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Abstract 

Question answering is a challenging problem that tests language processing models 
the ability to comprehend natural languages. In this project, we implemented 
two models, BiDAF and QANéet, to solve the Stanford question answering dataset 
(SQuAD) 2.0. We experienced different methods to improve the performance of 
these models, including adding character embedding layers, data augmentation, and 
ensemble modeling. Finally, we compared the result across different experiments 
and gave an analysis of our models. In the end, our best model achieved F1/EM 
score of 68.71/65.38 in the test leaderboard. 
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2 Introduction 

Question answering is a challenging task that tests a model’s ability to comprehend the language. 
It also has many potential applications, including natural language search engines, AI chatbots, 
and many more. In this project, we worked on the SQuAD 2.0 dataset. SQuAD is a reading 
comprehension dataset consists of articles extracted from Wikipedia and 100,000+ question-answer 
pairs. For each question, there is a corresponding reading paragraph. The goal is to find a span of text 
in the context paragraph that answers the question, and the model will not need to generate an answer 
sentence itself. SQUAD 2.0 includes questions that cannot be answered from the paragraph, which 
prevents a model to simply find a span that is most related to the question. The model will need to 
truly comprehend the question and the paragraph in order to succeed on this task. 

We implemented two models to solve this problem, BiDAF [1] and QANet [2]. We extended the 

baseline BiDAF model by adding character embedding layers to the model. We also implemented 
QANeéet and tested the performance of the model on different parameters. Then, we experimented 
with different methods to boost their performance. We created an additional dataset with 79674 
more questions by using back-translation on the available training data. We tested how our model 
performed on this augmented dataset. The other method we adopted is ensemble modeling. We 
selected a total of 5 different models we trained with different parameters and combined their results. 

3 Related Work 

3.1 Models solving SQUAD 

Machine reading comprehension and question answering has become an important topic in the NLP 
domain. Since the release of the SQUAD question answering dataset, several models have been 
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proposed to tackle this task. These models roughly fall into two categories, models based on recurrent 
networks or those based on self-attention layers. Recurrent networks (e.g., LSTM) are a common 
way in NLP dealing with contextual information and the interaction between pair of words. Models 
that adopt this method include BiDAF [1], R-Net [3], DCN [4]. Inspired by Transformer [5], there 

are also proposed models that use self-attention with convolution layers instead of recurrent layers. 
These models are shown to have performance as good as recurrent ones and enjoy the advantage of 
faster computation as they do not suffer from long dependency chains in recurrent layers. 

Recently, pre-trained models have shown success in various NLP tasks, which include reading 
comprehension. In fact, pre-trained models, such as ALBERT [6], have dominated the leader board 

of the SQuAD 2.0 dataset. They are able to achieve an F1 score above 90, which the F1 score of 
non-pretrained models typically falls between the range of 60 — 75. In this project, we are not allowed 
to use pre-training methods, so we do not consider these models. 

3.1.1 Data augmentation 

Data augmentation tries to create more training data from a limiting data set. In NLP, one popular 
method called back translation augments the data by translating the texts into another language and 
then translate them back. The resulting texts will be slightly different from the original ones, which 
makes them good candidates for being additional training data. 

Easy Data Augmentation [7] is another data augmentation method for NLP tasks. For sentences in 
the training set, we randomly apply one operation from four different kinds of operations: 

1. Synonym Replacement: Randomly choose n words and replace each of them with one of 
its synonyms. 

2. Random Insertion: Insert a synonym of a random word in the sentence. Repeat the process 
n times. 

3. Random Swap: Randomly choose two words and swap their positions. Repeat the process 
n times. 

4. Random Deletion: Randomly delete each word with probability p. 

These new sentences are added back to the dataset. The authors showed that they were able to boost 
the performance of models on text classification tasks by using this technique. 

4 Approach 

4.1 Models 

First, we implement two models, BiDAF and QANéet, to solve the task. They are similar in structure 

and are both formed by 6 different layers. In the following, let c = [c1, c2,..., Cn] be the words in 

the context (reading passage), and q = [q1, G2, ---, @m] be the words in the question, and h be the 
hidden size. The duty of each layer is roughly described as follows: 

1. Input Embedding Layer maps each word into a feature vector. We apply this layer on both 
the context and the query to get Camp € R”*” and dem € R”*”. 

2. Embedding Encoding Layer scans through the entire text and refines each word embedding 
by utilizing contextual clues from the surrounding word. Both Cemp and Gem» are fed into 

this layer to get the matrix Cenc and enc, Which consist of feature vector for each word in 

the context and the question, respectively. 

3. Context-Query Attention Layer is crucial in the question-answering task because it allows 
the model to couple the information from both the context and the question. Cemp and Gemb 

will be fed to this layer at the same time, which is different from previous layers where we 
process data from the context and the question separately. 

Both BiDAF and QANet use attention methods to combine the information from Cemp and 

demb- This information is used to produce the feature vector for each word in the context. 

4. Model Encoding Layer further refines the feature vector from the output of the context- 
query attention layer.
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Figure 1: The structure of the embedding layer. The orange block is the character embedding layer 
we added. 

5. Output Layer makes predictions of the probability of each position being the start or the 
end of the answer span based on the feature vectors. Specifically, this layer will output p. 
and p,, where p, ; and p,; are the log-probability of the 7-th position being the start and 
the end of the span, respectively. 

4.1.1 BiDAF 

Bi-Directional Attention Flow (BiDAF) [1] is a model that achieved state-of-the-art performance on 

the SQuAD v1.1 dataset [8] in 2016. An implementation of BiDAF is included in the starter code, 

and we describe the structure of BiDAF here. 

1. Input Embedding Layer: Figure 1 shows the structure of the layer. The input embedding 
layer assigns each word in the text with an embedding vector. The word embedding is 
initialized to pre-trained GloVe [9] vectors with dimension 300, and these vectors are fixed 

during training. In addition to the word embedding, we implemented a character embedding 
layer. Each character in a word is mapped to a trainable vector in R? where D = 200. 
We pad or truncate characters in a word so that each word has a fixed number of L = 16 
characters. After the character embedding look-up, we get a tensor of size R’*”. Then, 
the tensor is passed to a 1-D convolution on the first dimension with D input and output 
channels, and we apply a max-pooling to the result. Finally, we concatenate the vectors from 
word embedding and character embedding to get a vector of 500 dimension. This vector is 
then passed to a two-layer highway network [10]. 

2. Embedding Encoding Layer: BiDAF uses a bi-directional LSTM in this layer to encode 
the text. 

3. Context-Query Attention Layer: This layer is described thoroughly in the project handout 
so we only give a high-level desciption. Let Cemp,; and Gemp,; be the feature vector of the 

z-th word and the j-th word in the context and the query, respectively. First, we calculate the 
similarity matrix S;; = wl [Cemb,i3 emb,j3 Cemb,i © Gemb, jl and then we use S;; to comute 

context-to-query and query-to-context attention vector a, and b; for each word. The output 
of this layer is [Cemb,i3 @i; Cemb,i © @i} Cemb,i 0 bi]. 

4. Model Encoding Layer: A two-layer bi-direction LSTM is used in this layer. 

5. Output Layer: The feature vectors will be fed into another bi-directional LSTM and then a 
linear layer. The final output is the log-probability vectors. 

4.1.2 QANet 

QANet [2] is another model that achieved state-of-the-art (with data augmentation) in the SQUAD 

1.1 dataset at the time of publishing. Inspired by Transformer model, it uses self-attention and 
convolution layers to eliminate the needs of recurrent layers. The authors claimed that QANet has 
the advantage of faster training because it does not have long dependency chains in its computation 
graphs which makes it easy to parallelize on GPUs. With the improvement in training time, they were 
able to train the model on a larger augmented dataset and out-performed other models. We follow the 
detailed description in the paper and re-implemented the model ourselves. 

1. Input Embedding Layer: We use the same input embedding layer with character embed- 
ding as BiDAF.
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Figure 2: The structure of the encoder block in QANet. The convolution block is repeated and 
cascaded C’, times. The blue dash blocks are the residual blocks where we apply layer dropout. 

2. Embedding Encoding Layer: The embedding encoder layer is a single “encoder block”, 
which an Encoder block is a structure we will also use in later layers. Figure 2 shows the 
structure of an encoder block. First, we apply positional encoding to the input. We used 
the same sinusoidal-based encoding as in Transformer [5]. Then, the input will go through 
C,, convolutional block. In each convolutional block, we apply layer nomalization [11], 
depthwise separable convolutions [12], and dropout to the input vector. The convolutional 
block is treated as a residual block, so the output from the convolutional block is summed 
with its input, and the result is passed to the next layer. Similarly, the feature vector will 
then go through multi-head self-attention and a feed-forward block, and these blocks are 
also treated as residual blocks. We apply layer dropout [13] on all the residual blocks. 

3. Context-Query Attention Layer: Although the authors of QANet suggested using DCN 
attention, we used the context-query attention layer from BiDAF directly. 

4. Model Encoding Layer: The model encoder layer consists of three sub-layers. Each sub- 
layer is formed by stacking multiple encoder blocks, and these three sub-layers are also 
cascaded together. The weights are shared between these three sub-layers. As in Figure 3, let 
01, 02, and o3 be the output from the first, second, and third sub-layer. These three vectors 

combined are the output of this layer, and we feed them to the next layer. 

5. Output Layer: The output layers are given 0, 02 and 03. We concatenated these vectors 
and obtain 0, = [01; 02] and o- = [02; 03]. os and o, are then passed to two feed-forward 
layers with separated weight to obtain p, and p,, the log-probability prediction vectors. 

4.2 Data Augmentation 

We used back translation to augment the training data. The goal is to translate texts in the training data 
to a chosen language and then translate them back to English. By doing so, we get additional texts 
with similar meanings and wording slightly different than the original one, which we can incorporate 
in our training dataset. 

To do the translation, we used the fairseq [14] toolkit. The specific model we used was a Transformer 
model [15] that won Facebook FAIR’s WMT19 competition. We chose Germany as the intermediate 
language as it has a structure similar to English. It is the only language with both forward and 
backward translating available in fairseq toolkit. 

With this translation model, we did back translation on the reading passages and the questions. For 
the reading passages, the procedure is more complicated because back translation might change 
the position of the span of the correct answer. Instead of trying to recover the answer span, we 
avoid the problem simply by not doing back translation on sentences that overlap with the answer
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Figure 3: The structure of the model encoder block in QANet. 

span. Specifically, let & be the number of sentences in the passage. If the answer span lies in the 
i-th sentences (if the answer span across two or more sentences, we ignore the question) where 
i < |N/2], we only translate sentence | N/2| + 1, |.N/2| + 2,...,N. In this way, we will never 
modify the sentence that contains the answer. 

4.3 Ensemble Modeling 

We used ensemble methods to combined the result from different models. We experiemented the 
following ensemble methods: 

1. Weighted average: Let p;,, and p;,- be the log-probability vectors of each position being 
the start and the end of the span output by the 7-th model. We assign a weight w; to each 
model. These weights are set based on their performance on the dev set. Then, we computed 
the weighted average of the log-probability vectors by @ = )> w;p;,,. Finally, we use this 
log-probability vector to compute the optimal start and end of the span, as we did in a single 
model. 

2. Majority voting: Majority voting: Similarly, we assign a weight w; to each model. Then 
we collect the output span (s;, e;) from all models to form a list of output candidates and 
sum up the model weights for each of the spans. We output the span with the largest weight 
sum. 

5 Experiments 

5.1 Data 

The task is question answering, and the dataset we used is a modified version of the SQUAD 2.0 
dataset [16]. SQuAD’s training dataset has a total of 129941 context-question pairs. Each pair 
consists of a paragraph and a question about the paragraph. Our models will choose a span of the text 
as the answer to the question or output that the answer cannot be found in the paragraph. 

5.2 Evaluation method 

For our evaluation, we use two metrics, which are Exact Match (EM) score and F1 score. EM is 1 

if the model output exactly the same span as one ground truth answer, and 0 otherwise. The F1 score 
is calculated on the words in the answer span selected by the human and the model. We focused on 
the Fl score when evaluation results between models, as EM score does not differentiate an answer 

that is only one word off the reference solution and an answer that is not related to the solution.



5.3. Experimental details 

5.3.1 BiDAF Improvement 

After adding the character embeddings to the baseline BiDAF, we trained the model using the same 
model and training parameters in the default code. Specifically, the hidden size is 100, and the 

dropout probability is 0.1. 

5.3.2 QANet Implementation 

We followed the description of QANet in the original paper [2] to re-implement the model. We 
experimented with different parameters and compared their performance. In all experiments, we use 
the ADAM optimizer with 6; = 0.8, G2 = 0.999, and e = 10—". We set the learning rate to increase 

inverse exponentially from 0.0 to 0.001 in the first 1000 steps and then remain constant throughout 
the training. We set the dropout probability of 0.05 for the character embedding layers and 0.1 for 
all other dropout layers. We also applied layer dropout to residual blocks in each embedding/model 
encoder layer such that the entire /-th residual blocks will be dropped with probability 0.1(//L), 
where L is the total number of residual blocks in the layer. The original paper suggested these 
parameters. Table | listed parameters that were changed in each experiment. 

  

  Model Gd) @2) (©) © 6) 

Hidden Size 128 128 128 256 64 
Heads in Self-Attention Layer 2 4 8 8 12 
Encoder Blocks in the Model Encoder Layer 3 3 3 3 2       

Table 1: Parameters of different QANet experiments 

5.3.3 Character embedding 

We compare the results after removing the character embedding layer from QANet. All other 
hyperparameters are fixed. 

5.3.4 Data augmentation 

We used the method described in the previous section to create an additional training set with 79674 
questions. We combined it with the original training dataset to form an augmented dataset of 209615 
questions, which is an increase of 61%. The data augmentation step took a substantial amount of 
time because the translation model was computational heavy, and this was the largest augmented 
data we could get before the deadline. We then trained BiDAF and QANéet on this new dataset and 
compare the performance when using the original dataset. 

5.3.5 Ensemble Modeling 

We used a total of 5 QANets we trained to perform a model ensemble. These QANets were trained 

with different parameters, which provided some diversities. We chose not to use BiDAF models 
because there is a large gap between the score of BiDAF and QANet, and based on our experiment, 
adding them to the ensemble model did not increase the F1 score, if not made it worse. We used 

both the weighted average and majority voting and tried equal weights and weights based on their 
performance. 

5.4 Results 

Table 2 summarizes the results of our models on dev dataset. After adding character embeddings to 
BiDAF, it successfully improves the F1/EM score by 3.10/2.85. 

Overall, our QANet models outperform BiDAF models. In QANet (1), (2), and (3), we found that 

the performance improved if we increase the number of heads in self-attention layers. For QANet 
(3) and (4), we fixed the number of heads in the self-attention mechanism and doubled the hidden 

dimension in (4). Yet, we got similar results from the two models. For QANet (5), we originally 

predicted we could improve the score again by increasing the number of heads in self-attention layers.



However, we had to reduce the hidden dimension to 64 due to GPU memory limitation, and we got 

results similar to QANet (3) and (4). 

In the data augmentation experiment, we found out that our data augmentation method does not 
help at all. When training the BiDAF model with augmented data, it slightly improved the scores. 
However, the difference is very small that falls into the error range. 

Finally, the experiment shows that ensemble modeling can improve performance. The best ensemble 
model improves the F1/EM score by 2.34/2.64 and 3.17/3.67 in the dev and test dataset. 

  

  

  

  

  

Model Fl EM AvNA_ Test Fl Test EM 

BiDAF 60.84 57.69 67.94 - - 
BiDAF + Char. Embeddings 63.94 60.60 70.01 - - 

QANet (1) 64.34 60.54 71.42 - - 
QANet (2) 67.56 63.92 73.79 - - 
QANet (3) 68.49 64.53 75.16 65.54 61.71 
QANet (4) 68.27 64.49 74.71 - - 
QANet (5) 68.43 64.29 74.84 - - 

QANet w/o Char. Embeddings 65.04 61.86 71.13 - - 

BiDAF + Char. + Data Aug. 64.03 60.73 70.22 - - 
QANet(2) + Data Augmentation 67.52 63.85 74.24 - - 

Ensemble (Weighted Average) 70.83 66.96 76.39 68.40 64.93 
Ensemble (Majority Voting) 70.47 67.17 76.09 68.71 65.38 

Table 2: The performance of each model 

  

  

6 Analysis 

6.1 QANet 

We give an analysis of the QANet models we trained, focusing on the training data that they gave 
wrong answers to. In the following, we inspected the output from our best single model QANet(3). 

In Table 4, we selected three incorrect answers produced by our model. We made ground truth spans 
in the table with bold font and summarize our model’s deficiencies using the skills proposed in [17]. 
We can find that our model is not good at causal relation, logical reasoning, and co-reference. 

The first example demonstrates that our model is not able to capture causality in context. Northern 
Chinese ranked high is because they surrendered to the Mongols, but our model cannot capture this 
causal relation to predicting the answer. 

The second example shows that our model does not perform well on logical reasoning. In this context, 
we find that “Scotland married Edgar’s sister Margaret”, which implies that Edgar is Margaret’s 
brother. However, our model does not get this information to make the answer. 

The last example indicates that our model does not capture co-reference well in context. The word 
force in the first sentence: “This means that the unbalanced centripetal force felt by any object is 
always directed toward the center of the curving path”, and in the second sentence: “Such forces acts 
perpendicular to the velocity vector associated with the motion of an object,” are the same. However, 
our model does not learn this concept and generates the wrong answer. 

Inspired by [18], we produced Table 3 showing the performance of QANet(3) on different types of 
questions (What, Who, How, etc.). 

In table 3, we can find that our model performs best on When type questions. The reason can be 
that the answers may include numbers that make our model easier to retrieve. Interestingly, our 
model performs second-best on Which type questions. We find that 42 out of 214 questions ask 
about “Which country” that make model focuses on country names in contexts and performs well on 
this type of problem. On the other hand, our model performs worst on Why type questions. This is 
because these questions need more logical reasoning and inference during prediction.



    
Table 3: Query Types and Performance 

6.2 Data Augmentation 

We are really curious why our data augmentation method did not work out. One possibility is that 
the translation quality was poor, causing the back-translated text to be dramatically different from 
the original text in style. This causes the model to overfit in detecting this difference to locate the 
position of the answer span. Thus, we do a qualitative analysis and check if the augmented data is 
starkly different from the original one. 

An back-translated context and questions are shown in Table 5. We can see that the translation quality 
is acceptable. We suspected that because the translation model we used gives precise translation, 
especially for the reading passage, it provided nearly no changes and diversity to the text, which 
render the method ineffective. 

We can see that the translation quality are quite good. In fact, we suspect that because the translation 
model we use give precise translation, it provides to less changes and diversity to the text, which 
render the method ineffective. 

7 Conclusion 

In this project, we re-implemented the QANet model that achieved an F1/EM score of 68.49/64.53 and 
65.54/61.71 in the dev and test dataset, respectively. We tested the QANet with different parameters 
and compared their performance. We also showed that character-level embedding is crucial in this 
task. After we added the character embedding layer to BiDAF, we successfully improved the scores of 
the model. We also did an experiment showing that when the character embedding layer is removed 
from the QANet model, the performance dropped significantly. 

We tried to do data augmentation on the training dataset by using back-translation. Surprisingly, the 
models training on the augmented dataset did not show any improvement. We hypothesized that the 
reason is that our back-translation method or model did not provide enough diversity to the training 
data. Further experiments are needed to prove our assumption. 

Finally, we used the ensemble method to further boosted our models. In the end, the ensemble model 

achieves an F1/EM score of 70.47/67.17 in the dev dataset and 68.71/65.38 in the test dataset, which 

is the best score we have achieved. 
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Context 
  

The reason for the order of the classes and the reason 
why people were placed in a certain class was the date 

they surrendered to the Mongols, and had nothing to do 

with their ethnicity. The earlier they surrendered to the 
Mongols, the higher they were placed, the more the held 

out, the lower they were ranked. The Northern Chinese 

were ranked higher and Southern Chinese were ranked 
lower because southern China withstood and fought to the 
last before caving in. 
  

One of the claimants of the English throne opposing 
William the Conqueror, Edgar Atheling, eventually fled 
to Scotland. King Malcolm II of Scotland married 
Edgar’s sister Margaret, and came into opposition to 
William who had already disputed Scotland’s southern 
borders. William invaded Scotland in 1072, riding as far 
as Abernethy where he met up with his fleet of ships. Mal- 
colm submitted, paid homage to William and surrendered 
his son Duncan as a hostage, beginning a series of argu- 
ments as to whether the Scottish Crown owed allegiance 

to the King of England. 
  

This means that the unbalanced centripetal force felt by 
any object is always directed toward the center of the curv- 
ing path. Such forces act perpendicular to the velocity 
vector associated with the motion of an object, and there- 
fore do not change the speed of the object (magnitude of 
the velocity), but only the direction of the velocity vector. 

Question Prediction Lack of Skills 

Why were Northern N/A Causal Rela- 

Chinese ranked tion 
higher? 

Who was Margaret’s N/A Logical Rea- 
brother? soning 

How do centripetal N/A Co-Reference 
forces act in relation 

to vectors of veloc- 

ity? 

  

Table 4: Examples of Errors in Predictions of Answerable Questions 

  

Original Text Back-translated Text 
  

A global power city, New York exerts a signif- 
icant impact upon commerce, finance, media, 
art, fashion, research, technology, education, 

and entertainment, its fast pace defining the 
term New York minute. Home to the head- 
quarters of the United Nations, New York is 
an important center for international diplo- 
macy and has been described as the cultural 
and financial capital of the world. 

A global power city, New York exerts a signif- 
icant impact upon commerce, finance, media, 
art, fashion, research, technology, education, 

and entertainment, its fast pace defining the 
term New York minute. Home to the head- 
quarters of the United Nations, New York is 
an important center for international diplo- 
macy and has been described as the cultural 
and financial capital of the world. 

  

What American city welcomes the largest 
number of legal immigrants? 

Which American city is home to the most 
legal immigrants? 

  

What city has been called the cultural capital 
of the world? 

Which city has been designated as the World 
Capital of Culture? 

Table 5: Examples of back-translated text 
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