
Character Embedding and Self Attention Mechanism

with SQuAD

Stanford CS224N {Default} Project

Name Wei-Hsu Chao Name Tsun-Han Huang
Department of Electrical Engineering Department of Electrical Engineering

Stanford University Stanford University
weihsu29@stanford.edu tsunhan@stanford.edu

Abstract

The Stanford SQuAD challenge is a reading comprehension contest, which requires
us to train a model which can understand the provided contexts and predict the
answer correctly. The Stanford SQUAD dataset provides a thorough testing for our
model. In this paper, we have explored various ways to achieve better performance
to answer the questions from the SQuAD dataset, including BiDAF with character
embedding, similarity score based attention layer and self attention mechanism.
Our best model achieved the F1 scores = 64.186 and EM = 60.524 on the test set.

1 Introduction

Question and Answering is an important topic in Natural Language Processing field. And recently,
we care more about reading comprehension style tasks, especially for machine to locate at a specific
paragraph of the context when answering the questions (query). Stanford SQUAD challenge provided
abundant resources and related data for research groups. In this project, we inspect the implementation
of BiDAF paper[1]. We first explore what the impacts of character embedding on the model
performance. BiDAF model already has bidirectional Context2Query and Query2Context attention
mechanism in their implementation. So, we try to add additional self-attention mechanism to the
BiDAF model to see if self-attention can help improve the BiDAF model performance or not, and
then discuss the training and testing results in our experiments.

2 Related work

In this project, we explored various implementations for the SQUAD challenges. Here are what we
have studied and explored:

¢ Character-level Embeddings[1]:
The first step we do is to further improve the baseline model. In addition to the word-level
embedding, we add additional character-level embedding within the embedding layer to
make our model back to the original BiDAF model[1]. This enables the model to process
the words in the character level, so that we can better represent the unknown words.

¢ Similarity Score Based Attention Layer[1]:

The paper proposed the way to calculate the similarity score of two vectors first, then
use the similarity scores to calculate the attention vectors. Besides Context2Query
and Query2Context attention in the BiDAF model, this paper inspires us to implement
an additional self-attention mechanism by using the similarity scores between context words.

¢ Context2Context Self Attention[4]:

This paper proposed to use self-matching (self-attention) mechanism in the SQUAD Chal-

Stanford CS224N Natural Language Processing with Deep Learning

lenge and they also reached the best leaderboard score at that time. They used additive
attention mechanism, and we choose to use multiplicative attention and add it to BiDAF

model to see how it compares to the results of obtaining self-attention vectors from similarity
scores.

Based on the papers and the baseline model, we added additional character embedding, and we added
self-attention mechanism onto the BiDAF model with two different self-attention implementations.
Then we discuss the experiment results and analyze the impacts of self attention on BiDAF model’s
performance.

3 Approach

Figure 1: Model Architecture

BiDAF Output Layer

Forward

Forward

RNN Encoder

Forward

ints + Word Embeding

¢ Main Approach

1. Character Embedding

We added a character embedding back into the original BiDAF without Character
Embedding baseline model. We loaded the provided character embedding vectors file, and
let the model keep updating the character embeddings during the training process. The
dimension of the provided character embedding vectors is 64. And we used feed-forward
neural network to projected the vectors into shorter vectors with dimension 8. Then we
applied Convolution Neural Network (CNN) with kernel size (8, 5) on the 2-D vectors
with (height, width) = (8, maxLengthOfCharsInAWord), so it could generate a 1-D vector
with length maxLengthOfCharsInAWord. And we perform 1-D max pooling on it. After
applying CNN and max pooling, the character embeddings can be concatenated with the
word embedding and fed into LSTM encoders. And the remaining model structure is the
same as the baseline model.

2. Self Attention Based on Modified Similarity Scores

In the original BiDAF model[1], it has Bidirectional Attention Mechanism after

Word Embed Layer and and Contextual Embed Layer, which is Context2Query Attention
and Query2Context Attention. The BiDAF paper[1] proposed a way to calculate the

similarity score between a context vector and a query vector, each vector representing a
context word or a query word. So, they would generate a similarity matrix with number of
rows equaling to number of query words and number of columns equaling to number of
context words. Using softmax on each row can get the attention scores of context words

when we look at a query word. Using softmax on each column can get the attention scores
of query words when we look at a context word.

In our approach, in addition to Context2Query and Query2Context, we also added
additional Self Attention Mechanism, Context2Context Attention. We generated another
similarity matrix with number of rows and number of columns both equaling to number of
context words, basing on the modified similarity score calculating function in the BiDAF
implementation we referenced[2]. So, taking softmax on each column can get the attention
scores of context words. We would like to experiment whether adding Context2Context
attention into the original BiDAF model can improve the model performance or not.

3. Self Attention Based on Multiplicative Attention

In addition to self attention based on similarity scores, we also experimented on
multiplicative attention: e,; = c} We;, which is revised from the additive attention

ei = v' tanh(W, c; + Wee;) used in paper [4]. We choose to implement multiplicative

attention because it is more trainable than additive attention with the time and GPU
memory limits of this project. We added multiplicative Context2Context attention to BiDAF
model[1] to see how multiplicative self attention compares to modified similarity scores
based self attention mentioned in Main Approach 2.

¢ Baseline Model

The baseline model is provided by Stanford CS224N in the default project starter
code. It is revised from the BiDAF paper[1]. And the original BiDAF paper[1] described the
model details. The BiDAF model includes character embeddings to be more representative
about unknown tokens. And the baseline model removed the character embedding part to
make the model training process more memory and time efficient.

¢ Implementation

We provided the Github Links to the baseline starter code[3] and the BiDAF model

implementation[2] we have referred to and revised from.

e Add Up from Our Team

Since the reference implementation[2] used character embedding with dimension
8, so we added a feed-forward neural network in our model to project the provided
64-dimension character embeddings into dimension 8.

We also added Context2Context Attention based on the modified similarity score
calculating method in the reference implementation[2] to experiment on the effects of
adding self attention mechanism into the original BiDAF model[1].

Finally, we added multiplicative Context2Context attention to the BiDAF model[1]
to compare it with similarity-score-based Context2Context attention.

4 Experiments

¢ Data: The dataset we use are mainly from the official SQUAD 2.0 dataset with modifications
by CS224n staff for course purpose. The details are as follow,

- Train (129,941 examples): All taken from the official SQUAD 2.0 training set.

- Dev (6078 examples): half of the official dev set, randomly selected.
- Test (5915 examples): The remaining examples from the official dev set, plus hand-labeled
examples

¢ Evaluation method: There are two evaluation metrics we use for our models.

- F1 Scores:
Fl= 2 x precision x recall

(precision + recall)

- EM (Exact Match) Scores: EM is a binary measure (i.e. true/false) of whether the system
output matches the ground truth answer exactly.

¢ Experimental details: We have trained 4 different models so far, including baseline model,
BiDAF model with character embedding, attention layer with modified similarity score
model and self-attention model. Here are the hyperparameters we used:

— Learning rate = 0.5

— Weight decay = L2 weight decay

epochs = 30

dropout prob = 0.2

optimizer = Adadelta

Training time:

— Baseline model: 18 hours

— character embedding model: 31 hours

— Attention layer with modified similarity scores: 30 hours

— Self-attention: 30 hours

¢ Results:

Figure 2: Comparison of baseline and character embedding model

FI EM
tag: dev/F1 tag: dev/EM

66
60

62

56
58

54 Be

50 | 48

O 500k 1M 1.5M 2M 2.5M 3M 3.5M O 500k 1M 1.5M 2M 2.5M 3M 3.5M

(a) Fl (b) EM

AvNA NLL
tag: dev/AvNA tag: dev/NLL

4.6
72

68 4.2

64 3.8

60 3.4

56 3

52 26

O 500k 1M 15M 2M 25M 3M 3.5M © 500k 1M 1.5M 2M 2.5M 3M 3.5M

(c) AVNA (d) NLL

orange line: baseline model

red line: character embedding model

¢ Baseline model - F1 scores = 60.86, EM = 57.40, AVNA = 67.69, NLL = 3.107

(Results from validation leaderboard: Fl = 61.17, EM = 57.70.)

¢ BiDAF with character embedding model - F1 scores = 64.40, EM = 60.76 , AVNA =
71.25, NLL = 3.036
(Results from validation leaderboard: F1 = 65.099, EM = 61.553, test leaderboard: Fl =

64.186, EM = 60.524)

As the figure shows, both Fl and EM scores have some increase after adding character
embedding. Further, the AvVNA scores also gain improvement. Regarding the NLL loss,
we can see that they both went into plateau after 2M. With character embedding, the
model becomes more representative for words, especially for the unknown words, and has
improvements in the Fl and EM scores.

Figure 3: Comparison of different models

FI EM
tag: dev/F1 tag: dev/EM

66 |

60 |

62

56 |
58

54 52

50 48 |

O 500k 1M 1.5M 2M 2.5M 3M 3.5M O 600k 1M 1.5M 2M 2.5M 3M _ 3.5M

(a) Fl (b) EM

NLL
AvNA | tag: dev/NLL
tag: dev/AVNA 1

72 46

68
4.2

6A | 3.8

60 3.4

56 3

52 j 2.6

QO 500k 1M 1.5M 2M 2.5M 3M 3.5M O 500k 1M 1.5M 2M 2.5M 3M 3.5M

(c) AVNA (d) NLL

orange line: baseline model
red line: character embedding model
blue line: similarity score based self attention model
pink line: multiplicative self attention model

¢ Similarity score based self attention model - F1 scores = 63.41, EM = 59.89, AVNA =
70.44, NLL = 3.235
(Results from validation leaderboard: F1 = 64.153, EM = 60.948, test leaderboard: Fl =

62.652, EM = 58.850)

¢ Multiplicative self attention model - F1 scores = 62.91, EM = 59.54, AVNA = 69.25, NLL
= 3.195
(Results from validation leaderboard: F1 = 63.087, EM = 59.452, test leaderboard: Fl =

63.053, EM = 59.256)

As the figure shows, adding Context2Context attention to BiDAF model with character
embedding can not improve the Fl and EM scores. And the self attention based on modified
similarity score has slightly better Fl and EM scores than multiplicative self attention.

Our experiment results show that adding self attention will not necessarily improve the model
performance. One of the possible reasons is that attending to additional context words may
distract model’s attention and introduce some interference. The original BiDAF model has
performed really well with Context2Query and Query2Context attention. Adding additional
Context2Context may make the model unnecessarily complicated and can not generalize
well on the validation and testing dataset. And there are more parameters in multiplicative
attention (hiddenSize * hiddenSize) than similarity score based attention (3 * hiddenSize), so

the performance slightly decreased with more parameters included and more complex model.

5 Analysis

Figure 4: Modified similarity score model paragraph comprehension

Question: When did the South American French and Indian War end?
Context: The war in North America officially ended with the signing of the Treaty of Paris on 10 February 1763, and war in the
European theatre of the Seven Years’ War was settled by the Treaty of Hubertusburg on 15 February 1763. The British offered
France the choice of surrendering either its continental North American possessions east of the Mississippi or the Caribbean
islands of Guadeloupe and Martinique, which had been occupied by the British. France chose to cede the former, but was able to
negotiate the retention of Saint Pierre and Miquelon, two small islands in the Gulf of St. Lawrence, along with fishing rights in the
area. They viewed the economic value of the Caribbean islands’ sugar cane to be greater and easier to defend than the furs from
the continent. The contemporaneous French philosopher Voltaire referred to Canada disparagingly as nothing more than a few
acres of snow. The British, for their part, were happy to take New France, as defence of their North American colonies would no
longer be an issue and also because they already had ample places from which to obtain sugar. Spain, which traded Florida to
Britain to regain Cuba, also gained Louisiana, including New Orleans, from France in compensation for its losses. Great Britain and
Spain also agreed that navigation on the Mississippi River was to be open to vessels of all nations.
Answer: N/A
Prediction: 10 February 1763

¢ In this questions, the answer should be "N/A" while the baseline model wrongly predicts the
only date in the question. This means that the baseline model doesn’t completely understand
the given paragraph. On the other hand, with our modified similarity score attention model
and self-attention model, we correctly predict the answer to "N/A".

Figure 5: Quantity prediction

© Question: Currently, how many votes out of the 352 total votes are needed for a majority?
© Context: The second main legislative body is the Council, which is composed of different ministers of the member states. The

heads of government of member states also convene a "European Council" (a distinct body) that the TEU article 15 defines as
providing the ‘necessary impetus for its development and shall define the general political directions and priorities’. It meets each
six months and its President (currently former Poland Prime Minister Donald Tusk) is meant to ‘drive forward its work’, but it does
Not itself ‘legislative functions’. The Council does this: in effect this is the governments of the member states, but there will be a
different minister at each meeting, depending on the topic discussed (e.g. for environmental issues, the member states’
environment ministers attend and vote; for foreign affairs, the foreign ministers, etc.). The minister must have the authority to
represent and bin the member states in decisions. When voting takes place it is weighted inversely to member state size, so
smaller member states are not dominated by larger member states. In total there are 352 votes, but for most acts there must be a
qualified majority vote, if not consensus. TEU article 16(4) and TFEU article 238(3) define this to mean at least 55 per cent of the
Council members (not votes) representing 65 per cent of the population of the EU: currently this means around 74 per cent, or 260
of the 352 votes. This is critical during the legislative process.

e Answer: 260
© Prediction: 260

¢ In this question, both baseline model and character embedding model correctly answer this
questions, but the model with modified similarity scores predicts the answer of "352" instead
of "260". This means that when it comes to answering quantity questions, the first two
models have better performance.

Figure 6: Self-attention comprehension prediction

Question: What percentage of electrical power in the United States is made by generators?
Context: The final major evolution of the steam engine design was the use of steam turbines starting in the late part of the 19th

century. Steam turbines are generally more efficient than reciprocating piston type steam engines (for outputs above several
hundred horsepower), have fewer moving parts, and provide rotary power directly instead of through a connecting rod system or

similar means. Steam turbines virtually replaced reciprocating engines in electricity generating stations early in the 20th century,
where their efficiency, higher speed appropriate to generator service, and smooth rotation were advantages. Today most electric

power is provided by steam turbines. In the United States 90% of the electric power is produced in this way using a variety of heat

sources. Steam turbines were extensively applied for propulsion of large ships throughout most of the 20th century.
Answer: N/A

Prediction: 90%

¢ In this question, the character embedding model wrongly predict the answer to be "90%",
which is irrelevant to the question. However, the self-attention model predicts the answer
correctly to "N/A. This means that it can understand the context of this question while the
character embedding model cannot.

6 Conclusion

In this project, we have demonstrated the effectiveness of character embedding. According to
our experiment results, adding Context2Context self attention mechanism can not improve the
performance of the BiDAF model. The BiDAF model with character embedding performs well with
its Context2Query attention and Query2context attention. Adding self attention to this model will
include additional interference when the context words attend not only to the query words, but the
context words itself, which slightly reduced the model performance. For the future work, we can add
additive attention to the BiDAF model to see how it compares to the two attention implementations
we use. In addition, there are plenty of modern techniques, including Transformer and Reformer, can
be further explored to find the best performing model on SQuAD challenge.

References

[1] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention

flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[2] Github Links of BiDAF Implementation : https://github.com/GauthierDmn/question_answering

[3] Github Links of Baseline Starter Code : https://github.com/minggg/squad

[4] Natural Language Computing Group, Microsoft Research Asia. R-Net: Machine Reading
Comprehension with Self-Matching Networks. 2017

