
Building a QA system (IID SQuAD track)

Stanford CS224N {Default} Project

Youssef Aitousarrah & Naoufal Layad
Stanford University (Department of Energy & ICME)
aitous@stanford.edu & nlayad@stanford.edu

Abstract

The ability of reading text and then answering questions about it, is a very chal-
lenging task for machines, because it is requiring both understanding of natural
language and knowledge about the world as well as the context of the question. In
this paper, we will build a QA system for the SQUAD 2.0 dataset, which extends the
original dataset with unanswerable questions. We have already a fully-functional
neural baseline, our goal is to improve this baseline, using new techniques and
models used in high performing SQUAD models. We are also adding some changes
to our models, to see if these changes increase the accuracy of our model. First, we
will extend the baseline model to match the original BiDAF model by including a
character-level embedding layer. Furthermore, we will replace the basic Attention
Layer of our baseline by different dynamic attention layers such as a Dynamic Co-
attention Layer, Self-Matching-Attention Layer as well as adapting transformers
ideas to question answering. We also add another BiDAF layer performing a self
attention process similar to the one between the context and the query. A correct
implementation of these changes improves our model, such as the character-level
embedding layer which allows our model to handle out-of-vocabulary words and
extract information from words’ morphology.

1 Approach

Our baseline model is a hierarchical multi-stage process, it is based on Bidirectional Attention
Flow (BiDAF) [3], but using only word-level embeddings. As a first step to improve our system, we
include character-level word embeddings. Our QA model will consist of six layers, and we will
try different approaches for the 4*” layer (corresponding to attention) to increase the accuracy of our
model. We will add a Co-attention layer, Self-attention layer (R-Net) and a QANet layer. We will
try also adding another BiDAF layer performing a self attention process similar to the one between
the context and the query.

1.1 Character Embedding Layer

This layer maps each word to a vector space using character-level embedding convoluted and max-
pooled using CNNs. We obtain the character-level embedding of each word using Convolutional
Neural Networks (CNN), characters are embedded into vectors and constitute the inputs of the CNN,

and the outputs of this CNN are max-pooled over the entire width to obtain a fixed-size vector for
each word. The resulting representation is concatenated with the word embeddings we obtain via
GloVe.

1.2 Word Embedding Layer

This layer maps each word to a vector space using a pre-trained word embedding model GloVe, to
obtain the fixed word embedding of each word. We convert the words of the context and the questions

into words embeddings, c1,...cw € R?” for the context and Q1,--GuM © R? for the question, where

N and M are the size of the context and the question respectively.

Stanford CS224N Natural Language Processing with Deep Learning

We concatenate the character and word embedding vectors. Then, we refine the concatenation by

projecting an embedding vector v; using a learnable matrix W>,.;, So we obtain hy = WprojVi € R!
and by applying a two-layer highway network[5], which is consisting on applying a one-layer highway
network twice[5].

g = o(Wghi + bg) € R”

t = ReLU(Wihi +) € R™

hi =g@t+(1—g) Oh; €R”®

where Wg, W;, bg, b; are learnable parameters.

1.3. Encoder Embedding Layer

In this layer, we use an (LSTM) on top of the embeddings provided by the previous layers to model
the temporal interactions and dependencies between words.

1.4 Description of different approaches used as a 4th layer.

1.4.1 Co-Attention Flow Layer

In the Attention layer, we construct query and context vectors and produces a set of query-aware
feature vectors for each word in the context. Instead of this basic attention layer, we involve a second-
level attention computation, attending over representations that are themselves attention outputs.
Concretely, we first start by applying a non-linearity to a query representations q1, q2, ..., az € R?#
after applying a linear layer, the equation for this first transformation is:

q; = tanh(Wq; +b) ¢ R™”.

Next, we compute an affinity matrix Z where each element (i,j) contains the dot product of the

context and query vectors Lj; = eg, We add also a sentinel context and query vectors to make it
possible to attend none of the provided hidden states.
For the Context-to-Question (C2Q) Attention, we compute the coefficients as follows:

a’ = softmax(L;.) ¢ R“*",

M41
a; = S> a5q; € R24

j=l

For Question-to-Context Attention:

6) = softmax(L.;) ¢ RN*,

N+1

bj = 5° Ble, ER?
a=1

We use these and the alpha coefficients we computed earlier to compute a second-level attention
output:

M+1

si =) a,b;

g=1

We concatenate the outputs with the a; we obtained earlier and feed the resulting vectors to a
bidirectional LSTM to get what we call coattention encoding:

{ui,...,un} = biLSTM({[s1; @1],..., [sn; @n]})

1.4.2 Self-Matching-Attention (R-Net)

R-Net is a high-performing SQUAD model that has both a Context-to-Question attention layer (similar
to our baseline), and a self-attention layer (which they call Self-Matching Attention) [6].

In [6], they proposed a gated attention-based recurrent network to include information from the
question into text representation. It is another variant of attention-based recurrent networks, with an
additional gate to quantify the importance of information in the passage regarding a question. They
propose generating ~ sentence-pair representation (vf°""°""), t = 1, ...N:

yoontert _ RNN(ysontert q,),

where a; = att(q, [cz, v¢2"’°*"]) is an attention-pooling vector of the whole question q.

= vy? tanh(W,q; + Wee; + Wyvgeite**),

at — exp(s‘)
i M ’

jt exp(s‘)
M

= Yet
j=l

Each passage representation vf°""°** dynamically incorporates aggregated matching information
from the whole question.

Other researchers (Wang & Jiang 2016) has also introduced a match-LSTM, which takes c; as an

additional input into the recurrent network.
peontent — _ RNN(u¢” pentent » (Ct; az]),

After the computation of the question-aware passage representation vf?"@*"t = 1,...N. This
representation has very limited knowledge of context, and also the representation my be poor if there
is a lexical divergence between the question and context. To solve this issue, we propose directly
matching the question-aware passage representation against itself, by introducing new vectors of
self-attention hf°"’©*", defined in the same as before

text text neoree" = RNN(AGO", [ve, ae]),

where a; = att(v, v;) is an attention-pooling vector of the whole question v
/

si = v’ tanh(W contest content + Wee 1g EY |

t
t exp(s;)

Qa: => SF

Dyan exp(s§) a 1 OXPAS;
a

-> atu est

The additional gate used in the attention-based Recurrent Networks control the input of RNN.

context

9

Self-matching extracts evidence from the whole passage according to the current passage word and
question information [6].

1.4.3 QANet

In order to mitigate the computational expensiveness of the RNNs models, We have also experimented
with an implementation of the QANet model. THe model is based only on convulsions and
self-attention layers. Using a convolutional structure allows to process the tokens in parallel, it allows
us to use methods specific to the ConvNets like layer dropout.

We use the same attention layer in the BiDAF model. What is new here is the use of an encoding
layer containing Convolutions. These encoding layers are structured as follows [convolution-layer x
+ self-attention-layer + feed-forward-layer]. The number of conv layers within a block is 4. Each
of the operations is placed inside a residual block. This encoder layer is repeated 3 times after the
Context-Query Attention layer. These 3 layers share the same weights.

1.4.4 Double BiDAF

We have also experimented with an idea that we had when reading the papers about self attention. The
attention layer in the BiDAF model only accounts for the Context-Query attention. We wanted some-
how to account also for the Context-to-Context interaction, this is will provide valuable information
about the co-dependence between different words in the context.

To put this idea into practice we have added another BiDAF layer performing a self attention process
similar to the one between the context and the query. The input to this layer will be the representation
we get from the first BiDAF attention layer and the words context representations we get from the
first encoder. The output of this layer will successfully account not only for the interactions between
the context and question and also for the ones within the context. This is the model that provided the
highest score.

We have also being experimenting with additional gates and nonlinearities applied to the summary
vector after the attention step. These gates and nonlinearities enable the model to focus on important
parts of the attention vector for each word.

1.5 Modeling Layer

The output of the this layer captures the interaction among the context words conditioned on the
query [3], which is different from the Encoder embedding layer, that catches the interaction among
context words independent of the query.

1.6 Output Layer

The output layer produces a vector of probabilities corresponding to start and end position of the
answer, in the context. It applies a bidirectional LSTM to the modeling layer’s output and then
concatenate the results with the co-attention layer’s outputs before projecting them using Wz¢,4 and
Wena and taking their softmax to produce two vector of probabilities pstarz and Pend.

When we concatenate the forward and backward hidden states from the bidirectional RNN, we are

trying many types of concatenation such as averaging or max pooling them.

2 Experiments

In this section, we will describe how we train and evaluate our QA model:

2.1 Data

We will be using the original training set of SQUAD, however we will be using custom dev and test
sets, which are obtained by splitting the official dev set in half into a dev and test sets, because the
default test set is entirely secret.

2.2 Evaluation method

We evaluate on the dev or test sets, by taking the maximum FI and EM scores across the three
human-provided answers for that question, which makes our evaluation more forgiving. The EM
and FI scores are averaged across the entire evaluation dataset to get the final reported scores. The
main metric here that we will try to maximize is the F1 score because the leaderboard ranking will be
based on it.

2.3 Experimental details

We kept the same configuration from the baseline model. However, there are several new parameters
that need to be optimized and chosen well. These parameters are related to the CNN layer for character-
level embedding and to the Coattention layer. For the CNN layer, there are 2 main parameters,
the number of channels and the channel width (second dimension of the kernel). Regarding the
Coattention layer, it is the hidden dimension that need to be chosen. The convolutional layer have a
kernel size and a number of convolutions in each block.

Hyperparameters used for the model:

parameter value
hidden size 100

dropout 0.1

batch size 64

char channel size 16

char channel width 4

num attention heads 1

num conv layer 2

kernel size 3
Table 1: Hyperparameters for the different models with different attention layer.

We did not have time to fine-tune these hyperparameters as we have been experimenting with multiple
models. The long training time made it very difficult to perform some kind of grid search.

2.4 Results

We have results for the character-level model and the Coattention + character-level embeddings
model, and we compare these to the baseline model.

AvNA | EM Fl

Table 2: Results for Hitferent models

We can see from the previous table that we were able to improve the F1 score by using a CNN layer to
learn a character-level word representation. For the Coattention model, we were not able to enhance
the results and we are suspecting an error in the implementation and working on debugging the code.

AvNA EM FI
tag: dev/AvNA tag: dev/EM tag: dev/F1

64 0 60

66 60

0 500k 1M 15M 2M 25M 3M 0 500k 1M 15M 2M 25M 3M 0 500k 1M 15M 2M 25M 3M

—] a se) iM IM {IM

NLL

tag: dev/NLL

3.2

26

500k 1M 15M 2M 25M 3M

ra
4 =|

Figure 1: Dev set metrics (Green = Double BiDAF + gates + nonlinearities, Pink = Double BiDAF,

Orange = QANet, Bleu = CoAttention + RNN)

3 Analysis & Discussion

The objective of our work was to examine the different ideas and compare them to each other to see
which factors play an important role in improving the model predictions.

We have came to the conclusion that the CoAttention model was not involved enough to represent the
interactions between the context and the question. The reason is that we are using the same matrix
containing the dot product between a transformed form of the query and the context. This same
matrix is used to produce the summary representation of the context word and the query word. We
have also experimented with additive attention, but the improvement was not pronounced.

The R-Net has a promising idea of using the attention vector dynamically. At each step of the RNN
layer, we compute an attention vector that is dynamically depending on the hidden state. Doing
this allows us to represent better the relationship between the context and the question and also
between context words too. The problem with this method is the computations get expensive as we
have to handle each word at an RNN step separately (dependence). To improve this computational
requirement, we tried a static version of this where we pass the attention output through a RNN layer.
The model got better computationally but we have not seen huge accuracy improvement.

The QANet explores a different approach. We implemented this model to compare the performance of
the ConvNets in comparison to RNN. The model gives decent results that would have been improved
if we had increased the number of convolutional layers in each block. The ability of the model to
process tokens in parallel makes it really attractive and provide a speedup that can be taken advantage
of by training it on more data and training it for longer.

Double BiDAF is the model we have devised ourselves. We got inspired from the idea of accounting
for the relationship between words in the same context. Thus, the prediction of the answer span takes
into account the dependency between the context words and not only the relationship context-query.
This idea improved the F1 score by 5 points. This is very promising because we haven’t increase the
model size by a lot, it is a simple tweak that provided a huge improvement.

There is also another idea we wanted to try but have not had the time to do it. The idea consist of
adding a BiDAF layer before the Context-Query layer to account for the relationship between the
query words. We will be trying this next.

4 References

[1] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+
questions for machine comprehension of text. CoRR, abs/1606.05250, 2016.

[2] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable-
questions for SQUAD. Jn Association for Computational Linguistics (ACL), 2018.

[3] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional

attention flow for machine comprehension. arXiv preprint arXiv: 1611.01603, 2016.

[4] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. arXiv preprint arXiv: 1611.01604, 2016.

[5] Rupesh Kumar Srivastava, Klaus Greff, and Jiirgen Schmidhuber. Highway networks. arXiv
preprint arXiv: 1505.00387, 2015.

[6] Natural Language Computing Group, Microsoft Research Asia, Furu Wei and Ming Zhou R-NET:
MACHINE READING COMPREHENSION WITH SELF-MATCHING NETWORKS

5 Appendix

Attention Layer

Word Embedding

Encoder Embedding

 Double BIDAF Co-Attention Layer | or Self-Matching- or QANet or
Attention

Modeling Layer

Output Layer

Figure 2: Diagram for the different layers in our QA model (Double BiDAF is our personal
contribution)

