
Domain Adaptive Adversarial Feature 
Disentanglement for Neural Question Answering* 

Stanford CS224N {Default Robust} Project 

Yichen Li, Wei Ren, Xuran Wang 
liyichen, weiren, xuranw@stanford.edu 

Abstract 

Learning-based Question Answering systems have achieved significant success 
with the help of large language models and pre-trained model weights. However, 
existing approaches assume that data is drawn i.i.d from the same distribution, 
which violate the more realistic scenario that test-time texts and questions are 
under different distributions. Deep networks have been used to learn transferable 
representations for domain adaptation, which has shown success in various vision 
tasks. In this project paper, we study the problem of domain adaptive question 
answering leveraging various techniques, ranging from Data Augmentation, Layer 
Re-initialization and Domain Adversarial Alignment. Our evaluation results on 
the provided out-of-domain datasets show that our proposed method is able to 
bring 8.56% performance improvement, compared to the vanilla baseline using 
DistilBert without any of such domain adaptive designs. 

1 Introduction 

Modern scientific progress has already successfully built various Questions Answering (QA) systems 
which are fast, robust and accurate in retrieving information from domain passage and identifying 
correct text span as the corresponding answer, given a question. However, these QA systems assume 
training and testing data are sampled i.i.d from the same distribution, and thus have been trained to 
overfit to a specific dataset, which fail to generalize well to out-of-domain (OOD) dataset. Real world 
applications have revealed the need to build a single QA model applicable to various domains without 
further fine-tuning to out-of-domain datasets. A robust QA system that is capable of generalizing 
across different domains not only alleviates the problem of test-time distribution shifts but also is 
meaningful for low-resource language understanding. 

Recently, Domain Adaptation (DA) works are proposed aiming to transfer knowledge learned from 
one or more labeled source domains to a target domain. Liu et al. [1] tried to learn an interpretable 
representation using GANs [2, 3]. Ganin et al. [4] applied adversarial training [2] for the domain 

adaptation purpose. In this project, we aim to leverage existing transfer learning and domain 
adaptation techniques to study the problem of domain adaptive QA. 

In this paper, we aim to leverage the DistiIBERT model as a backbone to built a robust QA system 
that is capable of question-answering for OOD datasets. To this end, we developed a framework 
consisting of 1) Data Augmentaton, 2) Layer Re-initialization as well as 3) Domain-agnostic Feature 
Representation learning via an Wasserstein-stabilized adversarial training framework. Our project 
specifically focuses on the QA task, where our model is given a paragraph, and a question about 
that paragraph, as input. Then our model will have to select a span of text (predict the start and 
end of the span) directly from the paragraph as an answer to the question correctly, if the question 
is answerable. Otherwise, the answer should be N/A. During training, our model is trained on 
several data-rich in-domain (ID) datasets and also with a few training examples from several smaller 
datasets of different distribution. Our learned model is able to transfer knowledge learned from the 
data-rich datasets to smaller/low-resource datasets. The contribution of our work can be summarized 
as follows: 
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¢ We proposed to use an adversarial domain alignment scheme on the DistilBERT backbone 
with last layer reinitialization to firstly train on both the data-rich ID QA datasets and data 
augmented OOD datasets, following a finetuning stage on data-augmented OOD datasets to 
tackle the task of domain-adaptive QA. 

¢ We conducted extensive experiments to demonstrate the effectiveness of our method. 

¢ We analyzed each of our proposed design choices through thorough ablation experiments. 

2 Related Work 

Our proposed methods are related to three different areas of work, 1) Data Augmentation, 2) Layer 
Re-initialization and Learning Rate Warm-up, and 3) Domain Adversarial Alignment. 

Data Augmentation. Automatic data augmentation is a technique that has already been widely used 
in the field of computer vision. However, due to the huge differences in various language processing 
tasks, it can be very challenging to come up with universal augmentation rules that work for general 
data. One popular data augmentation technique is to use back translation, where new data is generated 
by translating sentences firstly into some other language and then back into the original language 
[5]. Other valid techniques include using data noising as smoothing [6], and replacing words with 
synonyms [7, 8, 9]. However, specifically for the QA task, most of these methods can be expensive to 
implement. For example, it’s challenging to maintain or define the correct answer after applying back 
translation, which may add unexpected bias and inaccuracy into the newly generated data. 

Layer Re-initialization & Learning Rate Warm-up. Re-initialization of pre-trained layers and 
learning rate warm-up are two ways to improve the performance of fine-tuning so as to increase the 
robustness of the model. Firstly, researchers have found that the initialization of network parameters 
has significant effect on the training or fine-tuning of deep neural networks [10, 11, 12]. Tamkin et 
al [13] investigated the weight re-initialization for layers which provides dominant contribution for 
transferability. Also as Zhang et. al [11] suggested, simple re-initialization of top pre-trained layers 
of BERT could boost the validation performance of fine-tuning process and enable the model to 
generalize better for different NLP tasks without focusing too much on the pre-trained task. Learning 
rate warm-up, on the other hand, helps overcome the primacy effect from early training examples 
so as to improve the convergence speed and generalization [14, 15]. It enables the model weights 
to be trained with equal emphasis on each training batch during the initial stage of training and 
that turns out to boost the model robustness dramatically. Both methods are general approaches for 
improving the robustness of deep neural networks, so we applied them on the DistilBERT baseline 
model seeking for performance enhancement. 

Adversarial Alignment. Domain adaptation works are proposed aiming to transfer knowledge 
learned from one or more labeled source domains to a target domain. Ganin et al. [4] applied 
adversarial training [2] for the domain adaptation purpose. The method of domain adversarial 
alignment has also been widely used by other NLP tasks, such as text classification [16, 17], sentiment 
analysis [18], and relation extraction [19] for its generic mechanism of explicitly dealing with domain 
shift on a feature level. Chen et al. [18] used it for cross-lingual sentiment classification, in which 

the adversarial component has a classifier that tries to classify the language of an input sentence. Xu 
et al. [20] has extended the training mechanism of DANN [4] to conduct relation extraction. Li et 

al. [21] used domain adversarial alignment to conduct language identification in the scenario that 
test time languages could have domain gap to the languages used during training. For the task of 
question answering, Lee et. al [22] built a QA system that can generalize well to various domains 
with the technique of adversarial training and is applicable to any QA model. Similar to to the method 
proposed in [22], we adopted the adversarial training scheme to DistiLBERT for QA task in our 
project with various performance enhancing designs. 

3 Experiments Overview 

Dataset. Six datasets, including three large ID reading comprehension datasets (Natural Questions, 
NewsQA and SQuAD) each with 50000 training examples and three small OOD datasets (Rela- 

tionExtraction [23], DuoRC [24], RACE [25]) each with only 127 training examples, are used as the 

fine-tuning datasets. Model parameters will be tuned via OOD validation sets. The best performance 
of our QA system on OOD test sets will be reported.



Table 1: An Example of Augmented Context Paragraph by EDA 
  

Operation | Definition | Context Paragraph 
  
None No operation is performed. The Seattle Metropolitans were a professional ice 

hockey team based in Seattle, Washington which 

played in the Pacific Coast Hockey Association from 
1915 to 1924. 

  
SR Randomly choose words from the sentence | the seattle metropolitans were a professional frost- 

that are not stop words or in the answer s_| ing hockey team based in seattle washington which 
pan. Replace each of these words with one | engage in the pacific seacoast hockey connexion 

of its synonyms chosen at random. from 1915 to 1924 
  
RI Find a random synonym of a random word | the seattle metropolitans were a professional minia- 

in the sentence that is not a stop word. In- | ture ice hockey team based in seattle washington 

sert that synonym into a random position | which played in the squad pacific coast hockey as- 

  

  

in the sentence (not in the answer span). sociation ocean from 1915 slideway to 1924 

RS Randomly choose two words in the sen- | the pacific metropolitans team a coast professional 
tence (not in the answer span) and swap | ice hockey were based in seattle washington which 

their positions. played in the seattle hockey association from 1915 
to 1924 

RD Randomly remove words in the sentence | the seattle metropolitans were a professional ice 

(not in the answer span). hockey in seattle washington played in coast from 
1915 to 1924     

  

Evaluation Metric. Exact Match (EM) score and F1 score will be combined for evaluation purpose. 
These two scores will be averaged across the entire evaluation datasets to get the final reported scores. 

Baseline. The baseline QA system finetunes the pre-trained Disti[BERT on all ID training sets and 
is evaluated on OOD validation sets, achieving a F1 score of 47.32 and a EM of 32.98. 

4 Out-of-Domain Fine-tuning and Data Augmentation 

4.1 Method Description 

Recent findings suggested a simple set of universal data augmentation techniques can be surprisingly 
helpful in boosting model performance, especially for small datasets, on text classification tasks [26]. 
Here, we explored four easy data augmentation (EDA) techniques for our QA task, including synonym 
replacement(SR), random insertion(RI), random swap(RS), and random deletion(RD) (Table 1). 

For the context paragraph of a given QA sample in the train set, we firstly clean the paragraph by 
lowercasing every character and removing punctuations. Since long context paragraph have more 
words than short ones, to compensate, we vary the number of words changed, N, for SR, RI, RS 

and RD based on context paragraph length | with the formula NV = la, where a is a parameter that 
indicates the percent of words changed in a paragraph. Each augmentation operation has its own 
parameter a, symbolizing its strength. Furthermore, for every original context paragraph, we generate 
Naug augmented paragraphs, where each one is obtained by randomly choosing and performing one 
of the augmentation operations. Particularly, all changes made in a paragraph are performed on parts 
that do not contain the answer span, so that it’s guaranteed the original answer still exists in newly 
augmented paragraphs. Note our EDA only applies to context paragraphs, while the question and 
answer per sample remain unmodified. (Our implementation of EDA referenced the official code 
release from [26], but we have adapted it extensively to fit the need of QA task.) 

4.2 Experimental Results 

The following experiments are performed under a batch size of 16 and a learning rate of 3e-5. All 
training and finetuning processes take two epochs and are evaluated on OOD validation sets every 10 
batches, during which the best model weights are recorded. 

Experiment 1: OOD Fine-tuning. On top of the baseline model, we have continued to fine-tune 
it with OOD train sets, and obtained a higher Fl score of 49.43 with 4.46% performance boost. 
It has validated our hypothesis that even small OOD datasets can still be helpful in improving 
model performance, which makes sense as our model learns what’s previously beyond-reach OOD 
knowledge for the first time.
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Figure 1: Validation results for ablation study by varying operational strength a (nay, = 2). The 
optimal parameter for each operation is agr = 0.3,aR1 = ars = 0.05,aRp = 0.2. 

Table 2: Validation Results for Augmented OOD Fine-tuning on Baseline(aqi; = 0.1) 
  

  

  

Methods | Fl EM Performance Gain (F1) 

Baseline 47.32 32.98 0 

Baseline + OOD Finetune 49.43 36.39 4.46% 

Baseline + OOD Finetune + EDA(naug = 1, Watt = 0.1) 49.62 35.08 4.87% 
Baseline + OOD Finetune + EDA(naug = 2, Mau = 0.1) 49.74 35.86 5.11% 

Baseline + OOD Finetune + EDA(naug = 4, Gait = 0.1) 48.69 35.34 2.90% 
Baseline + OOD Finetune + EDA(naug = 8, Gai = 0.1) 49.10 35.08 3.76% 

Baseline + OOD Finetune + EDA(naug = 16, Watt = 0.1) | 49.27 35.08 4.12% 
  

Experiment 2: Data augmentation on OOD Train Sets. EDA is known to be helpful especially 
for small datasets [26]. To study the influence of parameter n, the number of generated augmented 
context paragraphs per original paragraph, we fine-tuned our baseline model on EDA-enhanced OOD 
train sets, under different parameter Naug = {1,2,4,8, 16}. Here, all operations share same strength, 

asR = ARI = ARs = Arp = 0.1. Table 2 summarized evaluation results on OOD validation sets. 

Here, we observed EDA achieved marginal performance gain for n below 2. However, as n gets larger, 
model performance suffers compared to no EDA case, which is likely due to overfitting of OOD data. 

To further study and understand EDA’s boosting effects in the QA task, we directly finetuned 
DistiIBERT on EDA-enhanced OOD train sets, and evaluated different settings on OOD validation 

sets (Appendix 9.1). We noticed that EDA has led to huge performance gain when applied to 
OOD datasets (16.88% boost when n=16), after getting rid of the influence of large ID datasets on 
DistilBERT. We can infer that the ID train sets can suppress EDA’s boosting efficiency, as their sizes 
are overwhelming compared to augmented OOD train sets, therefore making EDA operation less 
helpful in our previous experiment. These results can help elucidate that EDA is indeed helpful in 
raising model performance given limited data, and works the best when applied to small datasets. 

Experiment 3: Ablation Study. So far, we have seen very encouraging results. In this section, 
we performed the ablation study to explore effects of each augmentation operation. Specifically, 
for all four operations, we fine-tuned our baseline model on single-operation-augmented OOD train 
sets while varying the augmentation parameter a = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}, as shown in Fig. 
1 (Full results are provided in Appendix 9.2). Our results suggest all four operations contribute to 
performance gain. It turns out SR contributes to performance gain the most (7.99% gain compared 
to baseline) when agr=0.3, but high SR can hurt performance, likely because replacing too many 
words in paragraph changed the identity of the paragraph. For RI and RS, they boost performance at 
small a but work worse after a > 0.05, as performing too many swaps/insertions is equivalent to 
shuffling the entire order of the sentence. For RD, performance gains are more stable for different a 
values, possibly because the relative order of words is maintained in this operation. 

Experiment 4: Optimal parameters. The natural next step is to determine what parameters work 
best collectively on our OOD sets. From our experience, we finetuned baseline on EDA-enhanced 
OOD train sets based on the optimal parameters (agr = 0.3,aR7 = ars = 0.05,aRD = 0.2) from



Table 3: Validation Results for Augmented OOD Fine-tuning with Optimal Parameters 
  

  

  

Methods | Fl EM Performance Gain (F1) 

Baseline 47.32 32.98 0 

Baseline + OOD Finetune 49.43 36.39 4.46% 

Baseline + OOD Finetune + EDA(naug = 2) 49.53 35.08 4.67% 
Baseline + OOD Finetune + EDA(naug = 4) 49.70 35.67 5.03% 

Baseline + OOD Finetune + EDA(naug = 8) 50.30 36.39 6.30% 
Baseline + OOD Finetune + EDA(naug = 16) | 48.88 33.51 3.30% 

Baseline + OOD Finetune + EDA(naug = 32) | 49.65 35.86 4.92% 
  

ablation study, while varying Ngug, as Shown in Table 3. Though all results look promising, none of 
them surpass our current best record (F1: 51.10 by applying SR alone), as parameters that work best 
individually doesn’t guarantee they can work best jointly. The randomness in EDA makes parameter 
hunting more challenging. 

4.3 Analysis 

Compared to other augmentation techniques, our simple data augmentation strategies are easy to 
implement while achieving high performance gain. They can be easily adapted and applied to broad 
text classification tasks, apart from the QA task. Besides, EDA demonstrates particularly strong 
results for small datasets. It’s believed the performance gain comes from the fact that new vocabulary 
is introduced to the model through SR and RI, allowing the model to generalize to words in OOD test 
sets that are not in the training sets. Moreover, generating augmented data similar to original data 
introduces some degree of variation and noise, which may potentially help prevent overfitting. 

However, EDA has its limitations too. For large datasets and for models that have already been 
pre-trained or fine-tuned on massive datasets, EDA probably doesn’t help much. Besides, EDA 
exhibits great randomness, given changes in original data are randomly chosen. Under the same 
EDA setting, the variation in data quality can lead to fluctuation of model performance. Therefore, 
it’s hard to replicate evaluation results even under the same model, same training data and same 
augmentation parameters, making EDA-driven performance gain more random. Such randomness is 
also disadvantageous to locate optimal augmentation parameters, such that the performance boost 
from EDA gets less controllable. 

5 Re-initialization Pre-trained Layers With Warm-up 

5.1 Method Description 

Previously model fine-tuning is commonly built upon pre-trained weights that transfers pre-training 
information for better performance. However, researchers have found that re-initializing the pre- 
trained weights of certain layers could boost fine-tuning optimization process [11]. They reinitialized 
on both the pooler layers and the top L BERT Transformer blocks, as shown in Fig. 3 in Appendix 
9.4. and observed performance enhancement for fine-tuning on either prediction accuracy or the 
mean/variance of training loss. The high-level intuition behind is that usually the higher pre-trained 
layers are more specified on the pre-training task and the lower pre-trained weights correspond 
to more general features. Considering the similarity between DistiIBERT and BERT, we tried to 
reinitialize a proper number of transformer blocks (up to 2) and checked whether using fewer top 
pre-trained weights could help the model generalize well to different tasks. 

Besides re-initialization, we also applied a learning rate warm-up together with re-initialization to see 
whether there could be a collaborative boost. Learning rate warm-up is used to reduce the dominant 
effect of early training examples if the dataset is highly differentiated somehow [15]. For example, 
the model might possibly skew toward certain features or even toward off-topic features due to the 
uncertainty of data shuffling. By gradually increasing the learning rate during the early training 
process, the model could generalize better without early over-fitting and converge faster overall. 

5.2 Experimental Results 

Experiment 1: Revisiting ID Fine-tuning. We firstly fine-tuned the initial DistiIBERT model on 
the ID datasets with re-initialization technique in a default setting of 3 epochs. The validation results 
on OOD datasets are shown in Table 4. We could observe that with right amount of re-initialization



Table 4: Validation Results for ID Fine-tuning with New Techniques 
  

  

  

  

Methods | Fl EM Performance Gain (F1) 

Baseline | 47.32 32.98 0 

Re-initialization with L = 1 47.51 31.94 0.40% 

Re-initialization with L = 1 & Learning rate warm-up | 48.48 31.41 2.45% 

Re-initialization with L = 2 46.56 31.94 -1.60% 

Re-initialization with L = 2 & Learning rate warm-up | 47.57 32.20 0.53% 
  

(L = 1), there would be an improvement on F1 score compared to the initial baseline. This implies 
that proper amount of re-initialization could enable the fine-tuning to go beyond the restriction from 
the pre-trained tasks and generalize well to new tasks. 

We also applied a learning rate warm-up for around one epoch (i.e. a warm-up ratio of 0.3 for a 
total epochs of 3) together with re-initialization and it’s interesting to see a significant performance 
enhancement on F1 score. It implies the model doesn’t need to step back to correct the potential bias 
learned in the early steps, so it could converge faster. Plus, the learning rate warm-up helps the model 
to treat the importance of each batch examples equally at the first glance so as to generalize better. 

Experiment 2: Reinit-EDA OOD Fine-tuning. Previouly we have achieved a F1 performance 
gain of 7.99% based on the OOD fine-tuning with EDA. Since layer re-initialization could help the 
model to be more robust as shown in the previous experiment, we tried OOD fine-tuning combining 
EDA and re-initialization (Reinit-EDA OOD Fine-tuning) with parameters that achieve the best EDA 
performance. The validation results are shown in Table 9 in Appendix. Unfortunately there is no 
performance improvement with the combination of the two techniques. It’s probably due to the fact 
that OOD datasets are too few to train the huge amount of parameters which are reset due to layer 
re-initialization, even for just one transformer block re-initialization. 

6 Domain Adversarial Alignment 

6.1 Method Description 

Another method we adopted to tackle the domain adaptive QA task is through Adversarial Domain 
Alignment proposed by [27]. The high level intuition of such a method is through the adversarial 
game between a feature generator and a domain discriminator, where the feature generator aims to 
generate features that can confuse the discriminator and the discriminator aims to tell which domain 
a feature belongs to. Under such a minimax game, feature generator would be able to generate 
domain-invariant features. 

For the QA Setting, we design a network leveraging DistilBERT [28] as a feature generator, G, and a 
multi layer perceptron (MLP) D as a domain discriminator. Specifically, we use the weights from 
the last hidden layer of the DistilBERT model, h!**, through a single layer perceptron (SLP), to 
generate a feature representation f, where fa, = MLP(h'**'(xg,)) = G(aqa,) and d; denotes the 
domain label. The domain discriminator D takes feature fz, as an input to predict which domain fz, 
belongs to, by outputing a k-dimensional one-hot vector. 

Our training mechanism involves a two step process. First, we optimize the feature generator with 
the bi-lateral objective of optimizing the task objective of QA accuracy as well as the DistiIBERT- 
based feature generator objective of producing domain-indiscriminatable feature by minimizing the 
KL-divergence between different domain features. 

LKL(La4;Ldg,G) = G(xag) (log G(ra,) — Gra, )) ) 

where rq, , Za, Tepresents domain A and domain B respectively. The subsequent step is to optimize 
the domain discriminator to distinguish between the domain of the features. For this objective, we 
use cross entropy loss: 

Lee(Td4, Tip, G, D) = —Ex,, [log D(G(Xdq))] — Exa, [log(1 — D(Gi(xaa)))] (2) 

Wasserstein Stabilization. Wasserstein Stabilization [29] is commonly used with GAN based 
architectures. It minimizes a reasonable and efficient approximation of the Earth Mover’s distance in 
order to provide balance between the generator and discriminator.



a) Binary Adversarial Alignment b) Multi-Source Adversarial Alignment 

Binary ~-— K-way — 

    

    
    

i Answer — Sale Answer — 
Domain Span | pes ‘ Span | 

L Discriminator [ Classifier ee - Classifier _ 

Layer Reinitialization Layer Reinitialization 

DistilBert DistilBert 

Tn Domain Out of Domain — 
(augmented data) 

    
a ns — 

Domain 1 : “Domain 2 Domain K 
(augmented data) 

Figure 2: Model Architecture of our proposed approach. Section a) shows the model architecture for the Binary 

Adversarial Alignment case, where the domain discriminator is trying to distinguish between ID and OOD 

datasets based on the last layer of the hidden states of the DistiIBERT Model. Section b) shows the model 

architecture for the Multi-Source Adversarial Alignment case, where the domain discriminator is trying to 

distinguish between the k specific datasets based on the last layer of the hidden states of the DistiIBERT Model. 

Table 5: Adversarial Domain Alignment Experiment and Ablation Studies 
  

  

  

  

Methods | BDAFI BDAEM | MSDAFI MSDAEM 

baseline | 47.32 32.98 | 47.32 32.98 

Adversarial 48.40 33.51 48.34 33.64 

Adversarial + Aug 48.55 33.51 48.26 33.25 
Adversarial + Aug + MMD 46.64 32.46 46.03 31.94 

Adversarial + Aug + W-Reg 49.21 35.08 49.50 35.08 
Adversarial + Aug + W-Reg + Re-init 49.97 33.77 49.64 34.55 

Adversarial + Aug + W-Reg + Re-init + warmup 50.79 33.77 50.03 33.51 
Adversarial + Aug + W-Reg + Re-init + warmup + EDA 50.28 35.08 51.16 36.65 

Adversarial + Aug + W-Reg + EDA | 51.37 37.70 | 49.92 36.91 
  

6.2 Experimental Results 

Our proposed method is a combination of data augmentation techniques and Wasserstein-regularized 
Binary Domain Alignment with OOD finetuning. This section entails the 1) model architectures and 
training schemes adopted for the adversarial domain alignment experiment, 2) a detailed ablation 
study that provides empirical soundness of each specific design choices. (Our implementation of 
adversarial DistilBERT referenced the official code release from Lee et al. [22]). 

6.2.1 Model Architecture Details 

Binary Adversarial Domain Alignment (BDA). As shown in Fig. 2, our first setup treats the 
task as a single-source, single-target, close-domain adaptation setting, in which we treat all of the 
three source ID datasets as a single source domain and all the three OOD datasets as a different 
domain, the target domain, to be classified by the binary source-target domain discriminator. We 
conducted a hyper-parameter grid search with different learning rate and batch sizes, and observe that 
a batch size of 32, and learning rate of 5e-5 for DistiIBERT weights, and a learning rate of 5e-4 for 
MLP-discriminator works the best and yields 48.40 and 33.51 of Fl and EM scores respectively. We 
slightly increased the learning rate for the discriminator because the discriminator does not rely on 
pre-trained weights and would need a higher learning rate to converge to better results. 

Multi-Source Adversarial Alignment (MSDA). We also experimented with directly conducting 
six-way domain classification on both the ID and OOD datasets, because we think that all the ID and 
OOD datasets might also be subjected to different domain shift. We observe that this experimental 
setting is also able improve the performance on the OOD evaluation dataset to Fl as 48.34, EM to 
33.64, with the same aforementioned batch size and learning rate.



Table 6: Validation Results after Combining Multiple Strategies 
  

  

  

Methods | Fl EM Performance Gain (F1) 

Baseline | 47.32 32.98 0 

Re-initialization + Warm-up + EDA 49.93 33.25 5.52% 
B-Adversarial + Aug + W-Reg + EDA 51.37 37.70 8.56% 

MS-Adversarial + Aug + W-Reg + Re-init + Warmup + EDA | 51.16 36.65 8.11% 
  

6.2.2 Ablation Experiments 

We also conducted several ablation experiments to show the effectiveness of the specific design 
choices. We summarized our results in Table 5, where Adversarial means the adversarial technique, 

either Binary Adversarial Alignment (BDA) or Multi-Source Adversarial Alignment (MSDA), Aug 
refers Data Augmentation Technique described in Section 4 with agr = 0.3, MMD stands for 
maximum mean discripency loss as shown in eq. 3 in Appendix, W-Reg refers to Wasserstein 
regularization, described in Sec 6.1, EDA refers to the OOD fine-tuning scheme as described in 
section 4.2, Re-init means the layer re-initialization and learning rate warm-up technique described in 
section 5, with last layer re-initialization and warm-up ratio=0.3. 

We observe from the table that nearly all of the design choices boost the OOD question answering 
performance by some amount, except for MMD-loss. Specifically, Wasserstein-stabilization has 
historically shown success in various GAN-based works [29], and the same idea of preventing influx 
of large model weight can help stabilize training during the minimax game. Additionally, for the same 
aforementioned reasons, fine-tuning on OOD datasets can further improve the model’s performance. 

The idea of leveraging MMD loss for our task stems from vision domain adaptation literatures [30]. 
However, the loss does not work as expected when adopted for the QA task in NLP. We think that 
this is due to the fundamental difference between the task of QA and image or language classification, 
where there exists the notion of a class prior and that distributions of the same class should have 
minimum mean discrepancy. Nevertheless, for the task of QA, each question, context, answer, from 
each domain is different. Without such a prior, minimizing the mean discrepancy between different 
samples in a batch does not provide the same domain adaptation effect as in classification tasks. 

7 Multi-Strategy Combination 

Up to this point, we have thoroughly studied the mechanisms and potential limitations of EDA, re- 
initialization, and adversarial alignment. All of the above techniques have been proved to contribute to 
model performance on a varied scale. The last step is to leverage the advantages of all techniques we 
have explored so far to build a more robust QA system collectively. Concretely, we combined multiple 
strategies, by making modifications on training data (EDA), training process (Re-initialization) and 
model architecture (Adversarial Alignment), while applying parameters that may work best to our 
knowledge. Here, we report some of the top-performing model settings in Table 6, after successful 
integration of multiple techniques. To sum up, the best QA system (F1: 51.37 with 8.56% performance 
gain against baseline on OOD validation set) is achieved via applying Binary Domain Adversarial 
Alignment (B-Adversarial) with wasserstein-stablization, followed by fine-tuning on EDA-enhanced 
OOD train sets. Our QA system was eventually evaluated on OOD test set and achieved a F1 score of 
58.84, and EM of 41.10. 

8 Conclusions 

In summary, we proposed a DistilBERT-based method that can tackle the task of Domain Adaptive 
Question Answering. Specifically, we propose to use a wasserstein-stablized adversarial domain 
alignment scheme on the DistiIBERT backbone with last layer reinitialized, to train on both the 
data-rich ID QA datasets and data augmented OOD datasets, following a fine-tuning stage on data 
augmented OOD datasets. We have conducted extensive experiments to demonstrate the effectiveness 
of our proposed method in bringing significant performance boost for the task of domain-adaptive QA. 
We also conducted carefully-designed ablation studies to show the performance gain resulted from 
each of the proposed components. Our proposed model addresses the problem of domain-adaptive 
QA from various perspectives, including data, model architecture, and training scheme. In terms 
of future work, we can further explore more complex data augmentation techniques, such as back 
translation. We can also try few-shot learning, meta learning, and mixture-of-experts technique to 
build a even more robust QA system.
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Table 7: Validation Results for Augmented OOD Fine-tuning on DistiIBERT(aai; = 0.1) 
  

  

  

Methods | Fl EM Performance Gain (F1) 

DistiIBERT + OOD Finetune | 23.51 13.61 0 

DistiIBERT + OOD Finetune + EDA(naug = 4) 25.18 = 17.28 710% 
DistiIBERT + OOD Finetune + EDA(naug = 8) 25.12 16.49 6.85% 

DistiIBERT + OOD Finetune + EDA(naug = 16) | 27.48 17.80 16.88% 
  

Table 8: Validation Results for Ablation Study by Varying Operational Strength (naug = 2) 
  

  

  

  

  

    

Methods | Fl EM Performance Gain (F1) 

Baseline 47.32 32.98 0 
Baseline + OOD Finetune 49.43 36.39 4.46% 

Baseline + OOD Finetune + EDA(asr = 0.05) | 49.42 35.60 4.44% 

Baseline + OOD Finetune + EDA(asr = 0.1) 49.51 35.34 4.63% 

Baseline + OOD Finetune + EDA(asr = 0.2) 50.52 36.91 6.76% 
Baseline + OOD Finetune + EDA(asr = 0.3) 51.10 37.43 7.99% 

Baseline + OOD Finetune + EDA(asr = 0.4) 48.79 34.29 3.11% 

Baseline + OOD Finetune + EDA(asr = 0.5) 50.55 37.17 6.83% 

Baseline + OOD Finetune + EDA(@rzr = 0.05) | 50.76 36.13 7.27% 

Baseline + OOD Finetune + EDA(@Rz,z = 0.1) 49.68 35.08 4.99% 
Baseline + OOD Finetune + EDA(@Rz,; = 0.2) 49.39 35.08 4.37% 

Baseline + OOD Finetune + EDA(arr = 0.3) 50.01 36.39 5.87% 
Baseline + OOD Finetune + EDA(a@pz,z = 0.4) 48.55 34.82 2.60% 

Baseline + OOD Finetune + EDA(@R,z = 0.5) 48.97 36.65 3.49% 

Baseline + OOD Finetune + EDA(a@rs = 0.05) | 50.23 35.86 6.15% 

Baseline + OOD Finetune + EDA(args = 0.1) 49.09 35.60 3.74% 
Baseline + OOD Finetune + EDA(args = 0.2) 49.37 35.86 4.33% 

Baseline + OOD Finetune + EDA(ars = 0.3) 49.45 35.34 4.50% 
Baseline + OOD Finetune + EDA(args = 0.4) 49.36 36.13 4.31% 

Baseline + OOD Finetune + EDA(args = 0.5) 50.19 36.39 6.07% 

Baseline + OOD Finetune + EDA(arp = 0.05) | 48.66 34.03 2.83% 

Baseline + OOD Finetune + EDA(arp = 0.1) 49.51 34.03 4.63% 

Baseline + OOD Finetune + EDA(arzp = 0.2) 49.90 35.60 5.45% 
Baseline + OOD Finetune + EDA(arp = 0.3) 49.56 35.34 4.73% 

Baseline + OOD Finetune + EDA(arp = 0.4) 49.66 35.08 4.95% 

Baseline + OOD Finetune + EDA(arp = 0.5) 49.88 36.65 5.41% 
  

Table 9: Validation Results for Reinit-EDA OOD Fine-tuning 

Methods | Fl EM 

No re-initialization (Z = 0) + EDA | 51.10 37.43 

Re-initialization with L = 1+EDA | 48.66 31.94 

Re-initialization with L = 2+ EDA | 43.29 29.06 
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10 

MMD. We also considered maximum mean discrepancy loss that is commonly used in vision domain 
adaption literature [30]. Denote by H;, be the reproducing kernel Hilbert space (RKHS) endowed 
with a characteristic kernel k. The mean embedding of distribution p in Hx is a unique element ju;,(P) 
such that Ex. pf (x) = (f (x), ue (P))s, for all f © Hx. The MK-MMD 4d; (P,Q) between 
probability distributions P and Q is defined as the RKHS distance between the mean embeddings of 
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Figure 3: Re-initialization of last L layers for fine-tuning 

Appendix 

Augmented OOD Fine-tuning on DistiIBERT (Table 7) 

Ablation Study on EDA Operational Strength (Table 8) 

Reinitialization with EDA OOD Fine-tuning (Table 9) 

Re-initialization Scheme (Figure 3) 

Maximum Mean Discrepancy 

P and Q. The squared formulation of MMD is defined as 

di (P,Q) ||Ep [Ba (x*)] — Ea [Ba (x")]|\%,,- 
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