow. The British, for their part, were happy to take New France, as defence of their North American colonies would no 
longer be an issue and also because they already had ample places from which to obtain sugar. Spain, which traded Florida to 
Britain to regain Cuba, also gained Louisiana, including New Orleans, from France in compensation for its losses. Great Britain and 
Spain also agreed that navigation on the Mississippi River was to be open to vessels of all nations. 
Answer: N/A 
Prediction: 10 February 1763 

¢ In this questions, the answer should be "N/A" while the baseline model wrongly predicts the 
only date in the question. This means that the baseline model doesn’t completely understand 
the given paragraph. On the other hand, with our modified similarity score attention model 
and self-attention model, we correctly predict the answer to "N/A". 

Figure 5: Quantity prediction 

© Question: Currently, how many votes out of the 352 total votes are needed for a majority? 
© Context: The second main legislative body is the Council, which is composed of different ministers of the member states. The 

heads of government of member states also convene a "European Council" (a distinct body) that the TEU article 15 defines as 
providing the ‘necessary impetus for its development and shall define the general political directions and priorities’. It meets each 
six months and its President (currently former Poland Prime Minister Donald Tusk) is meant to ‘drive forward its work’, but it does 
Not itself ‘legislative functions’. The Council does this: in effect this is the governments of the member states, but there will be a 
different minister at each meeting, depending on the topic discussed (e.g. for environmental issues, the member states’ 
environment ministers attend and vote; for foreign affairs, the foreign ministers, etc.). The minister must have the authority to 
represent and bin the member states in decisions. When voting takes place it is weighted inversely to member state size, so 
smaller member states are not dominated by larger member states. In total there are 352 votes, but for most acts there must be a 
qualified majority vote, if not consensus. TEU article 16(4) and TFEU article 238(3) define this to mean at least 55 per cent of the 
Council members (not votes) representing 65 per cent of the population of the EU: currently this means around 74 per cent, or 260 
of the 352 votes. This is critical during the legislative process. 

e Answer: 260 
© Prediction: 260 

¢ In this question, both baseline model and character embedding model correctly answer this 
questions, but the model with modified similarity scores predicts the answer of "352" instead 
of "260". This means that when it comes to answering quantity questions, the first two 
models have better performance.



Figure 6: Self-attention comprehension prediction 

Question: What percentage of electrical power in the United States is made by generators? 
Context: The final major evolution of the steam engine design was the use of steam turbines starting in the late part of the 19th 

century. Steam turbines are generally more efficient than reciprocating piston type steam engines (for outputs above several 
hundred horsepower), have fewer moving parts, and provide rotary power directly instead of through a connecting rod system or 

similar means. Steam turbines virtually replaced reciprocating engines in electricity generating stations early in the 20th century, 
where their efficiency, higher speed appropriate to generator service, and smooth rotation were advantages. Today most electric 

power is provided by steam turbines. In the United States 90% of the electric power is produced in this way using a variety of heat 

sources. Steam turbines were extensively applied for propulsion of large ships throughout most of the 20th century. 
Answer: N/A 

Prediction: 90% 

¢ In this question, the character embedding model wrongly predict the answer to be "90%", 
which is irrelevant to the question. However, the self-attention model predicts the answer 
correctly to "N/A. This means that it can understand the context of this question while the 
character embedding model cannot. 

6 Conclusion 

In this project, we have demonstrated the effectiveness of character embedding. According to 
our experiment results, adding Context2Context self attention mechanism can not improve the 
performance of the BiDAF model. The BiDAF model with character embedding performs well with 
its Context2Query attention and Query2context attention. Adding self attention to this model will 
include additional interference when the context words attend not only to the query words, but the 
context words itself, which slightly reduced the model performance. For the future work, we can add 
additive attention to the BiDAF model to see how it compares to the two attention implementations 
we use. In addition, there are plenty of modern techniques, including Transformer and Reformer, can 
be further explored to find the best performing model on SQuAD challenge. 
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