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Abstract 

A lot of research works show that modern Neural Networks learn brittle correlations 
between words or phrases which will affect the out-of-domain performance of QA 
System. One solution to prevent model from learning these corrections is to use 
data augmentation method to decrease the proportion of correlations from training 
data. In this project, we aim to evaluate several popular data augmentation methods 
and see how they can improve the out-of-domain performance of QA System. 
Beyond that, we also find generating even number of in-domain and out-of-domain 
training data could hardly help to improve the performance. Instead, we need to 
rebalance the distribution of in-domain data and out-of-domain data to force the 
model to focus on out-of-domain data without bringing significant effect to the 
in-domain QA performance. Finally, we also evaluate the performance of several 
different rebalance options and find we need to carefully choose the proportion 
value between in-domain data size and out-of-domain data size in order to optimize 
the performance of the out-of-domain QA system. 

1 Introduction 

A lot of research works show that generalizing QA system remains a pretty challenging task [1, 2], 
especially generalizing for a target domain without sufficient training data for that domain. There are 
multiple directions in the world to improve the performance of the Robust QA system. In this project, 
we explore how we can improve the performance using data augmentation techniques. Even though 
there are a lot of data augmentation tools existing now [3], adopting data augmentation to out-of- 
domain QA system is still a tough task. Some research works [4] even shows some back-translation 

augmentation yields no noticeable improvement to the Robust QA system. We think the negative 
results in those works are caused by not having a good data augmentation strategies, such as how 
to sampling in-domain and out-of-domain datasets and how to choose different data augmentation 
techniques to in-domain and out-of-domain datasets separately. We believe data augmentation has 
great potential in out-of-domain QA tasks as long as we develop a good strategy for data augmentation. 

In this project, we find rebalancing the distribution of in-domain datasets and out-of-domain datasets 
could significantly improve the performance of the Robust QA System. We sample the in-domain 
datasets and increase the out-of-domain dataset size by 100 times. What’s more, we also find we’d 

better apply augmentators which could generate more diverge data to the in-domain datasets and 
apply augmentators which produces similar data to out-of-domain datasets. All these techniques 
could boost the performance of the Robust QA system. In the validation leaderboard, our model 
ranks 17 at the end of the project due date. 

2 Related Work 

Considering one of the biggest challenges of Robust QA System is lacking sufficient training data 
of the target domain, there are a lot of work exploring how to use data augmentation techniques 
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to better leverage the available supervised data. In [4], authors augmented the in-domain datasets 
using back-translation techniques. They train an 8-layer seq2seq model and use German as the pivot 
language to do back-translation. For the augmented datasets, they use string matching to find the new 
answer span and for those that fail they employ the same heuristic described in [5] to get the new 
estimated answer. The experiments show that back-translation augmentation yields no noticeable 
improvement to the Robust QA system. During our investigation, we think the reason for the negative 
result might be the back-translation model trained by the authors might not be able to generate 
divergent datasets. Instead, the augmented datasets may look pretty similar to the original ones and 
they can not help the model to learn the unseen data. 

3 Approach 

3.1 Baselines 

The baseline of this project is DistiIBERT [6] model trained using the provided datasets. According 
to the instructions, the datasets are borrowed from [7]. In my experiment, the performance of the 
baseline model is EM: 33.25, Fl: 48.43. 

3.2 Approaches 

In this project, we aim to explore 4 data augmentaion methods and evaluate their effect to the 
performance of out-of-domain QA System. Let’s say we have a sentence: "I am very busy these 
days because the workload of NLP is pretty heavy.". We will show the augmented sentences using 
different augmentation methods as below: 

back-translation Augmenter is a method to apply data augmentation by translating 
the sentence into a pivot language and then translating back to the original language. In this 
project, we will use French as the pivot language. The augmented sentence is "I am very 
busy nowadays because the workload of the NLP is quite high." 

Synonym Augmenter is an augmentation method to substitute word with similar 
words according to WordNet/PPDB synonym. The augmented text is "I am rattling busy 
these clarence day because the workload of NLP is pretty heavy." 

Word Embedding(WordEmb) Augmenter is a method to apply data augmentation 
by using GloVe, word2vec or fasttext. The augmented text is "I am very busy these days 
because the workload of NLP is pretty heavy. would is ’ve and got’ " the ( to from ’t the 
has ." This method would probably introduce some meaningless words or phrases into the 
sentences. As we can see in the augmented sentence, the later part is meaningless. 

Spelling Augmenter is a method to apply data augmentation by substitue words 
according to the spelling mistake dictionary. The augmented sentence is: "’m Am very 
busy tese days because the workload of NLP is prety heavy." 

Beyond that, we also notice that the out-of-domain QA system performs worse using all the above 
data augmentation method. After investigation, we find the two culprits for it. First reason is these 
data augmentation methods don’t change the original sentence too much and the augmented sentences 
are still very similar to the original ones. Thus, using data augmentation can’t help the QA system to 
learn the unseen data. Second reason is the data size of in-domain datasets is much larger than the 
out-of-domain datasets. The model overfits to the in-domain datasets. In order to avoid overfit, we 

rebalance the distribution of the training set by generating much more new data for the out-of-domain 
datasets while sampling a small amount of the in-domain datasets. 

3.3. Implementation 

In this project, we will use the augmentation API provided in nlpaug [3]. However, the API has 
several limitations such as unable to process long sentences. Therefore, we need to preprocess 
the input sentences a little bit. For example, we need to split the context into single sentence list 
before back-translation augmentation. Also, we implement several util functions to help sampling the 
in-domain datasets and increase the size of out-of-domain datasets.



3.4 Original Work 

In this project, data augmentation is pretty straightforward. The most challenging part is how to 
tag the new answer in the augmented data. Considering we don’t have enough resources for both 
people and time, we decided to go with string matching method and just ignore the data that couldn’t 
be resolved using string matching. Beyond that, we also spent lots of efforts creating filter logic to 
identify the false positive data created by string match. For example, "Category" contains "Cat" but 
we don’t want to tag the start index of "Category" as the answer index. We create a bunch filter logic 
to avoid these noises. 

Another work needs to be highlighted is rebalancing datasets. In the first phase of this 
project, we find the QA system performs even worse by merging augmented datasets into the original 
or fine tune the pretrained model using the augmented datasets. After investigation and several 
experiments, we notice increasing the data size of augmented out-of-domain datasets and also 
decreasing size for in-domain datasets could significantly improve the performance of out-of-domain 
QA system. 

4 Experiments 

4.1 Data 

In this project, we have 5 version of datasets in total as below: 

¢ The first version datasets are provided by the guidebook. They consist of 3 in-domain 
datasets and 3 out-of-domain datasets. For all datasets, we have a Train set and Dev set. 

Beyond that, we have a Test set for out-of-domain dataset. Here are the list of the provided 

  

  

  

datasets: 

Original Datasets 

Dataset Question Source | Passage Source Train Dev Test 

SQuAD [8] Crowdsourced Wikipedia 18,885 | 48 - 
NewsQA [9] Crowdsourced News articles 11,428 | 638 - 

Natural Questions [10] Search logs Wikipedia 104,071 | 12,836 | - 

DuoRC [11] Crowdsourced Movie reviews 12 18 172 

RACE [12] Teachers Examinations 109 113 391 

RelationExtraction [13] || Synthetic Wikipedia 127 128 2,693                 
  

¢ The second dataset is the augmented data of in-domain datasets using different techniques. 
The goal for this datasets is to evaluate whether we can use data augmentation technique to 
avoid the model overfit to the in-domain datasets by adding some noise to the in-domain 

  

  

  

train set. 

Augmented In-domain Datasets 

Dataset Spelling Synonym WordEmb | back- 
translation 

SQuAD [8] 9,174 9,605 9,134 8,083 
NewsQA [9] 3,873 4,023 3,831 2,702 
Natural Questions [10] 83,934 85,736 83,822 14,821               
  

¢ The third datasets are the augmented data of out-of-domain datasets using different tech- 
niques. The goal for creating it is to evaluate whether we can fine tune the pretrained 
baseline model using augmented out-of-domain datasets. 
  

  

  

            

Augmented Out-of-domain Datasets Without Rebalance 

Dataset Spelling Train | Spelling Dev | Synonym_Train | Synonym_Dev 

DuoRC [11] 16 18 16 18 
RACE [12] 200 113 200 113 
RelationExtraction [13]} 213 128 217 128 
  

 



  
Augmented Out-of-domain Datasets Without Rebalance   

  

          

Dataset WordEmb_Train | WordEmb_Dev| Backtrans_Train | Backtrans_Dev 

DuoRC [11] 15 18 12 18 

RACE [12] 201 113 109 113 

RelationExtraction [13]| 217 128 127 128       
¢ The fourth datasets are the augmented data of both in-domain and out-of-domain datasets. 
However, before we do data augmentation, we sample the in-domain dataset a little bit to 
avoid one domain data is dominant in terms of the data size. After comparing the data size, 
we decide to decrease the number of Natural Questions datasets from 104,071 to 18,885. 

Beyond that, we also want to remove the size gap between in-domain datasets and out-of- 
domain datasets. Therefore, during data augmentation, we rebalance the distribution of the 
datasets by iterating the augmentaion process 100 times for out-of-domain datasets. For 
the data augmentation library we used, Spelling Augmentator and Synonym Augmentator 
will generate random results while Backtranlation Augmentator and Word Embedding 
Augmentator will generate the same results in different runs. Therefore, for this datasets, we 
only use Spelling Augmentator and Synonym Augmentator to do data augmentation. 
  

  

  

Augmented Datasets With Rebalance 

Dataset Spelling Train | Spelling Dev | Synonym_Train | Synonym_Dev 

SQuAD [8] 9,140 5 9,602 7 
NewsQA [9] 3,858 146 4,079 148 
Natural Questions [10] 15,292 370 15,605 392 
DuoRC [11] 355 1,515 369 1,509 
RACE [12] 9,259 9,485 9,364 9,595 
RelationExtraction [13] |} 9,013 8,937 9,449 9,219                 

¢ The fifth datasets are similar to the fourth one but only differs in terms of the iteration 
number of the out-of-domain datasets. In fourth datasets, we increase the size of out-of- 

domain datasets by 100 times. In this datasets, we use Synonym Data Augmentation to 
evaluate how much effect the distribution will have to the QA performance. We increase the 
out-of-domain dataset size to 150 and 200 times separately. 
  

  

  

Augmented Out-of-domain Datasets Using Synonym Augmentator With Rebalance 

Dataset x150_Train x150_Dev x200_ Train x200_Dev 

DuoRC [11] 560 2,270 735 2,976 
RACE [12] 14,161 14,460 18,563 18,957 
RelationExtraction [13]} 14,309 13,765 17,925 17,890                 

4.2 Evaluation method 

In the evaluation, we used the provided out-of-domain validation datasets and EM/F1 metrics to 
evaluate the performance. 

4.3 Experimental details 

In this project, we ran several types of experiments as below: 

¢ Data augmentation to avoid overfit: In this experiment, we merge the second datasets 
with the original datasets and train the model from the beginning using the merged data. 
The purpose of this experiment is to evaluate whether we can avoid the model overfit to 
the in-domain dataset by introducing some noise to the training data. In this experiment, 
all the model configurations are the same as the default ones provided by the guidebook. 
The running time is a little bit longer and it takes me more than 20 hours to finish each 
experiment. 

¢ Fine tune pretrained baseline model using augmented out-of-domain datasets: In this 
experiment, we use the third datasets to fine tune the pretrained baseline model. The purpose 
of this experiment is to evaluate whether we can fine tune the pretrained baseline model 
and achieve a decent performance in out-of-domain datasets only using a small amount of 
out-of-domain datasets. In this experiment, all the model configurations are the same as the 
default ones provided by the guidebook except the train/dev datasets. In this experiment, the



train/dev sets are the out-of-domain datasets. Since the data size is much smaller than the 
in-domain datasets, I can even run this experiment on local machine and the running time is 
very small which is less than 30 minutes with the Nvidia 2080 Ti GPU. 

¢ Fine tune pretrained model using rebalanced augmented datasets: In this experiment, 
we use the fourth datasets to fine tune the pretrained baseline model. The purpose of this 
experiment is to evaluate whether we can improve the performance of out-of-domain QA by 
increasing the proportion of the out-of-domain datasets. Most of the model configurations 
are the same as the guidebook exception we change the train/dev set to the superset of 
in-domain and out-of-domain datasets. Since we sample the in-domain datasets, we are still 
able to run this experiment on local machine. The running time is around 3 hours. 

¢ Fine tune pretrained model using different rebalanced augmented datasets: This ex- 
periment is pretty similar to the last one and only differs in the datasets. In this experiment, 
we used the fifth datasets and all other configurations are exactly same as the last experiment. 

4.4 Results 

¢ Data augmentation to avoid overfit: From the table below we can see the out-of-domain 
QA system performs worse using all the data augmentation methods. This result is worse 
than we expected. We think merging some augmented data into the original datasets can 
help to add some noise to the train set which can help to avoid overfit to the in-domain 
datasets. However, the result tells us we didn’t make it. The reason might be our data 
augmentation techniques are not good enough to generate more diverge dataset. Thus, the 
new datasets are still very similar to the original one which will make the model overfit 
more to the in-domain datasets. 
  

  

  

  

Experiments Result 

Name EM Fl 

Baseline 33.25 48.43 
Spelling 33.25, 48.30 
Synonym 30.63 46.21 
WordEmb 29.84 47.15 
back-translation 29.12 47.54           

¢ Fine tune pretrained baseline model using augmented out-of-domain datasets: From 
the table below we can see the out-of-domain QA system performans worse using all the 
data augmentation methods. The result is also worse than we expected. We think fine tuning 
the pretrained model using the out-of-domain datasets could slightly modifies the model to 
fit the out-of-domain knowledge. The reason for the bad performance might be the small 
data size. Since the data size used to fine tuning the model is pretty small, the model can’t 
learn the out-of-domain questions very well. 
  

  

  

        

Experiments Result 

Name EM Fl 

Baseline 33.25 48.43 

Spelling 31.15 44.95 
Synonym 21.73 36.71 
WordEmb 22.46 37.22 
back-translation 31.54 46.01   
  

¢ Fine tune pretrained model using rebalanced augmented datasets: From the table be- 
low we can see the performance of the out-of-domain QA system improves a lot. This result 
is the same as we expected. The consistent improvements in both Spelling Augmentation 
and Synonym Augmentation proves our assumption which is increasing the size of out-of- 
domain datasets could force the model to focus on out-of-domain questions. Also, we still 
need to add some sampled in-domain datasets to make the model stable e.g. still be able to 
perform well on in-domain datasets.



  

  

  

Experiments Result 

Name EM Fl 

Baseline 33.25, 48.43 
Spelling 34.03 49.62 
Synonym 36.91 50.43             

¢ Fine tune pretrained model using different rebalanced augmented datasets: From the 
table below, we can see choosing different proportions of the out-of-domain datasets could 
slightly affect the performance of QA system. However, the performance of Synonym_200 
is a little bit beyond our expectation. Since we think more out-of-domain dataset could 
help to boost the QA performance but Synonym_200 is worse than both Synonym_100 
and Synonym_150. The reason might be when iterating the data augmentation pipeline 
for 200 times, there might be a lot of repeated train/dev data which couldn’t help the 
model to learn the unseen data. Instead, it may make the model to overfit to several 
particular questions. All of these situations will hurt the perfomrance of out-of-domain QA. 
  

  

  

    

Experiments Result 

Name EM Fl 

Baseline 33.25 48.43 
Synonym_x100 36.91 50.43 
Synonym_x150 37.17 50.62 
Synonym_x200 31.15 44.95         

¢ Best leaderboard results: We noticed the final ranking in test leaderboard is not as 
good as the rank in validation leaderboard. The reason might be our model overfits to 
the validation datasets. Thus, in the future, we may need to reserve some validation 

datasets to evaluate the model performance before evaluating it using test datasets. 
  

  

  

Leaderboard Result 

Name Rank EM Fl Tag 

Validation 17 37.173 50.624 XPF 

Test 55 40.803 58.116 XPF                 

5 Analysis 

Based on all the above experiments, we find we need to take different data augmentation and 
sampling strategies to in-domain and out-of-domain datasets. For in-domain datasets, We need to 
sample the datasets to force the model pay less attention to the in-domain knowledge and avoid 
overfit to the in-domain datasets. This can be proven in the third experiment. After decreasing the 
proportion of in-domain datasets, the EM/F1 increases from 33.25/48.43 to 36.91/50.43. What’s 
more, we also need to use the in-domain datasets to help the model to learn the unseen data. Thus, 

we need adopt data augmentors which could generate more diverge datasets to in-domain datasets, 
such as back-translation augmentator or abstract summary augmentator. In our experiments, the 
performance of back-translation augmentator is 29.12/47.54 which is worse than the baseline model. 
The reason is the back-translation API we used is not good enough to produce diverge results. The 
augmented datasets are pretty similar to the original one. 

In terms of the out-of-domain datasets, the first priority task is to increase the proportion of data 
size. We can easily achieve this goal by iterating the data augmentation pipeline for multiple times. 
However, we need to pay attention to the number of iterations because in our experiments, iterating 
150 times could help to boost the performance of iterating 100 times. The performance improves 
from 36.91/50.43 to 37.17/50.62. However, when we increase the iteration number, the performance 
drops to 31.15/44.94. The reason might be when iterating too many times, there will be high 
possible to generating duplicated data which will make model to overfit to several particular questions. 

We summarize the analysis in the diagram below:



      

    

6 Conclusion 

In this project, we identify the trade-off between different data augmentation strategies for Robust 
QA System. For in-domain datasets, we need to sample the datasets first to avoid overfitting and then 
use more advanced data augmentation techniques, such as back-translation and abstract summary 
augmentation, to generate more diverge datasets in order to help the model learn the unseen data. For 
out-of-domain datasets, we need to use data augmentation technique that could generate similar 
datasets, such as spelling augmentation and synonym augmentation. Also, we need to iterate the 
data augmentation for multiple times in order to increase the proportion of out-of-domain datasets. 
The iteration number needs to be carefully designed because it may also slightly affect the final 
performance of the Robust QA System. 

Due to the limitation of time and resources, we are not able to generate more diverge data for 
in-domain datasets. We test several back-translation augmentators but the augmented data is pretty 
similar to the original one. This will stop the model from learning unseen data. In the future, we can 
keep exploring more advanced data augmentation techniques to see if we can generate more diverge 
data and improve the performance of Robust QA System. 
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