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Abstract 

In this project, we aim to build a robust question answering (QA) system by 
improving the DistiIBERT model[10]. A robust system eliminates the need for 
prohibitively large datasets in training models for use in different domains. To 
accomplish this goal, we implement task-adaptive pretraining (TAPT), model 
tuning such as transformer block re-initialization and increasing the number of 
training epochs, and ensemble methods. Since there is a limited amount of out-of- 
domain data, we also use data augmentation techniques for both pretraining and 
finetuning steps. Our final ensemble model achieves dev scores of Fl = 52.57, EM 
= 37.96 and test scores of Fl = 60.42, EM = 43.42. 

1 Introduction 

Despite the tremendous progress in natural language processing (NLP) modeling over the last decade, 
one remaining challenge in the field is in creating NLP systems that can generalize like humans. There 
have been a number of researches on models that can perform decently well by learning superficial 
correlations. However, these models often fail to perform well on out-of-distribution data [1] [2] 

[3] [4]. The ability to generalize is crucial for the question answering task because training and test 
data often come from different distributions in real life. This robustness is fundamental to NLP as it 
indicates how well machine learning models "understand" the input text. 

We aim to build a robust QA system that can utilize information learned from pretraining data, adapt 
to unknown domains with only a few training samples, and produce meaningful answers. In this 
project, we are given a large amount of in-domain data and very limited out-of-domain training data. 
Our final goal is to construct a robust QA model that can perform well on the out-of-domain test data. 
We explore three methods to accomplish this: task-adaptive pretraining (TAPT), out-of-domain data 
augmentation, and model tuning techniques such as re-initialization, number of epochs tuning, and 
ensemble modeling. After investigating whether each method improves the performance on its own, 
we combine the beneficial methods together to build the most robust model. 

2 Related Work 

One straightforward method to enhance a question answering model’s robustness is to let the model 
gain more knowledge on the domains of our interest. The paper "Don’t Stop Pretraining"[5] suggests 
TAPT, pretraining on domain or task-specific data before finetuning, to make models learn to do well 
on specific domains or tasks. Other studies have also shown that the performance of models can be 
enhanced by using text from target domains during this pretraining step, too. [6] In this paper, we 
apply this method by continuing to pretrain on task-specific data before finetuning in an effort to 
improve our model’s performance on out-of-domain data. 
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Another big challenge in this project is that we are given very limited out-of-domain training data. 
In order to fully take advantage of the limited available data, we utilize data augmentation as 
explored by many other studies. For example, word substitution-based data augmentation replaces 
a randomly selected word from a sentence with a synonym from a lexicon [7], a word with similar 
word embeddings, [8], or [MASK] tokens which are then filled by BERT to produce augmented data. 
Another common way to augment text data is back translation, which translates a sentence to another 
language and then translates it back to the original language. [9]. 

Lastly, many recent works have shown the importance of hyperparameter tuning on fewshot per- 
formance. [16] An example is the re-initialization of top transformer blocks before fine-tuning. 
This idea is motivated by object recognition transfer learning results showing that lower pretrained 
layers learn more general features while higher layers closer to the output specialize more to the 
pretraining tasks. The authors claim that re-initialization consistently improves mean performance on 
few-sample datasets. Another hyperparameter is the number of training iterations. It is shown that 
training longer tends to improve model performance compared to the common practice of training for 
3 epochs. Still, the paper does not explore the effects of re-initialization and training iterations on 
larger datasets, DistiIBERT-based models, or TAPT models. In this paper, we experiment with the 
two hyperparameters to investigate these unexplored effects as we tune the models. 

3 Approach 

Baseline The baseline of this project is the DistilBertForQuestionAnswering model fine-tuned on 
in-domain training data as described in the project handout. The baseline obtains F1: 48.43 and EM: 
33.25 on the out-of-domain validation data. 

3.1 Task-Adaptive Pretraining (TAPT) 

Compared to DistilBert[10], a DistilBertForQuestionAnswering model has an extra Question- 

Answering (QA)-specific layer, which is a linear layer on top of DistilBert backbone layers that 
generates start and end logits. Similarly, a DistilBertForMaskedLM model, used in TAPT, is a 
DistilBert model with an extra masked-language-modeling (MLM) head on top. 

Inspired by the paper "Don’t Stop Pretraining"[5], we adopt TAPT via continued pretraining with 
MLM heads. We take a model, initialize MLM heads, train with unlabeled, task-relevant corpus, 

and convert the resulting model into a QA-model structure. This completes the TAPT continued 
pretraining process (written simply as "pretraining" from now on) during which the model should be 
able to learn more out-of-domain knowledge. The MLM objective allows the model to effectively 
augment the pretraining data sets, as mentioned in the paper. All models are pretrained on unlabeled 
out-of-domain training data, which is generated by extracting and tokenizing all contexts, questions, 
and answers. The code for generating this unlabeled data in our original script, tapt . py. 

We test two ways of implementing TAPT: with and without the baseline model. We first try TAPT 
on the baseline model to see if it boosts the performance. Next, we apply it to the DistilBert model. 
Then we compare the performance of all pretrained models on out-of-domain validation data and 
pick the best one to be finetuned later. 

TAPT with the baseline model To utilize the in-domain knowledge learned by the baseline model 
during finetuning, we build a new pretrained model on the baseline model. This original approach 
is shown in Appendix A. We first initialize a DistilBertForMaskedLM model, which is created by 
taking the backbone layers (self .distilbert) from the baseline and initializing MLM heads. 
Then, this MLM model is trained with out-of-domain training data. Then, we load the shared weights 
(backbones) from the now trained DistilBertForMaskedLM model, stored in self .distilbert, to 

our baseline model. In this step, the top QA-specific layers from the baseline model are essentially 
stacked on top of self.distilbert. Then, this final model is fine-tuned with out-of-domain 
data. The resulting model is written as Pretrain_Baseline_oodomain + Finetune_oodomain 
in Appendix B. Since this resulting model does not outperform the baseline model, we stop exploring 
this TAPT method and switch to the TAPT on DistilBert approach. 

TAPT without the baseline model TAPT without the baseline model only has two main differences 
from the previous approach: (1) the QA-specific layers are initialized randomly instead of coming



from the baseline model, and (2) augmented training data are used in both pretraining and finetuning. 
Augmented data is used here because there is very little out-of-domain training data. In summary, 
this TAPT approach consists of: initializing MLM head on DistilBert, training it with augmented 
unlabeled out-of-domain data, taking its backbone and combining with initialized QA-layers, and 
fine-tuning with augmented labeled out-of-domain data. Note that finetuning was done for comparison 
purposes only - the pretrained model consists of all steps up until finetuning. We decide to use this 
approach in our final model. The general training scheme can be found in Figure 1 below. 

For this part, we use Finetune_augoodomain (back translation), an uncased DistilBert- 

ForQuestionAnswering model finetuned with augmented out-of-domain data, as a benchmark to 
examine the effect of TAPT. 
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Figure 1: Training schemes. (1) Baseline model: one pretraining step (yellow arrow) with a large 
amount of general text (DistilBert) and one finetuning step (green arrow) on in-domain data, (2) 

Section 4.1.1: one TAPT step (red arrow) on baseline model with unlabeled out-of-domain 

data and one finetuning step on labeled out-of-domain data, (3) Section 4.1.2: one TAPT step 
on uncased DistiIBERT model with out-of-domain data and one finetuning step with augmented 
out-of-domain data 

3.2 Data Augmentation on Limited Out-of-domain Train Set 

One challenge in this project is the limited amount of out-of-domain training datasets, DuoRc, RACE, 
and RelationExtraction, each with about 127 question-and-answer pairs. To cope with the difficulty 
of limited data, we explore data augmentation in two places. First, for pretraining MLM models, 
we augment the context and question (unlabeled) data from the original out-of-domain training 
sets. Since each context instance is very long, we break them into shorter sentences, which are 

then augmented to 10 folds the size of the split sentences. Thus, the model can learn more general 
language information through TAPT, specifically in tasks DuoRc, RACE, and RelationExtraction. 
Second, to obtain a larger out-of-domain training set for finetuning, we augment questions to 10 folds 
and label them with the correct answers to the original questions. For finetuning training data, we 
only augment the questions because changing the context or the answer will change the resulting 
answer from the model. 

We explore four data augmentation techniques in NLP: 1) word replacement by similar embeddings 
using Word2Vec 2) word replacement by a formal synonym model like WordNet 3) synonym 
replacement from Easy Data Augmentation techniques (EDA SR), which is based on WordNet with 
more randomness in implementation 2); 4) back translation techniques built on top of the Google 
Translation API. All implementations are from the library textaugment. [12] [8] We do not use 

random swap (RS), random deletion (RD), and random insertion (RI) from EDA as they would 

change the questions drastically. Furthermore, the back translation method translates each question to 
one of the top ten high-resource languages and then translates it back to English. 

From initial observation, we see that Word2Vec and back translation methods are time-consuming. 
We also observe that Word2Vec tends to produce nonsensical sentences. Considering running time, 
we are left with EDA SR and WordNet. Because EDA SR has more randomness and thus produces 
more unique augmented sentences, we only use EDA SR for pretraining augmentation. We use all 
four methods in the finetuning stage to compare their performances.



Data augmentation is implemented in aug_context.py and aug.py. Contexts are augmented 
with the EDA SR technique. After removing duplicated results, we obtain 38,660, 22,684, and 

1,415 context sentences for DuoRC, RACE, and RelationExtraction, respectively. We combine 

these augmented contexts with augmented questions into a giant unlabeled dataset for TAPT. For 
questions, they are augmented and assigned the correct answer label. In order to avoid having many 
same augmented sentences, we introduce different probability thresholds to produce augmented 
sentences when using Word2Vec, WordNet, and EDA SR. With augmentation, we obtain over 1,000 

question-and-answer pairs for the finetuning out-of-domain training data. 

3.3. Hyperparameter Tuning & Ensemble Method 

The main hyperparameters we experiment with are the number of re-initialized blocks and the number 
of training epochs. For re-initialization, the parameters of the top N transformer blocks are replaced 
with weights from the original DistiIBERT model, which follow a normal distribution with 0 mean 
and standard deviation of 0.02. The number of epochs is also varied. Models are on default run with 
3 epochs. All of the hyperparameters are evaluated on the out-of-domain validation sets assuming 
that they are good representations of the test data sets. 

In the final step, we create two different ensemble methods to fully take advantage of the prediction 
power of the models we built. First, in the "Simple" approach, we create ensemble predictions 
from three different models based on the probabilities they output for each prediction. If the 
predictions from all of the three models match, then we are confident that they generate the correct 
answer and keep the prediction. Otherwise, the method selects the prediction with the highest 
probability, computed from taking the softmax of all scores (implemented in modified function 
postprocess_qa_predictions in util.py). The "Weighted Average" ensemble method takes the start 
and end logits of three different models and takes their weighted average. The most weight is placed 
on the model with the highest F1 score and the least weight on the lowest one. The code for this 
portion is written from scratch (ensemble.py, ensemble_weighted. py). 

3.4 Overall Model Structure 

To summarize the steps, a "TAPT-model" consists of TAPT applied to DistilBert model, which is 
then finetuned twice. First, the pretrained model is finetuned on in-domain training data so that it can 
learn general language distributions. Then, it goes through a second-stage finetuning on augmented 
out-of-domain training data to expose it to out-of-domain distributions. Various models like "TAPT- 
models" with different data augmentation techniques and models with different hyperparameters are 
combined through the ensemble method to generate the final model. 

4 Experiments 

4.1 Data 

In this project, we are provided with three in-domain reading comprehension datasets and three 
out-of-domain datasets. For the baseline, we train the model using the in-domain datasets: Stanford 

Question Answering Dataset(SQuAD)[13], Natural Questions[14], and NewsQA[15], each with 

50,000 examples. For TAPT, we use the augmented unlabeled out-of-domain datasets: DuoRC (~ 
40,000), RACE(~ 23,700), and RelationExtraction (~ 2,400). (The numbers are not exact due to 

the randomness in the data augmentation algorithms.) For finetuning, we use augmented labeled 
out-of-domain training set from the four data augmentation techniques and compare their impact on 
the dev scores. For evaluation of each model, we use the out-of-domain validation sets, each with 

about 128 points. Lastly, three final candidate models are assessed on the out-of-domain test sets to 
get unbiased estimates of their performances. 

4.2 Evaluation method 

EM (Exact Match) and FI scores across the entire out-of-domain validation set are used as metrics to 

compare the performance of the created models against the baseline model. The F1 score balances 
precision and recall by taking their harmonic mean. EM determines whether the produced output is 
an exact match to the correct label.



4.3 Experimental details 

Task-Adaptive Pretraining (TAPT) The setup of our experiments for the two TAPT methods 
are shown in Figure 1. Each TAPT is performed with 3 epochs over the unlabelled training text, 
a learning rate of le-4 and a masking probability of 0.15, which is proposed by Gururangan et al. 
[5]. For TAPT without baseline, we try two augmented out-of-domain texts for pretraining: (1) 
questions augmented 10-fold with back translation, and (2) contexts and questions augmented with 
EDA 10-fold. For finetuning, 10-fold question-augmented out-of-domain text with back translation is 
used. This experiment helps us find the best pretrained model to use for the next steps. 

Data Augmentation Technique Selection in Finetuning In this section, we want to answer two 
questions: 1) Does text data augmentation improve performance? 2) If so, which augmentation 
technique gives the best performance? Specifically, we finetune the baseline model using the original 
out-of-domain training set and the augmented out-of-domain training sets obtained from the four 
augmentation techniques. The results are shown in Table |. We then run the same set of experiments 
on the top of the TAPT pretrained models, shown in Table 2. For each technique, the out-of-domain 
data used during the second finetuning stage is augmented. All the experiments use the default 
learning rate (3e-5), number of epochs (3), batch size (16), etc. 

Hyperparameter Tuning & Ensembling Method Hyperparameter tuning is performed on TAPT 
models and uncased DistiIBERT models as listed in Appendix E and F. Models are on default run 
with 3 epochs. In addition, for each data augmentation method, the TAPT models are run with 
6 epochs during the second fine-tuning step to see if increasing the number of epochs improves 
the performance. The uncased model is also finetuned with 3, 6, and 9 epochs, with 3 epochs 
being the baseline, to understand the impact of training iterations on non-TAPT models. We apply 
re-initialization right before the second finetuning process of TAPT models, where the top | or 2 
blocks are reset. Furthermore, the uncased DistiIBERT model is finetuned on in-domain training 

data with 1,2, and 3 blocks re-initialized to further understand the effect of the hyperparameter on 
non-TAPT models. All of the other hyperparameters, such as learning rate and batch size, are kept 
the same as the default values listed in args. py. 

Lastly, we try ensembling multiple combinations of created models with the Simple and the Weighted 
Average methods. The combinations that are tested are listed in Appendix D. We then pick the final 
model that has the highest F1 score. 

4.4 Results ! 2 

Task-Adaptive Pretraining (TAPT) Appendix B shows the results for continued pretraining on 
the baseline model on out-of-domain training data. TAPT enhances the baseline model’s performance 
only on relation_extraction, while worsening it on all other out-of-domain tasks. These results 
indicate that TAPT on the baseline model does not help it learn more out-of-domain knowledge. 

Results for TAPT without the baseline model are shown in Appendix C. Both of the tested TAPT 
models performed better than the benchmark, which suggests that TAPT was beneficial when applied 
to DistilBert. The TAPT model pretrained on out-of-domain data with contexts and questions 
augmented performed the best, so it was chosen as the final pretrained model. Therefore, we believe 
that augmentation on both contexts and questions also makes the pretraining on limited training data 
more effective. 

Data Augmentation For Second Stage Finetuning Results from Table 1 show that all data aug- 
mentation techniques help boost the baseline’s performance. In fact, data augmentation is necessary 
because finetuning directly on the unaugmented out-of-domain decreases the F1 score. Augmentation 
based on Word2Vec performs the worst, while both WordNet and EDA SR increase F1 score by 
over 2.1%. One possible reason is that Word2Vec is more likely to return nonsensical augmented 
sentences. 
  

'The naming system used in this project is as follows: ( each training stage is separated by "+" Q@ the 

training data used is specified after "_". For example, Baseline + Finetune_augoodomain (WordNet) 
means load the Baseline model, and then finettune it on augmented out-of-domain training set with the 

WordNet augmentation technique. 

> Test scores are provided in 4.4. All the other scores reported in this section are dev scores.



  

Models Fl EM 
  

  

  

  

  

Baseline 48.43 33.25 

Baseline + Finetune_oodomain 48.16 33.25 

Baseline + Finetune_augoodomain (Word2Vec) 48.53 33.77 

Baseline + Finetune_augoodomain (WordNet) 49.47 35.08 

Baseline + Finetune_augoodomain (EDA SR) 49.31 34.29   
Baseline + Finetune_augoodomain (back translation) 48.85 33.25 
  

Table 1: Baseline + Data Augmentation Finetuning Experiments Comparison 

  

  

  

  

  

  

  

Models Fl EM 

Pretrain_augoodomain + Finetune_indomain 48.45 32.20 

Pretrain_augoodomain + Finetune_indomain + 

Finetune_oodomain 48.41 32.46 

Pretrain_augoodomain + Finetune_indomain + 

Finetune_augoodomain (Word2Vec) 48.26 32.20 

Pretrain_augoodomain + Finetune_indomain + 

Finetune_augoodomain (WordNet) 49.45 34.29 

Pretrain_augoodomain + Finetune_indomain + 

Finetune_augoodomain (EDA SR) 51.16 36.13 

Pretrain_augoodomain + Finetune_indomain + 

Finetune_augoodomain (back translation) 49.52 35.34 
  

Table 2: TAPT on augmented oodomain (both contexts and questions augmented) + Data Augmenta- 
tion Finetuning Experiments Comparison 

When using the best TAPT model and repeating the experiments in Table 2, we see that the 
results show a similar pattern. The last two models have particularly good performances. 
Pretrain_augoodomain + Finetune_indomain + Finetune_augoodomain (EDA SR) has 
the best validation score of 51.16 F1 score and 36.13 EM score. 

  

  

  

  

  

Method Model 1 Model 2 Model 3 Fl EM 

TAPT (WordNet) + TAPT TAPT 
Simple reinit 1 + epoch 6 (back translation) (EDASR) 50.49 35.60 

TAPT TAPT 
Simple Baseline (back translation) (EDASR) 52.57 37.96 

TAPT (WordNet) + 
Weighted reinit 1 + TAPT TAPT 
Avg epoch 6 (back translation) (EDASR) 44.71 30.37 

Weighted TAPT TAPT 
Avg Baseline (back translation) (EDASR) 39.55 25.39 
  

Table 3: Ensemble Model Results 

' TAPT: Pretrain_augoodomain + Finetune_indomain + Finetune_augoodomain with 

no re-init, 3 epochs 

Hyperparameter Tuning, Ensembling Method, and Final Model Re-initialization of top trans- 
former blocks hurt performance most of the time on both TAPT models and uncased-DistilIBERT- 
based models, as shown in Appendix E. Training models for more epochs had minimal positive 
impacts (less than 0.01) on most of the TAPT models. However, when the baseline model is trained 

for longer (6 epochs), its Fl score increases by 0.77 and its EM score by 0.26. When the number of 
epochs was increased to 9, the scores remained the same again.



  

Models Fl EM 

Single Best 58.27 41.49 

Ensemble Best 60.42 43.42 

Ensemble Second-Best 60.42 43.42 

  

  

  

  

Table 4: Final Candidate Model Performance on Test Set 

For creating ensembles, we first combine three models with the highest scores so far, TAPT EDA 
SR, TAPT back translation, and TAPT WordNet model with 1 block re-initialized. First, we test the 

Simple method of creating predictions from highest probabilities. To our surprise, this decreases the 
F1 and EM scores compared to the best single model. However, when the baseline is included in 
the ensemble, the performance shoots up, producing our final model. The weighted average method 
consistently produces models with lower performance than the simple method. Other model and 
ensemble method combinations that are tested and their performances can be found in Appendix D. 

Test Leaderboard Results We test the ensemble model with the best dev score, the single model 
with the best dev score, and the ensemble model with the second-best dev score, on the test set 

(Baseline + FT_oodomain (Word2Vec), Baseline + FT_oodomain + epoch 9, TAPT (EDA SR)). The 

final model we choose is the ensemble of baseline + TAPT (back translation) + TAPT (EDA SR) 

model with test Fl score of 60.42. This model has a high EM score compared to others on the leader 
board, likely due to the ensembling method selecting the predictions with the highest probabilities. 
The scores of the final three candidate models on the test set are listed in Table 4. 

5 Analysis 

Method Analysis In our experiment, we notice that TAPT on baseline worsens the model’s perfor- 
mance. This result agrees with the conclusion from the paper[5] that cross-task transfer is sometimes 
harmful. We conclude that adapting a large but general corpus (in-domain data in this case) does not 
necessarily improve the model’s performance on all tasks. 

The TAPT model is pretrained on oodomain contexts and questions, augmented by EDA SR. And we 
see that EDA SR often performs the best with TAPT. Thus, we conjecture that TAPT models learn 
better when their pretraining and finetuning stages see data augmented with similar techniques. 

Regarding hyperparameters, increasing the number of training epochs shows a positive impact on 
DistilBert whereas the impact is minimal on TAPT models. We hypothesize that this is because 
the TAPT models have already been pretrained and have their data augmented to improve their 
performance on fewshot learning. Because we see score improvements on the uncased model, we 
believe that training for longer does improve performance even when the model is trained on larger 
datasets (the uncased models were finetuned on in-domain data). Another pattern observed is that re- 

initialization rarely helps. For TAPT models, this may be because the data, despite being augmented, 
is not enough to produce appropriate weights from re-initialized weights. 

Prediction Analysis To better understand how our model works and why it fails, we conducted 
error analysis on the prediction results. First, Figure 2 shows that our best model outperforms the 
baseline model on DuoRC and RelationExtraction, yet achieves a slightly lower F1 score on RACE. 
This may be a result of TAPT, which may have hurt RACE performance due to cross domain training. 

We then look at the difference between our predictions and the true answers. Figure 3 shows the 
relationship between F1 score and length difference: predicting a slightly longer answer does not 
hurt F1 score as much as predicting a shorter answer. We observe that the best model tends to guess 
an average length rather than adapt to cases where the true answers are very short or very long, which 
is further confirmed by the third plot. Breaking down the average length of predictions and answers 
of the three datasets, we can see that the average prediction length (blue) is between 3 and 5 in Figure 
3. The values are higher than those of the answer length (orange), considering cases of extremely 
long answers are rare.



We also conduct detailed analysis on 5 wrong predictions of questions in out-of-domain validation 
set (see Appendix G). The main reasons why the model fails is that the model uses wrong part of 
the context to find the answer as this case can be seen in four out of five examples. When the model 
searches answers by simply looking for exact same words in context and questions instead of looking 
for lexical variation, the wrong part of context is likely to be used for prediction. Also, when an 
answer needs multiple sentence reasoning, the model is likely to miss some pieces of evidence and 
give the wrong answer. Lexical variation can be learned by continued pretraining on related context. 
The architecture of the model might needs to be changed to improve the model’s ability in logical 
reasoning and multiple sentence reasoning. For example, a model with memory of larger context may 
have better performance in multiple sentence reasoning. 
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Figure 3: Analysis on length difference between true answer and prediction 

@ FI scores against length difference between and answer and prediction @) Length difference 

between answer and prediction against true answer length on all out-of-domain validation sets @) 
Average length of predictions and answers broken down by three validation sets (Blue line indicates 

prediction length and orange line indicates answer length) 

6 Conclusion 

In this paper, we investigate whether (1) task-adaptive pretraining (TAPT), (2) data augmentation, and 

(3) hyperparameter tuning/ensemble methods can improve a model’s performance on out-of-domain 
question answering task. By combining these techniques, we are able to build a model that achieves 
Fl = 60.42 and EM = 43.42 on the test set. 

From our experiments, we learned that TAPT can boost performance when applied to models that 
have not been finetuned. However, it can be harmful when there is cross-task transfer. Our experiment 

also shows that data augmentation on training data improves performance. Among the four data 
augmentation techniques we used, EDA SR is the most effective, while Word2Vec is the least effective. 
We conclude that data augmentation for limited out-of-domain data is not only beneficial but also 
necessary when finetuning to adapt to the unseen domain. For future work, we could experiment with 

the number of words to replace in augmentation. More words replaced might increase the robustness 
of the QA system but might also introduce noise. For hyperparameter tuning, we show that higher 
number of training epochs improves performance, but the degree of improvement depends on how 
much knowledge the model has before training. Our results also show that re-initialization does not 
help, and the limited amount of training data is the possible reason. Further studies with larger data 
for finetuning could help confirm our hypothesis about the benefits of re-initialization.
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A TAPT method in Section 4.1.1: loaded the shared weights from a 

pretrained MLM model to the baseline QA model. 

  

  

  

QA params ~~ 

QA params Self.distilbert 
  

  

Self.distilbert   

MLM params 
        

Self.distilbert       
Grey: from baseline. Pink: from pretrained MLM 

B_ Comparison of models in Section 4.1.1 TAPT with the baseline model 

  

Validation data 

  

  

        

Model all oodomain RARC RelationExtraction DuoRc 

Finetune_indomain F1: 48.43 F1: 40.04 Fl: 66.51 Fl: 38.59 

(Baseline) EM: 33.25 EM: 28.12 EM: 42.19 EM: 29.37 

Pretrain_Baseline_oodomain + F1: 43.03 F1: 29.63 F1: 66.78 Fl: 32.52 

Finetune_oodomain EM: 30.10 EM: 18.75 EM: 43.75 EM: 27.78 

  

C Comparison of models in Section 4.1.2 TAPT without the baseline model 

  

  

  

  

Model Fl EM 

Finetune_augoodomain (back translation) 

(Benchmark for TAPT) 26.68 17.80 

Pretrain_augoodomain (only questions augmented) + 
Finetune_augoodomain (back translation) 28.51 17.54 

Pretrain_augoodomain (both contexts and questions 
augmented) + Finetune_augoodomain (back translation) 30.05 18.85 
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D_ Ensemble Results Comparison 

  

  

  

  

  

  

  

  

  

  

  

Method Model 1 Model 2 Model 3 Fl EM 

TAPT (WordNet) + TAPT TAPT 
Simple reinit 1 + epoch 6 (back translation) (EDA SR) 50.49 35.60 

TAPT TAPT 
Simple Baseline (back translation) (EDA SR) 52.57 37.96 

Baseline + Baseline + TAPT 

Simple FT_oodomain (Word2Vec) FT_oodomain+epoch9 (EDASR) 52.12 36.91 

TAPT (WordNet) + 
Weighted — reinit 1 + TAPT TAPT 
Avg epoch 6 (back translation) (EDA SR) 44.71 30.37 

Weighted TAPT TAPT 
Avg Baseline (back translation) (EDA SR) 39.55 25.39 

Weighted Baseline + Baseline + TAPT 
Avg FT_oodomain (Word2Vec) FT_oodomain+epoch9 (EDASR) 38.46 22.51 

TAPT TAPT 
Simple TAPT (WordNet) (back translation) (EDA SR) 50.93 35.34 

Baseline + TAPT 

Simple Baseline FT_oodomain (WordNet) (EDASR) 50.30 36.91 

TAPT Baseline + TAPT 

Simple (back translation) FT_oodomain (WordNet) (EDA SR) 51.11 36.91 

Uncased + TAPT 

Simple Baseline FT_oodomain + epoch6 (EDASR) 47.39 35.34 
  

' TAPT: Pretrain_augoodomain + Finetune_indomain + Finetune_augoodomain with no re-init, 3 

epochs 
2 FT_oodomain: Fine-tuned on out-of-domain datasets 
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E Hyperparameter Tuning: Reinitialization Performance Plots 
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F Hyperparameter Tuning Results 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Pre-train | Fine-tune 1 | Fine-tune 2 | Data Aug. Method | Reinitialization | Epoch Fl EM 

3° 48.43 | 33.25 

0 6 49.20 | 33.51 

z 9 49.20 | 33.51 
None In-domain None None i 3 46.80 | 31.15 

2 3 37.80 | 22.25 

3 3 33.21 | 19.63 

0 3F* 48.26 | 32.20 

AugOOD | In-domain AugOOD Word2Vec ° TRO aes 

1 6] 48.09 | 34.55 
2 3 43.81 | 30.89 

6 44.16 | 30.89 

0 BRP 49.45 | 34.29 

AugOOD | In-domain AugOOD WordNet ° S05 aOR 

I 6] 50.29 | 35.08 
2 3 44.50 | 29.32 

6 44.60 | 30.89 

0 Br* 51.16 | 36.13 

AugOOD | In-domain | AugOOD EDA SR of ae 
: 6 | 48.63 | 33.51 
2 3 43.74 | 29.84 

6 43.74 | 29.84 

0 3n* 49.52 | 35.34 

AugOOD | In-domain AugOOD back translation ° a 49 

! 6 48.36 | 33.77 

2 3 43.90 | 30.63 

6 44.32 | 30.63                 

“ Represents baseline 
“ Also included in Table 2 
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G_ Examples of Errors in Predictions of Answerable Questions in 

out-of-domain Validation Set 

  

  

  

  

  

  

  

  

  

Shorten Context Question Answer Prediction Slell- 
Deficiency 

When they find themselves in a room 
with trapped rooms all around and below, | Which 
Quentin checks the door in the ceil- | rooms does | Prime all around and | Lexical varia- 

ing... Leaven’s theory that non-prime- | Leaven think | numbers below tion (anatomy) 
numbered rooms are safe is shown to be | are traps? 
incorrect. 

He exemplifies how to test for traps 
. . What do ‘ 

by tossing a boot into the rooms some of Electrochemical Logical reason- 
while holding onto the laces, to Traps ing & Syntac- 

: 2 : the rooms sensor : ae: 
trigger potential traps, figuring that containd tic variation 
the trapped room contains motion detectors. , 

Soon after, Rennes jumps _ into 
a room tested with a boot, and . 

is sprayed in the face with acid. Wh kind acid ll i = 
The others pull him back, but at n omers pus : 

ata AnuIsn AAT AAs Lit of spray ‘ back, but he | Extract key in- 
he dies as the acid corrodes his face and | . acid : . . 

a : ; is Rennes dies as the acid | formation 
the inside of his head.The group decides . . 

. killed by? corrodes his 
that the room must have contained an f. 

: : ace 
electrochemical sensor which Rennes 
missed. 

Leaven reveals herself to excel at mathe- 
matics, and after looking at the numbers on 
a crawlspace, theorizes that when one of | Who has Laateal-reacone 
those numbers is prime, the room is booby- | knowledge Leaven Group = g 
trapped. Leaven’s purpose becomes at- | of the Cube? § 

tempting to crack the Cube’s code, and 
they progress through the cubes. 

Vince Rommel (Ross Hagen) is a good Lexical 
sidehacker runner. Sidehacking is a | Rommel is cadarian 
way of running motorcycle races with | a mechanic Sidehacker (esnomymyy 
a passenger on the sidecar/sidehack,and | and —_ what canner Bike Race a eal le 
Vince is supposed to be one of the best | kind of seHTenia P 
riders....Nero tells Rommel that there’s | racer? : 

reasoning   an upcoming sidehack bike race.         
  

“ Words relevant to the corresponding reasoning type are bold, and words relevant to the predictedanswer are 
underlined 
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