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Abstract 

Question-answering (QA) task is an important problem for research in natural 

language processing, for which many deep learning models have been designed. 
In this report we implement R-Net and evaluate its performance on SQUAD 2.0. 
While the performance of R-Net itself is worse than BiDAF, it showed a strong 
capability of its attention mechanism. We have also experimented with an ensemble 
model using BiDAF and R-Net that achieved better performance than the baseline 
BiDAF. Our study suggests that a promising future direction is to combine BiDAF 
and R-Net for building better models. 

1 Key Information to include 

¢ Mentor: Lingjue Xie 

2 Introduction 

Reading comprehension is an important task for artificial intelligence both from a fundamental and a 
practical standpoint. It has many applications such as search engine and virtual assistant. Recently 
there have been a lot of progress on designing datasets and models for attacking the problem of 
question-answering (QA). A particularly popular dataset is the the Stanford Question Answering 
Dataset (SQUAD), which provides the data in a triple form: a passage,a question and an answer, 
which is an excerpt from the passage [1, 2]. Since the answer can be any span of the context passage 
and can involve reasoning across multiple sentences, the SQUAD dataset is more challenging than 
QA tasks such as multiple choice [3, 4] or Cloze style tasks [4, 5]. 

Since the release of the SQuAD dataset, researchers have proposed many deep learning models, such 
as bidirectional Attention Flow (BiDAF) [6], dynamic coattention networks [7], and R-Net [8, 9], as 

well as large transformer models such as BERT [10] and QANet [11]. In this report we focus mainly 

on the R-Net model, whose major difference from previouse works such as BiDAF is that R-Net 
consists of a self-matching attention. The motivation is that recurrent network in practice can only 
memorize information within a limited span of words, and that self-attention effectively incorporates 
information of the entire passage in encoding each timestep of the passage. 

Here we report our attempt to implement the R-Net from scratch and characterize its performance 
on the SQuAD 2.0 dataset. Our implemented R-Net achieved 57.90 F1 and 54.46 EM score on the 
test set, which are less than the baseline BiDAF model (62.56 F1 and 59.04 EM), possibly due to the 
new no-answer examples in SQUAD 2.0 compared to SQUAD 1.0. We experimented with various 
methods to calculate attention-weights, such as simple dot product, linear kernel and L2 norm, and 
have found dot product to improve the performance. In addition, we have tried ensemble models by 
combining BiDAF and R-Net, which achieved 63.31 Fl and and 59.93 EM on the test set. 
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3 Related Work 

There have been numerous proposed deep learning models for QA systems, and in particular for the 
SQuAD dataset. Equipped with features such as both context-to-query attention and query-to-context 
attention and memory-less attention, BiDAF is one of the early ones to achieve state-of-the-art result 
[6]. As attention proved to be essential for QA tasks, various form of attention mechanism were 

designed, such as coattention which involves attending to another attention output [7], as well as 
self-attention in R-Net, where the passage representation attends to itself [8, 9]. In addition, R-Net 
was partially inspired by match-LSTM [12], where the attention is performed squentially during the 
RNN computation. Another class of methods that demonstrated superior performance over previous 
models are the transformer models such as QANet [11], and pretrained models such as BERT [10]. 

In this work we implement the R-Net model and train and test its performance on the SQUAD 2.0 
dataset. Previous work have shown R-Net to achieve state-of-the-art performance on SQuAD 1.0, 
SO it is interesteing to test its performance on SQuAD 2.0 containing no-answer examples. The 
importance of the attention in QA tasks shown in previous work also motivates us to experiment with 
different types of attention for R-Net. 

4 Approach 

R-net consists of four parts: a passage and question encoder, an RNN with gated attention, an RNN 
with self-attention, and a pointer network for predicting answer. Following the original R-net paper, 
all the RNNs used are gated recurrent unit (GRU). In the following description, we elaborate on the 
procedure for character-level embeddings, which were not discussed in detail in the original paper, 
and briefly describe the other layers which were described in detail in the original paper. In addition, 
we use the BiDAF model with character-level embedding as our baseline [6]. 

4.1 Encoder 

The encoder layer generates representations of passages and questions. First, it converts the text into 
word and character embeddings by looking up pretrained vectors. For example, for a question, the 

word vectors are {e2}m 1» where m is the length of the question. For character-level embeddings, 
the character vectors of a word, {a;}#_, where w is the length of a word, are fed into a bidirectional 
RNN (BiRNN), 

hewa,i = BiRNN(A;-1, as), () 

hrev,i = BiRNN(hi41, la) (2) 

and the final hidden state is used as the character-level embedding for the word, 

c= [Peart x Preval: (3) 

The concatenated word and character-level embeddings {[e®, c’]}1”, are then passed into another 
BiRNN to produce the representations for the text. The same procedure is also applied to the passage. 

The resulting vectors are ue and u?’. 

4.2 Gated attention-based recurrent networks 

This layer is an RNN applied to the passage representation, where part of the inputs are attention- 
pooling vectors of the entire question, using the soft-alignment attention proposed by Rocktaschel et 
al [13]. The inputs are the concatenation of the passage representation and the attention-weighted 
representation, multiplied by a gate with sigmoid activation on the input that controls information 
flow. 

4.3 Self-attention 

The self-attention layer is similar to the previous layer, except that the attention is from the word in 
the passage to all of the words in the same passage.



4.4 Pointer network 

Pointer network, an RNN, is used to predict the start and end point of the answer [14, 15]. This 

layer uses the attention from the hidden states to the passage representation and selects the passage 
word corresponding to the highest attention score as the answer. The input to the RNN is itself an 
attention-pooling vector over the entire passage. 

4.5 Other attention mechanisms 

In addition to the standard R-Net implementation, we have also tried implementing three other kinds 
of attention by modifying the interaction between the key and query vectors. These include: 

¢ Dot-product, where we simply take the dot product of the context and query vectors as the 
attention score 

st=u?. ub (4) 

e Linear kernel, where we use a learn-able matrix W to model the interaction 

si =ulWup (5) 

¢ L2 norm, where we use the distance between two vectors as the attention score 

t_1,Q P\2 
8; = lu? — uy | (6) 

The attention weights are then calculated using a softmax function as usual. 

4.6 Ensemble models 

For the ensemble model, we combine the baseline BiDAF model and R-Net, by calculating a weighted 
average of the predicted probabilities 

p =TpR—Net + (1 — 1)pBiDAF (7) 

where 0 < r < 1, pR—Net and ppipar are probabilities of the start and end positions of the answer 

predicted by R-Net and BiDAF. We optimize the weight r on the dev set. 

4.7 Code implementation 

For the standard R-Net and the ensemble methods we used our own implementation using PyTorch. 
For trying out different attention mechanisms, we used an R-Net code we found from one GitHub 
repository!, because the training time for this implementation is faster and we are limited by time. 
We believe the faster implementation ignores masking the paddings for passages and simplified a few 
linear layers by simply multiplying vectors with a random matrix, which make the training faster. 
In fact, as we show later, this implementation does not perform as well as our own implementation. 
However, we believe that it is still meaningful to compare how different attention mechanisms 
perform using this compromised implementation. For the baseline, we use the provided starter code 
and implemented a layer for character-level embedding following the method in the BiDAF paper [6]. 

5 Experiments 

5.1 Data 

We use the Stanford Question Answering Dataset (SQuAD) 2.0, which consists of about 130,000 

examples for the training set and about 6000 examples for dev and test sets. In this dataset, given a 
passage of text (or context) and a question regarding the text, the goal is to find the answer to the 
question. In the SQuAD dataset, the answer is restricted to a span of the passage. The question 
answering system therefore needs to predict the start and endpoint of the answer within the passage 
[1, 2]. 
  

‘https: //github.com/heliumsea/RNet-pytorch
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5.2 Evaluation method 

To evaluate the model we use exact match (EM), which is the percentage of predicted answers that 
exactly matches the ground truth, and F1 score, which is a harmonic mean of the precision and recall. 

5.3 Experimental details 

For R-net, we follow the original implementation, using | layer of RNN for character-level embedding 
and 3-layers for encoding passages and questions. All hidden sizes are 75. Dropout is applied between 
layers, with a dropout rate of 0.2. For the BiDAF model, we add character-level embeddings based 
on CNN to the starter code. The kernel size of the CNN is 5 x h where h is the size of the character 
vector, and the number of output channels is 100, which means the final character-level embedding of 
the word is a 100 — d vector. We use AdaDelta optimizer, with p = 0.9 and « = 10~°. The learning 
rate is 0.5 for BiDAF and 1.0 for R-Net, and we train the model until the EM and F1 scores stop 
increasing, fluctuating around some value. This usually takes about 15 epochs. 

5.4 Results 

The F1 and EM scores for the baseline BiDAF models and R-Net are shown in table | and 2 for 
dev and test sets, respectively. R-Net performs worse than the baseline model. This is perhaps 
not unexpected, as the official R-Net paper reported results on SQUAD 1.0, while here we train 
and evaluate the model on SQUAD 2.0. This result indicates that R-Net in the current form does 

not perform well on questions that might have no answer. For the ensemble model, we found that 
choosing an r = 0.4 (see Eq. 7) yields the best result on the dev set. It achieves the best result on the 
test set: 63.31 Fl and 59.93 EM. 

6 Analysis 

6.1 Model performance 

Considering that R-Net performed worse than BiDAF on the dev set, we have done several analyses 
to make sure that our model was correctly implemented. In Fig. 1, we show the F1 score and negative 
log likelihood on the dev set for the models we trained. The evolution of both quantities for R-Net is 
similar to the baseline models, suggesting that our implementation of R-Net is probably reasonable. 
Note that R-Net suffers from overfitting more severely than BiDAF models, as shown in Fig. | (b), 
which might be one reason for the worse performance. Possible ways of reducing overfitting include 
adding regularization on the weight gradients during training, or increasing drop-out probabilities or 
drop-out layers.
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Figure 2: R-Net context-to-question attention weights, each column showing the 
attention of a context word to the a specific question word. 

6.2 Attention analysis 

As attention obviously plays an important role in QA tasks, it is quite interesting to analyze the 
attention weights produced by the two different models. In Fig. 2 we plot the R-Net context-to- 
question attention weights, each column showing the attention of a context word to the a specific 
question word. Here “By 1620" and “between 1621 and 1629" attend to “When", indicating that the 
model can correctly identify information related to time as requested by the query sentences. Another 
pair that show strong attention weights are “rebellions” in the context and query, which is expected 
as they are the same words. We also note that “out" seems to attend to “place" very strongly, while 
ideally we would like “broke out" to attend to “take place" strongly. In this case the model might not 
have actually understood the synonymy between the two phrases and the connection it drew might be 
in the sense that “out" carries a meaning of physical direction, which is related “place". The fact that 
“southwestern” in the context attends strongly to “place" also supports this interpretation. 
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Figure 3: BiDAF context-to-question attention weights, each column showing 
the attention of a context word to the a specific question word.



The context-to-question attention weights for BiDAF is plotted in Fig. 3. The attention weights 
distribution is similar to that of R-Net, but the attention to the question word “When" is less prominent 
than R-Net. This shows that R-Net has a more effective attention mechanism, possibly due to a more 
complex architecture. We also note that in R-Net the attention is performed sequentially, taking into 
account previous hidden states. This might also help the attention to be more effective. 
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Figure 4: R-Net self attention weights within the context 

passage, each row showing the attention of a context word to 
the context itself. 

Another key component for R-Net is self-attention, illustrated in Fig. 4, where each row shows the 
attention weights of a context word to the context themselves. Here, it seems that for each context 
word w, the context words that w attends to the most are the ones that are related to the question, 
such as “By 1620 ...", “the Huguenot rebellions ..." and so on. This is expected as self-attention is 
performed after the passage-question attention, and so the information of the question is already 
encoded into the passage representation. The self-attention layer acts as a kind of reinforcement for 

the question awareness of the passage. 

6.3 Error analysis 

Here we inspect a few examples where R-Net does not produce the correct answer. 

Semantic relations 

* Question: Who was Kaidu’s grandfather? 

¢ Context:: Instability troubled the early years of Kublai Khan’s reign. Ogedei’s grandson 
Kaidu refused to submit to Kublai and threatened the western frontier of Kublai’s domain. 
The hostile but weakened Song dynasty remained an obstacle in the south. Kublai secured 
the northeast border in 1259 by installing the hostage prince Wonjong as the ruler of Korea, 
making it a Mongol tributary state. Kublai was also threatened by domestic unrest. Li Tan, 
the son-in-law of a powerful official, instigated a revolt against Mongol rule in 1262. After 
successfully suppressing the revolt, Kublai curbed the influence of the Han Chinese advisers 
in his court. He feared that his dependence on Chinese officials left him vulnerable to future 
revolts and defections to the Song. 

Answer: Ogedei vs. Prediction: Grandson 

Analysis: The model did not learn the connection between the word “‘grandson" and 
“grandfather”. Since the context itself does not contain information on this connection, the 
model will have to learn this semantic relation from training data, which should contain 

examples that explicitly indicate such relation either within the context itself or through the 
question-answer pair, as in this example.



Attention problem 

* Question: Who proved that these exist practical relevant problems that are NP-complete in 
1961? 

¢ Context: In 1967, Manuel Blum developed an axiomatic complexity theory based on 
his axioms and proved an important result, the so-called, speed-up theorem. The field 
really began to flourish in 1971 when the US researcher Stephen Cook and, working 
independently, Leonid Levin in the USSR, proved that there exist practically relevant 
problems that are NP-complete. In 1972, Richard Karp took this idea a leap forward with his 
landmark paper, "Reducibility Among Combinatorial Problems", in which he showed that 21 
diverse combinatorial and graph theoretical problems, each infamous for its computational 
intractability, are NP-complete. 

¢ Answer: N/A vs. Prediction: Leonid 

¢ Analysis: The question is very similar to a subsequence of the context, except the question 
specified a year 1961 which is different from the context 1971. R-Net attention mechanism 
might have been too strong that it thinks the difference between “1961" and “1971" is too 
small. This might be a general problem. In an end-to-end model liek R-Net, every word or 
character are treated equally (embeddings), while in reality some words are more significant 
than others. In this case the model did not learn the importance of the specified year. 

Incomplete answers 

* Question: What is the term for the lack of obsevable free quarks? 

¢ Context: The strong force only acts directly upon elementary particles. However, a residual 
of the force is observed between hadrons (the best known example being the force that 
acts between nucleons in atomic nuclei) as the nuclear force. Here the strong force acts 
indirectly, transmitted as gluons, which form part of the virtual pi and rho mesons, which 
classically transmit the nuclear force (see this topic for more). The failure of many searches 
for free quarks has shown that the elementary particles affected are not directly observable. 
This phenomenon is called color confinement. 

¢ Answer: color confinement vs. Preduction: called color 

¢ Analysis: Here the model does understand the question and was able to locate the vicinity 
of the correct answer in the passage, but nevertheless produces an incomplete answer. This 
might be an indication that the RNN is affected by local features. As gating controls how 
much to “forget" some features, We could try improving the gating applied to the passage 
representations. 

6.4 Different attention mechanisms 

We have also trained R-Net with modified interaction for the attention mechanism, using either dot 
product, a linear kernel or L2 norm. For this study we used existing code from an open repository as 
discussed in Sec. 4.7. Table 3 shows that in this implementation of the R-Net, using dot product is 
better than the original attention mechanism, which involves passing key and query vectors through 
linear layers and applying a tanh activation. Linear kernel performed similarly as the standard R-Net. 
For L2 norm kernel, the model suffers from severe overfitting where the performance on the dev 
set drops considerably in later stage of training. This indicates that simple distance measure of the 
vectors is not helpful as a similarity score. 
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7 Conclusion 

We have implemented the R-Net model for QA tasks in the SQuAD 2.0 dataset. We found that 

R-Net has a worse performance than our baseline model, BiDAF. By inspecting the attention weight 
distribution of R-Net and BiDAF we found that the attention mechanism in R-Net is more effective 
in context-to-question attention, and that the self-attention mechanism helps reinforce the question- 
awareness of the context representation. We have also found that a simple ensemble model combining 
BiDAF and R-Net achieves marginally but consistently better performance than BiDAF. 

The good performance of the ensemble model indicates that BiDAF and R-Net may be combined in 
more optimal ways to improve the model. Therefore a good future direction would be to identify the 
strengths and weakness of the two models and design a hybrid model. 
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