
Data Augmentation for Robust QA System

Stanford CS224N Default Project

Pengfei Xing
Department of Computer Science

Stanford University
pfxing@stanford.edu

Abstract

A lot of research works show that modern Neural Networks learn brittle correlations
between words or phrases which will affect the out-of-domain performance of QA
System. One solution to prevent model from learning these corrections is to use
data augmentation method to decrease the proportion of correlations from training
data. In this project, we aim to evaluate several popular data augmentation methods
and see how they can improve the out-of-domain performance of QA System.
Beyond that, we also find generating even number of in-domain and out-of-domain
training data could hardly help to improve the performance. Instead, we need to
rebalance the distribution of in-domain data and out-of-domain data to force the
model to focus on out-of-domain data without bringing significant effect to the
in-domain QA performance. Finally, we also evaluate the performance of several
different rebalance options and find we need to carefully choose the proportion
value between in-domain data size and out-of-domain data size in order to optimize
the performance of the out-of-domain QA system.

1 Introduction

A lot of research works show that generalizing QA system remains a pretty challenging task [1, 2],
especially generalizing for a target domain without sufficient training data for that domain. There are
multiple directions in the world to improve the performance of the Robust QA system. In this project,
we explore how we can improve the performance using data augmentation techniques. Even though
there are a lot of data augmentation tools existing now [3], adopting data augmentation to out-of-
domain QA system is still a tough task. Some research works [4] even shows some back-translation

augmentation yields no noticeable improvement to the Robust QA system. We think the negative
results in those works are caused by not having a good data augmentation strategies, such as how
to sampling in-domain and out-of-domain datasets and how to choose different data augmentation
techniques to in-domain and out-of-domain datasets separately. We believe data augmentation has
great potential in out-of-domain QA tasks as long as we develop a good strategy for data augmentation.

In this project, we find rebalancing the distribution of in-domain datasets and out-of-domain datasets
could significantly improve the performance of the Robust QA System. We sample the in-domain
datasets and increase the out-of-domain dataset size by 100 times. What’s more, we also find we’d

better apply augmentators which could generate more diverge data to the in-domain datasets and
apply augmentators which produces similar data to out-of-domain datasets. All these techniques
could boost the performance of the Robust QA system. In the validation leaderboard, our model
ranks 17 at the end of the project due date.

2 Related Work

Considering one of the biggest challenges of Robust QA System is lacking sufficient training data
of the target domain, there are a lot of work exploring how to use data augmentation techniques

Stanford CS224N Natural Language Processing with Deep Learning

to better leverage the available supervised data. In [4], authors augmented the in-domain datasets
using back-translation techniques. They train an 8-layer seq2seq model and use German as the pivot
language to do back-translation. For the augmented datasets, they use string matching to find the new
answer span and for those that fail they employ the same heuristic described in [5] to get the new
estimated answer. The experiments show that back-translation augmentation yields no noticeable
improvement to the Robust QA system. During our investigation, we think the reason for the negative
result might be the back-translation model trained by the authors might not be able to generate
divergent datasets. Instead, the augmented datasets may look pretty similar to the original ones and
they can not help the model to learn the unseen data.

3 Approach

3.1 Baselines

The baseline of this project is DistiIBERT [6] model trained using the provided datasets. According
to the instructions, the datasets are borrowed from [7]. In my experiment, the performance of the
baseline model is EM: 33.25, Fl: 48.43.

3.2 Approaches

In this project, we aim to explore 4 data augmentaion methods and evaluate their effect to the
performance of out-of-domain QA System. Let’s say we have a sentence: "I am very busy these
days because the workload of NLP is pretty heavy.". We will show the augmented sentences using
different augmentation methods as below:

back-translation Augmenter is a method to apply data augmentation by translating
the sentence into a pivot language and then translating back to the original language. In this
project, we will use French as the pivot language. The augmented sentence is "I am very
busy nowadays because the workload of the NLP is quite high."

Synonym Augmenter is an augmentation method to substitute word with similar
words according to WordNet/PPDB synonym. The augmented text is "I am rattling busy
these clarence day because the workload of NLP is pretty heavy."

Word Embedding(WordEmb) Augmenter is a method to apply data augmentation
by using GloVe, word2vec or fasttext. The augmented text is "I am very busy these days
because the workload of NLP is pretty heavy. would is ’ve and got’ " the (to from ’t the
has ." This method would probably introduce some meaningless words or phrases into the
sentences. As we can see in the augmented sentence, the later part is meaningless.

Spelling Augmenter is a method to apply data augmentation by substitue words
according to the spelling mistake dictionary. The augmented sentence is: "’m Am very
busy tese days because the workload of NLP is prety heavy."

Beyond that, we also notice that the out-of-domain QA system performs worse using all the above
data augmentation method. After investigation, we find the two culprits for it. First reason is these
data augmentation methods don’t change the original sentence too much and the augmented sentences
are still very similar to the original ones. Thus, using data augmentation can’t help the QA system to
learn the unseen data. Second reason is the data size of in-domain datasets is much larger than the
out-of-domain datasets. The model overfits to the in-domain datasets. In order to avoid overfit, we

rebalance the distribution of the training set by generating much more new data for the out-of-domain
datasets while sampling a small amount of the in-domain datasets.

3.3. Implementation

In this project, we will use the augmentation API provided in nlpaug [3]. However, the API has
several limitations such as unable to process long sentences. Therefore, we need to preprocess
the input sentences a little bit. For example, we need to split the context into single sentence list
before back-translation augmentation. Also, we implement several util functions to help sampling the
in-domain datasets and increase the size of out-of-domain datasets.

3.4 Original Work

In this project, data augmentation is pretty straightforward. The most challenging part is how to
tag the new answer in the augmented data. Considering we don’t have enough resources for both
people and time, we decided to go with string matching method and just ignore the data that couldn’t
be resolved using string matching. Beyond that, we also spent lots of efforts creating filter logic to
identify the false positive data created by string match. For example, "Category" contains "Cat" but
we don’t want to tag the start index of "Category" as the answer index. We create a bunch filter logic
to avoid these noises.

Another work needs to be highlighted is rebalancing datasets. In the first phase of this
project, we find the QA system performs even worse by merging augmented datasets into the original
or fine tune the pretrained model using the augmented datasets. After investigation and several
experiments, we notice increasing the data size of augmented out-of-domain datasets and also
decreasing size for in-domain datasets could significantly improve the performance of out-of-domain
QA system.

4 Experiments

4.1 Data

In this project, we have 5 version of datasets in total as below:

¢ The first version datasets are provided by the guidebook. They consist of 3 in-domain
datasets and 3 out-of-domain datasets. For all datasets, we have a Train set and Dev set.

Beyond that, we have a Test set for out-of-domain dataset. Here are the list of the provided

datasets:

Original Datasets

Dataset Question Source | Passage Source Train Dev Test

SQuAD [8] Crowdsourced Wikipedia 18,885 | 48 -
NewsQA [9] Crowdsourced News articles 11,428 | 638 -

Natural Questions [10] Search logs Wikipedia 104,071 | 12,836 | -

DuoRC [11] Crowdsourced Movie reviews 12 18 172

RACE [12] Teachers Examinations 109 113 391

RelationExtraction [13] || Synthetic Wikipedia 127 128 2,693

¢ The second dataset is the augmented data of in-domain datasets using different techniques.
The goal for this datasets is to evaluate whether we can use data augmentation technique to
avoid the model overfit to the in-domain datasets by adding some noise to the in-domain

train set.

Augmented In-domain Datasets

Dataset Spelling Synonym WordEmb | back-
translation

SQuAD [8] 9,174 9,605 9,134 8,083
NewsQA [9] 3,873 4,023 3,831 2,702
Natural Questions [10] 83,934 85,736 83,822 14,821

¢ The third datasets are the augmented data of out-of-domain datasets using different tech-
niques. The goal for creating it is to evaluate whether we can fine tune the pretrained
baseline model using augmented out-of-domain datasets.

Augmented Out-of-domain Datasets Without Rebalance

Dataset Spelling Train | Spelling Dev | Synonym_Train | Synonym_Dev

DuoRC [11] 16 18 16 18
RACE [12] 200 113 200 113
RelationExtraction [13]} 213 128 217 128

Augmented Out-of-domain Datasets Without Rebalance

Dataset WordEmb_Train | WordEmb_Dev| Backtrans_Train | Backtrans_Dev

DuoRC [11] 15 18 12 18

RACE [12] 201 113 109 113

RelationExtraction [13]| 217 128 127 128
¢ The fourth datasets are the augmented data of both in-domain and out-of-domain datasets.
However, before we do data augmentation, we sample the in-domain dataset a little bit to
avoid one domain data is dominant in terms of the data size. After comparing the data size,
we decide to decrease the number of Natural Questions datasets from 104,071 to 18,885.

Beyond that, we also want to remove the size gap between in-domain datasets and out-of-
domain datasets. Therefore, during data augmentation, we rebalance the distribution of the
datasets by iterating the augmentaion process 100 times for out-of-domain datasets. For
the data augmentation library we used, Spelling Augmentator and Synonym Augmentator
will generate random results while Backtranlation Augmentator and Word Embedding
Augmentator will generate the same results in different runs. Therefore, for this datasets, we
only use Spelling Augmentator and Synonym Augmentator to do data augmentation.

Augmented Datasets With Rebalance

Dataset Spelling Train | Spelling Dev | Synonym_Train | Synonym_Dev

SQuAD [8] 9,140 5 9,602 7
NewsQA [9] 3,858 146 4,079 148
Natural Questions [10] 15,292 370 15,605 392
DuoRC [11] 355 1,515 369 1,509
RACE [12] 9,259 9,485 9,364 9,595
RelationExtraction [13] |} 9,013 8,937 9,449 9,219

¢ The fifth datasets are similar to the fourth one but only differs in terms of the iteration
number of the out-of-domain datasets. In fourth datasets, we increase the size of out-of-

domain datasets by 100 times. In this datasets, we use Synonym Data Augmentation to
evaluate how much effect the distribution will have to the QA performance. We increase the
out-of-domain dataset size to 150 and 200 times separately.

Augmented Out-of-domain Datasets Using Synonym Augmentator With Rebalance

Dataset x150_Train x150_Dev x200_ Train x200_Dev

DuoRC [11] 560 2,270 735 2,976
RACE [12] 14,161 14,460 18,563 18,957
RelationExtraction [13]} 14,309 13,765 17,925 17,890

4.2 Evaluation method

In the evaluation, we used the provided out-of-domain validation datasets and EM/F1 metrics to
evaluate the performance.

4.3 Experimental details

In this project, we ran several types of experiments as below:

¢ Data augmentation to avoid overfit: In this experiment, we merge the second datasets
with the original datasets and train the model from the beginning using the merged data.
The purpose of this experiment is to evaluate whether we can avoid the model overfit to
the in-domain dataset by introducing some noise to the training data. In this experiment,
all the model configurations are the same as the default ones provided by the guidebook.
The running time is a little bit longer and it takes me more than 20 hours to finish each
experiment.

¢ Fine tune pretrained baseline model using augmented out-of-domain datasets: In this
experiment, we use the third datasets to fine tune the pretrained baseline model. The purpose
of this experiment is to evaluate whether we can fine tune the pretrained baseline model
and achieve a decent performance in out-of-domain datasets only using a small amount of
out-of-domain datasets. In this experiment, all the model configurations are the same as the
default ones provided by the guidebook except the train/dev datasets. In this experiment, the

train/dev sets are the out-of-domain datasets. Since the data size is much smaller than the
in-domain datasets, I can even run this experiment on local machine and the running time is
very small which is less than 30 minutes with the Nvidia 2080 Ti GPU.

¢ Fine tune pretrained model using rebalanced augmented datasets: In this experiment,
we use the fourth datasets to fine tune the pretrained baseline model. The purpose of this
experiment is to evaluate whether we can improve the performance of out-of-domain QA by
increasing the proportion of the out-of-domain datasets. Most of the model configurations
are the same as the guidebook exception we change the train/dev set to the superset of
in-domain and out-of-domain datasets. Since we sample the in-domain datasets, we are still
able to run this experiment on local machine. The running time is around 3 hours.

¢ Fine tune pretrained model using different rebalanced augmented datasets: This ex-
periment is pretty similar to the last one and only differs in the datasets. In this experiment,
we used the fifth datasets and all other configurations are exactly same as the last experiment.

4.4 Results

¢ Data augmentation to avoid overfit: From the table below we can see the out-of-domain
QA system performs worse using all the data augmentation methods. This result is worse
than we expected. We think merging some augmented data into the original datasets can
help to add some noise to the train set which can help to avoid overfit to the in-domain
datasets. However, the result tells us we didn’t make it. The reason might be our data
augmentation techniques are not good enough to generate more diverge dataset. Thus, the
new datasets are still very similar to the original one which will make the model overfit
more to the in-domain datasets.

Experiments Result

Name EM Fl

Baseline 33.25 48.43
Spelling 33.25, 48.30
Synonym 30.63 46.21
WordEmb 29.84 47.15
back-translation 29.12 47.54

¢ Fine tune pretrained baseline model using augmented out-of-domain datasets: From
the table below we can see the out-of-domain QA system performans worse using all the
data augmentation methods. The result is also worse than we expected. We think fine tuning
the pretrained model using the out-of-domain datasets could slightly modifies the model to
fit the out-of-domain knowledge. The reason for the bad performance might be the small
data size. Since the data size used to fine tuning the model is pretty small, the model can’t
learn the out-of-domain questions very well.

Experiments Result

Name EM Fl

Baseline 33.25 48.43

Spelling 31.15 44.95
Synonym 21.73 36.71
WordEmb 22.46 37.22
back-translation 31.54 46.01

¢ Fine tune pretrained model using rebalanced augmented datasets: From the table be-
low we can see the performance of the out-of-domain QA system improves a lot. This result
is the same as we expected. The consistent improvements in both Spelling Augmentation
and Synonym Augmentation proves our assumption which is increasing the size of out-of-
domain datasets could force the model to focus on out-of-domain questions. Also, we still
need to add some sampled in-domain datasets to make the model stable e.g. still be able to
perform well on in-domain datasets.

Experiments Result

Name EM Fl

Baseline 33.25, 48.43
Spelling 34.03 49.62
Synonym 36.91 50.43

¢ Fine tune pretrained model using different rebalanced augmented datasets: From the
table below, we can see choosing different proportions of the out-of-domain datasets could
slightly affect the performance of QA system. However, the performance of Synonym_200
is a little bit beyond our expectation. Since we think more out-of-domain dataset could
help to boost the QA performance but Synonym_200 is worse than both Synonym_100
and Synonym_150. The reason might be when iterating the data augmentation pipeline
for 200 times, there might be a lot of repeated train/dev data which couldn’t help the
model to learn the unseen data. Instead, it may make the model to overfit to several
particular questions. All of these situations will hurt the perfomrance of out-of-domain QA.

Experiments Result

Name EM Fl

Baseline 33.25 48.43
Synonym_x100 36.91 50.43
Synonym_x150 37.17 50.62
Synonym_x200 31.15 44.95

¢ Best leaderboard results: We noticed the final ranking in test leaderboard is not as
good as the rank in validation leaderboard. The reason might be our model overfits to
the validation datasets. Thus, in the future, we may need to reserve some validation

datasets to evaluate the model performance before evaluating it using test datasets.

Leaderboard Result

Name Rank EM Fl Tag

Validation 17 37.173 50.624 XPF

Test 55 40.803 58.116 XPF

5 Analysis

Based on all the above experiments, we find we need to take different data augmentation and
sampling strategies to in-domain and out-of-domain datasets. For in-domain datasets, We need to
sample the datasets to force the model pay less attention to the in-domain knowledge and avoid
overfit to the in-domain datasets. This can be proven in the third experiment. After decreasing the
proportion of in-domain datasets, the EM/F1 increases from 33.25/48.43 to 36.91/50.43. What’s
more, we also need to use the in-domain datasets to help the model to learn the unseen data. Thus,

we need adopt data augmentors which could generate more diverge datasets to in-domain datasets,
such as back-translation augmentator or abstract summary augmentator. In our experiments, the
performance of back-translation augmentator is 29.12/47.54 which is worse than the baseline model.
The reason is the back-translation API we used is not good enough to produce diverge results. The
augmented datasets are pretty similar to the original one.

In terms of the out-of-domain datasets, the first priority task is to increase the proportion of data
size. We can easily achieve this goal by iterating the data augmentation pipeline for multiple times.
However, we need to pay attention to the number of iterations because in our experiments, iterating
150 times could help to boost the performance of iterating 100 times. The performance improves
from 36.91/50.43 to 37.17/50.62. However, when we increase the iteration number, the performance
drops to 31.15/44.94. The reason might be when iterating too many times, there will be high
possible to generating duplicated data which will make model to overfit to several particular questions.

We summarize the analysis in the diagram below:

6 Conclusion

In this project, we identify the trade-off between different data augmentation strategies for Robust
QA System. For in-domain datasets, we need to sample the datasets first to avoid overfitting and then
use more advanced data augmentation techniques, such as back-translation and abstract summary
augmentation, to generate more diverge datasets in order to help the model learn the unseen data. For
out-of-domain datasets, we need to use data augmentation technique that could generate similar
datasets, such as spelling augmentation and synonym augmentation. Also, we need to iterate the
data augmentation for multiple times in order to increase the proportion of out-of-domain datasets.
The iteration number needs to be carefully designed because it may also slightly affect the final
performance of the Robust QA System.

Due to the limitation of time and resources, we are not able to generate more diverge data for
in-domain datasets. We test several back-translation augmentators but the augmented data is pretty
similar to the original one. This will stop the model from learning unseen data. In the future, we can
keep exploring more advanced data augmentation techniques to see if we can generate more diverge
data and improve the performance of Robust QA System.

References

[1] Jonathan Berant Alon Talmor. Multiqa: An empirical investigation of generalization and transfer
in reading comprehension. In Association for Computational Linguistics, 2019.

[2] Jerome Connor Tomas Kocisky Mike Chrzanowski Lingpeng Kong Angeliki Lazaridou Wang
Ling Lei Yu Chris Dyer Phil Blunsom Dani Yogatama, Cyprien de Masson d’ Autume. Learning
and evaluating general linguistic intelligence. 2019.

[3] Edward Ma. nlpaug. GitHub, 2020.

[4] Zhucheng Tu Chris DuBois Shayne Longpre, Yi Lu. An exploration of data augmentation and
sampling techniques for domain-agnostic question answering. In 2nd Workshop on Machine
Reading for Question Answering, 2019.

[5] Minh-Thang Luong Rui Zhao Kai Chen Mohammad Norouzi Quoc V. Le Adams Wei Yu,

David Dohan. Qanet: Combining local convolution with global self-attention for reading
comprehension. In JCLR, 2018.

[6] Julien Chaumond-Thomas Wolf Victor Sanh, Lysandre Debut. Distilbert, a distilled version of

bert: smaller, faster, cheaper and lighter. In NeurIPS, 2020.

[7] Robin Jia-Minjoon Seo Eunsol Choi Danqi Chen Adam Fisch, Alon Talmor. Mrqa 2019 shared
task: Evaluating generalization in reading comprehension. In EMNLP 2019 Workshop on
Machine Reading for Question Answering, 2019.

[8] Konstantin Lopyrev-Percy Liang Pranav Rajpurkar, Jian Zhang. Squad: 100,000+ questions
for machine comprehension of text. In Empirical Methods in Natural Language Processing
(EMNLP), 2016.

[9] Xingdi Yuan-Justin Harris Alessandro Sordoni Philip Bachman Kaheer Suleman Adam Trischler,
Tong Wang. Newsqa: A machine comprehension dataset. In Computation and Language (cs.CL);
Artificial Intelligence, 2017.

[10] Olivia Redfield-Michael Collins Ankur Parikh Chris Alberti Danielle Epstein Illia Polosukhin

Matthew Kelcey Jacob Devlin Kenton Lee Kristina N. Toutanova Llion Jones Ming-Wei Chang
Andrew Dai Jakob Uszkoreit QuocLe Tom Kwiatkowski, Jennimaria Palomaki and Slav Petrov.

Natural questions: a benchmark for question answering research. In Transactions of the
Association of Computational Linguistics, 2019.

[11] Mitesh M. Khapra Karthik Sankaranarayanan Amrita Saha, Rahul Aralikatte. Duorc: Towards
complex language understanding with paraphrased reading comprehension. In ACL, 2018.

[12] Hanxiao Liu Yiming Yang Eduard Hovy Guokun Lai, Qizhe Xie. Race: Large-scale reading
comprehension dataset from examinations. In EMNLP, 2017.

[13] Eunsol Choi Luke Zettlemoyer Omer Levy, Minjoon Seo. Zero-shot relation extraction via
reading comprehension. In Association for Computational Linguistics, 2017.

