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Abstract

In this project, I used adversarial training and hyperparameter tuning to build a
question answering system that can adapt to unseen domains with only a few
training examples from the domain. From a high-level perspective, there are two
model architectures: the baseline model provided by the starter code and my own
adversarial model. To compare the performance of the two model architectures, I
experiment with ADAM debiasing, various batch sizes, and weight decay tuning.

1 Introduction

One of the more challenging tasks in natural language processing is to build a question answering
system that can generalize well to unseen domains and data. Recent advancements in the natural
language processing have delivered neural question answering models that can outperform humans
on datasets with discrete domains, like SQuADI[1], which is a dataset based on Wikipedia. However,
for real-world applications, we need our question answering systems to generalize to numerous
domains, and ideally, to hundreds if not thousands of domains. Studies over the past few years have
demonstrated that state-of-the-art models oftentimes will overfit on the training data and struggle to
generalize to broader datasets without additional training and finetuning [2].

To prevent question answering models from overfitting on their training data and domains,
it is important that the models are able to learn domain invariant features. By learning domain
invariant features, a question answering model should be able to perform better on new, unseen
datasets because its features should not be overfit on domain-specific information. One way to learn
domain invariant features is to use adversarial training [3]. The goal of domain adversarial training
is to encourage the model to learn domain invariant features that avoid encoding domain-specific
knowledge and information.

In this project, I built a question answering system that aims to generalize well on unseen
out-of-domain data by using adversarial training [3] and hyperparameter finetuning. For my question
answering system, I drew inspiration from Lee et al.[4] and re-implemented the adversarial QA
system that they developed for their MRQA 2019 submission.

2 Related Work

Pre-trained Language Models

Over the past few years, the dominant, state-of-the-art model architectures in natural language
processing have been built upon the transformer model that was introduced in 2017 by Vaswani et
al[5]. The original transformer architecture that was introduced consisted of both an encoder and
decoder model and was based solely on attention mechanisms. Building on top of the transformer
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Figure 1: The overall training procedure for the question-answering system that uses adversarial
training and is proposed by Lee et al.[4] for their MRQA 2019 submission. The diagram is humbly
borrowed from their paper.

architecture, Devlin et al. introduced BERT[6], the Bidirectional Encoder Representations from
Transformers in 2018. BERT proposed a novel way to pre-train deep bidirectional representations
from unlabeled text by jointly conditioning on both the left and right context of a given input sample
throughout all of the layers in the encoder stack [6]. BERT was designed to be be easily fine-tuned
on downstream tasks - such as question answering - by adding one additional output layer.

Domain-agnostic Adversarial Training

In their MRQA 2019 submission, Lee et al.[4], designed a domain-agnostic adversarial training
architecture for the question answering task, which is outlined in Figure 1. Their model consisted
of a standard QA model, which was built on top of BERT[6], and a second discriminator model,
which was a simple three-layer neural network classifier. During training, the standard QA model
and discriminator model constantly compete, with the QA model trying to identify the start and end
positions of an answer span and the discriminator model trying to identify the domain label of the
QA model’s question-answer pair. Their architecture showed better performance than the baseline
model, which was a standard QA model only.

Hyperparameter Training and Finetuning

Despite the success of the original BERT[6] model in NLP tasks, the original authors omitted ADAM
debiasing from their implementation, a decision which has shown to cause instability in BERT’s
downstream performance [7]. In their paper, Zhang et al.[7] observed that adding back the ADAM
debiasing to BERT’s optimizer improved the BERT model’s stability and performance. Lee et al.’s[4]
QA model reused the original BERT ADAM optimizer, which omits ADAM debiasing. In my
experiments, I am including ADAM debiasing for all of my models as it has shown to increase model
performance and stability.

3 Approach

3.1 Main approach

In this project, I experimented with two types of question answering systems: the baseline model
and an adversarial model. For both models, I applied ADAM debiasing to increase stability and



Dataset Question (Q) Context (C) Train Dev Test

SQuAD[1] Crowdsourced Wikipedia 50,000 10,507 -
in-domain NewsQA [9] Crowdsourced News articles 50,000 4,212 -
Natural Questions [10] Search logs Wikipedia 50,000 12,836 -
DuoRC [11] Crowdsourced Movie plots 127 126 1,248
oo-domain  RACE [12] Domain experts ~ Examinations 127 128 419
RelationExtraction [13]  Synthetic Wikipedia 127 128 2,693

Table 1: Statistics for datasets used for building the QA system for this project. Question and Context
refer to data sources from which the questions and passages were obtained. Table borrowed from [14]

performance. Furthermore, I experimented with a batch sizes of 8, 16, and 32. Lastly, I experimented
with removing weight decay on the bias and layer norm weight parameters. The code for my baseline
and adversarial models is available at https://github.com/virattt/robustqa.

3.2 The baseline model

As is mentioned in the default final project handout, the baseline model fine-tuned DistilBERT][8],
which is a smaller, distilled version of BERT[8]. Furthermore, the loss function used was the negative
log-likelihood (cross-entropy) loss for the start and end positions of a given question’s answer span
from the dataset.

3.3 The adversarial model

For the adversarial model, I re-implemented the question answering system that Lee et al.[4]
proposed in their paper for MRQA 2019 and modified it to fit our project’s experimentation flow.
The model is divided into two components, a standard question answering model and a discriminator
model, which is a three-layer neural network classifier.

The QA model is trained the same way as the baseline model above: to predict the start
and end positions of a given question’s answer span within a context passage. The discriminator
model was trained to predict the domain of the QA model’s hidden representation state. The QA
model’s hidden representation was provided by the [CLS] token that the BERT[6] / DistilBERT[8]
model produces at the end of every forward pass during training.

The goal of the QA model was to "fool" the discriminator model such that the latter was
unable to predict the former’s domain label. Once the discriminator model was unable to predict the
QA model’s domain label, then it was assumed that the QA model had learned domain-agnostic
features [4].

4 Experiments

4.1 Data

For my experiments, I trained my QA system on three in-domain reading comprehension datasets
(SQuADI[1], NewsQA[9], and Natural Questions[10]). There are also three out-of-domain datasets
(DuoR(C[11], RACE[12], and RelationExtraction[13]) that were used for evaluation. For the three
in-domain datasets, there are separate indomain_train and indomain_val sets, which I used for
training. Similarly, for the three out-of-domain datasets, there were separate oodomain_train and
oodomain_val sets. For validation, I only used the oodomain_val. The oodomain_train set was
unused. Additionally, the out-of-domain dataset had an oodomain_test set, which is a held-out test
set that was used for evaluation. An overview of the datasets is provided above in Table 1.

4.2 Evaluation method

The evaluation metrics used were F1 score and Exact Match. F1 score is the harmonic mean between
precision and recall; Exact Match is a stricter, binary measure that evaluates whether the QA system’s
answer output exactly matches the ground truth answer.



Name ADAM Debiasing Batch Size Weight Decay

Model 1 v 32 X
Baseline Model 2 * v 16 X
Model 3 v 8 X
Model 4 Ve 8 v
Model 5 v 32 X
Adversarial Model 6 v 16 X
Model 7 v 8 X
Model 8 v 8 v

* Model 2 is the default baseline model that was provided by the starter code.

Table 2: A breakdown of the eight models that were implemented and used for experimentation.
ADAM debiasing was applied to all models and then various combinations of batch sizes and weight
decay were used.

Baseline Model For the baseline model, the loss function is the sum of the negative log-likelihood
for the start and end positions of the prediction output.

The loss equation £ for negative log-likelihood was borrowed from Lee et al.’s paper [4]
and shown in (3), where [ is the domain category and h € R? is the hidden representation of both the
question and the passage. Note that the hidden representation h was captured in the [CLS] token
representation that was produced by the final layer of the DistilBERT[8] model.
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Adversarial Model For the adversarial training model, I used two loss functions and summed them
together to compute the total loss for the entire QA system: the sum of the negative log-likelihood for
the start and end positions of the output (3) and the minimum of the Kullback-Leibler divergence as
specified in Lee et al. [4]. The loss function for the adversarial model L£g 4 was also borrowed from
Lee et al.’s paper and is defined in (2), where N is the total number of in-domain examples, y; ¢ is
the start index of the answer in the passage and y; . is the end index of the answer in the passage.
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Lastly, the loss of the discriminator model, which minimizes the Kullback-Leibler divergence is
specified in (3) and provided by Lee et al [4]. In their adversarial QA system, Lee et al. alternated
between optimizing the QA model and the the discriminator [4] and I did the same in my adversarial
system.

K N
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Then, the total loss for the adversarial model is Lg 4 + ALg4;s Where X is a hyperparameter that allows
for controlling the importance of the discriminator loss [4].

4.3 Experimental details

I ran four experiments each on the baseline model and the adversarial model for a total of eight
experiments. A full breakdown of the individual models that were used for experimentation is
provided in Table 2.



Name Flya EMya Flest EMist ADAM Debiasing Batch Size Weight Decay

Model1 47.16 31.68 - - v 32 X
Baseline Model 2* 48.35 32.46 - - v 16 X
Model 3 46.28 30.89 - - v 8 X
Model 4  46.82 30.89 - - v 8 v
Model 5 46.80 30.89 - - v 32 X
Adversarial Model 6 49.24 33.51 58.35 40.459 v 16 X
Model 7 4793 33.77 - - v 8 X
Model 8 47.73 30.10 - - v 8 v

* Model 2 is the default baseline model that was provided by the starter code.

Table 3: The evaluation results produced by the eight models after experimentation. The models were
trained for 3 epochs with a learning rate of 3e-5 [4]. The val result were produced by evaluating
the models on the oodomain-val dataset. The test result was produced by evaluating model 6 on the
RobustQA test leaderboard.

From a high-level the four experiments consisted of:

1. Debiasing the ADAM optimizer
2. Varying the batch size between 32, 16 (default), and 8
3. Applying weight decay to the bias and layer norm parameters

All models were trained for three epochs each and a standard learning rate of 3e-5 was used, as
proposed by Lee et al. [4] in their domain-agnostic question answering system. A full breakdown of
the individual models that were used for experimentation is provided in Table 2.

ADAM Debiasing Omission The inclusion of ADAM debiasing was inspired by the work of
Zhang et al. [7], in which they determined that omitting ADAM debiasing can decrease model
stability and performance. By default, the baseline model’s optimizer already included ADAM
debiasing as it used HuggingFace’s AdamW optimizer from the transformers library. That being
said, the adversarial model, which was derived from Lee et al.’s [4] implementation, did not include
ADAM debiasing and instead used BertAdam from the pytorch-pretrained-bert library. As a
result, I applied ADAM debiasing on all of the adversarial model experiments, as well.

Batch Size Tuning It has been suggested in previous research that larger batch sizes may reduce
the generalizability of a model [15][16]. The default batch size of the baseline model was 16 and the
batch size that Lee et al. [4] used was 64. Even though Lee et al. used a batch size of 64 for their
model, I decided to use a batch size of 16 for the "baseline" adversarial model that I built to match
the baseline model that was provided by the starter code. Then, to determine the effect of batch sizes
on generalizability, I experimented with reducing the batch size for both models to 8 and increasing
the batch size to 32.

Weight Decay The default baseline model did not include any weight decay for the bias and layer
norm parameters in the starter code. On the other hand, Lee et al.’s[4] adversarial model includes
weight decay for the bias and layer norm parameters. As a result, I experimented with adding weight
decay for the bias and layer norm parameters on both the default baseline model and the adversarial
model.

4.4 Results

The overall results for the experiment are outlined in Table 3. As demonstrated, model X produced
the best F1 score and model Y produced the best EM score. Overall, the adversarial models
performed marginally better than the baseline models. Although the differences in F1 score is small
across the board, there is an almost 10% delta in the EM scores of the best-performing adversarial
model and the worst performing baseline model.

I expected the adversarial model to perform better than the baseline model, similar to how Lee et al.’s



[4] adversarial model performed significantly better than the baseline model that was provided for
MRQA 2019. Even though my adversarial model performed better than the best baseline model,
the marginal performance increase is disappointing as I expected the adversarial model to perform
significantly better than the baseline model.

A few possible reasons for why my model only performed marginally better as opposed to
significantly better (as Lee et al’s [4] did) could be due to my model architecture being smaller
(DistilBERT[8] vs. BERT[6] ) and the number of training examples used being fewer. Furthermore,
the MRQA training set included six out-of-domain datasets whereas our project only included three
out-of-domain datasets. It could be the case that doubling the number of domains (from three to
six) may have allowed Lee et al’s [4] adversarial model to more effectively learn domain-invariant
features.

Batch Size Tuning The results suggest that varying the batch size did not significantly help the
models generalize more effectively. In fact, decreasing the batch size from 16 to 8 resulted in worse
performance on both the baseline and adversarial models. Furthermore, increasing the batch size
from 16 to 32 also resulted in worse performance; the drop in performance was more severe in
the adversarial regime than in the baseline regime. Determining the optimal batch size for a given
training regime is an inexact science and it could be that a batch size of 16 is the "sweet spot" for the
pre-trained DistilBERT([8] architecture that I used in my experiments.

Weight Decay The results suggest that applying weight decay did not significantly help the model
generalize more effectively. In fact, adding weight decay slightly reduced the performance of the
adversarial model and slightly improved the performance of the baseline model. That being said, the
deviation in performance was less than .20 F1 points for both the adversarial model and baseline
model, so my conclusion is that the effect of weight decay on my models was negligible. A possible
reason for this could be that weight decay may be less impactful on small model architectures like
DistilBERT[8] and that we may only see the benefit of weight decay on larger model architectures
like that of BERTI[6].

5 Analysis

I inspected the outputs of my best-performing model, Model 6, an adversarial model. The model’s
predictions began to include some part or an exact match of the ground-truth answer as training steps
increased, as expected. Instead of analyzing the exact match predictions, I am highlighting some of
the more interesting and unique predictions.

5.1 Multiple similar answer options

Question: Which river separates the bronx in new york city from manhattan island?

Context: The Hudson River separates the Bronx on the west from Alpine , Tenafly and
Englewood Cliffs in Bergen County , New Jersey ; the Harlem River separates it from
the island of Manhattan to the southwest ; the East River separates it from Queens to the
southeast ; and to the east , Long Island Sound separates it from Nassau County in western
Long Island . Directly north of the Bronx are ( from west to east ) the adjoining Westchester
County communities of Yonkers , Mount Vernon , Pelham Manor and New Rochelle . (
There is also a short southern land boundary with Marble Hill in the Borough of Manhattan ,
over the filled - in former course of the Spuyten Duyvil Creek . Marble Hill ’s postal ZIP
code , telephonic area codes and fire service , however , are shared with the Bronx and not
Manhattan . )

Answer: Harlem River
Prediction: Hudson River

Analysis: In the context, there are multiple geographical areas that are similar to the ground-
truth answer: "East River", "Hudson River", and "river". One could argue that "Spuyten
Duyvil Creek" is similar as well. Although the model predicted the incorrect answer -
Hudson River - it still managed to generate a prediction relatively close to the ground-truth
answer - Harlem River. I suspect that this may be due to the fact that the model was trained
on word-level embeddings instead of character-level embeddings.



5.2 More detailed predictions

Question: When did beryl markham fly across the atlantic?

Context: When Markham decided to take on the Atlantic crossing , no female pilot had yet
flown non-stop from Europe to New York , and no woman had made the westward flight solo
, though several had died trying . Markham hoped to claim both records . On 4 September
1936, she took off from Abingdon , England . After a 20 - hour flight , her Vega Gull ,
The Messenger , suffered fuel starvation due to icing of the fuel tank vents , and she crash
- landed at Baleine Cove on Cape Breton Island , Nova Scotia , Canada . She became the
first person to make it from England to North America non-stop from east to west . She was
celebrated as an aviation pioneer .

Answer: September 1936
Prediction: 4 September 1936

Analysis: In this example, the model produced a more detailed prediction of "4 September
1936" instead of "September 1936". It may be that the model has learned some date-related
features (day, month, year) and included the "4" as part of its prediction.

5.3 Cryptic context

Question: Who did the minnesota vikings lose to in the super bowl?

Context: BTableB BTrB BThB Game EEThE BThB Date EEThE BThB Winning team
EEThE BThB Score EEThE BThB Losing team EEThE BThB Venue EEThE BThB City
EEThE BThB Attendance EEThE BThB Ref EEThE EETrE BTrB BTdB 01 ! I EETAE
BTdB 0000 January 11, 1970 EETdE BTdB Kansas City Chiefs 02 ! Kansas City Chiefs (
2,1-1)EETdE BTdB 2307 ! 23 — 7 EETdE BTdB Minnesota Vikings 01 ! Minnesota
Vikings (1,0-1)

...truncated text...

Miami Dolphins 03 ! Miami Dolphins ( 3, 2 — 1 ) EETdE BTdB 2407 ! 24 — 7
EETdE BTdB Minnesota Vikings 02 ! Minnesota Vikings (2, 0 — 2 ) EETdE BTdB Rice
Stadium 01 ! Rice Stadium EETdE BTdB Houston , Texas 01 ! Houston , Texas EETdE
BTdB 071882 ! 71,882 EETdE BTdB EETdE EETrE BTrB BTdB 09 ! IX EETdE

Answer: Kansas City Chiefs
Prediction: Miami Dolphins

Analysis: In this example, we have a really complex, non-human-readable context that I am
guessing is a table of scores for past football games. In this case, the model seems to have
picked a random team - "Miami Dolphins" out of the various team names. This example
was pulled from one of the final training steps, which means that the model had almost been
trained for a full 3 epochs by this point. This may have been one of the few contexts that the
model has seen that is not a coherent paragraph and as a result, it failed miserably.

5.4 Questionable ground-truth answer

Question: What is another general name for a religious teacher?

Context: Religious and spiritual teachers, such as gurus, mullahs, rabbis, pastors/youth
pastors and lamas, may teach religious texts such as the Quran, Torah or Bible.

Answer: spiritual
Prediction: lamas

Analysis: In this example, the ground-truth answer is questionable, as it is not immediately
obvious that "spiritual” is a more general name for a religious teacher than "lamas" (or its
singular variant).



6 Conclusion

In this project, I successfully re-implemented the adversarial model that Lee et al. [4] designed
for their MRQA 2019 submission. Furthermore, I made slight modifications to their approach
by adapting their code to our project’s guidelines and experimenting with hyperparameter tuning.
Although the adversarial models performed better than the baseline models, the difference in
performance was not as great as I would have expected. Nevertheless, I consider the marginal
performance improvement that my adversarial model demonstrated to be a satisfactory achievement.
Given the modest number of training domains that I used for my models (three) and that I did not
use the oodomain-train dataset at all for training my adversarial model, the smaller than expected
performance gains make sense.

Future work may include more domains for training so that the adversarial model can learn
more domain-invariant features. Furthermore, one may also include data augmentation and
rebalancing techniques to incorporate training examples from out-of-domain corpora. Lastly, future
work should also include enhancements to the underlying adversarial model itself. The discriminator
model that the adversarial model uses is a simple three-layer feed-forward neural network. One
could make creative hyperparameter tuning adjustments to the discriminator model or even reuse a
pre-trained network and perform fine-tuning.
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