
Robust QA with Task-Adaptive Pretraining

Stanford CS224N Default Project

Jeong-O Jeong
Department of Computer Science

Stanford University
djeongo@stanford.edu

Abstract

It is often hard to find a lot of labeled data to train a QA (question answering) model.

One possible approach to overcome this challenge is to use TAPT (task-adaptive
pretraining) in which the model is pretrained further using the unlabeled data from
the task itself [1]. We implement the TAPT technique to make a QA model perform
robustly on a task with low-resource training data by first pertaining on the larger
unlabeled data set. We then fine tune the model with a smaller labeled dataset.
The results are mixed. Although a preliminary model that is pretrained on just
the out-of-domain train oodomain_train data performed better than the baseline,

additional pretraining using more unlabeled out-of-domain data performed worse
than expected.

1 Key Information to include

¢ Mentor: N/A

¢ External Collaborators (if you have any): N/A

¢ Sharing project: N/A

2 Introduction

Performing well on low-resource task is difficult, because large language models such as BERT
require a lot of data to train. However, it is expensive to obtain labeled data, and they are often
unavailable. One possible way to address this problem is to further pre-train the model with additional
data in order to make the language model perform better on the downstream tasks [2]. However,
performing additional pre-training on large corpus of data can be expensive as well. The TAPT
technique shows that if the pre-training data is chosen to be specific to the task at hand, it gives
significant improvement to the task performance even if the amount of data is small. We implement
the TAPT technique with various types of pretraining data to evaluate its effectiveness in improving
performance on low-resource out-of-domain QA task.

3 Related Work

The main TAPT paper [1] considers two techniques, DAPT (domain-adaptive pretraining) and TAPT
(task-adaptive pretraining), for further pretraining a language model. DAPT consists of further
pretraining the language model on the data in the same domain as that of the task, while TAPT
consists of directly training on the task data itself, but using it as unlabeled data. They found that
DAPT improves on the off-the-shelf RoBERTa baseline model across all domains, and that TAPT can
be competitive with DAPT even with a very small amount of data. The paper shows that combining
both DAPT and TAPT results in the best performance.

Stanford CS224N Natural Language Processing with Deep Learning

They also explore data selection method for optimal transfer learning using the VAMPIRE embedding
[3]. Similar work [4] uses cosine similarity of sentences to cluster corpus domains, which can help

with data selection for task-specific pretraining.

The TAPT technique fits into the wider context of task-adaptive pretraining of an existing language
model to improve performance on a specific NLP task. Task-adaptive pretraining has been studied in
[5] where they perform general LM pretraining followed by task-specific LM fine-tuning to improve
performance.

4 Approach

[DistiiBertForaQA (DistilBertForMaskedLM
| (distilbert-base-uncased) } (distilbert-base-uncased)

Train for QA task on .
‘ , Pre-train with unlabeled

the labeled in-domain out-ofdomain data
data

DistilBertForQA a
(rained in-domain) DistiiBertForMaskedLM

EEE ————

J \

/ \ Pre-train with unlabeled
Train on labeled data from Lf ‘.._ out-of-domain data Train for QA task on

the out-of-domain data A ™\ the in-domain data
A \%

x “
a

[Baseline model (DistilBertForMaskedLM DistilBertForQA
(trained in-domain)

Train on labeled Train on labeled
out-of-domain data out-of-domain data

TAPT

(indomain-first) TAPT (pretrain-first)_

Figure 1: Model training approaches. Left: TAPT (indomain-first), Right: TAPT (pretrain-first)

4.1 Baseline

The baseline model is a DistilBertForQuestionAnswering model that is trained on the high-resource
dataset and then further trained using the low-resource out-of-domain dataset. The implementation
for the baseline model is obtained from [6]. Figure 1 summarizes the approaches in generating the
baseline and the TAPT models.

4.2 TAPT approach

The approach we take is to perform TAPT using the unlabeled data from the low-resource out-of-
domain training dataset. Specfically, we further pretrain a DistilBertForQuestionAnswering model [7]
that is already trained on a question answering task with the in-domain datasets that are high-resource,
as shown in the left half of Figure 1. We also try pretraining the base DistilBertForMaskedLM model
with unlabeled out-of-domain data first, and then train with the in-domain high-resource train dataset,

as shown in the right half of Figure 1. Finally, we train the pre-trained models with the low-resource
out-of-domain labeled training data.

4.3 Pretraining

We implement the masked LM pretraining method. We use the standard masked LM cross-entropy
loss described in the original BERT paper [8] with 15% mask probability. The words are randomly
masked with 15% probability and the model is trained to guess the correct word for the masked
tokens. Following the original masked LM training procedure, for 80% of the time, we replace it
with the mask token, for 10% of the time, we replace with a random token, and 10% of the time we
leave it unchanged.

4.3.1 Pretraining data

We try different pretraining data in the following list to see the effect of data used for TAPT.

* oodomain_train as unlabeled data

* oodomain_val as unlabeled data

¢ oodomain_test as unlabeled data

¢ Combination of oodomain_train, oodomain_val, oodomain_test as unlabeled data

¢ Curated unlabeled data from the original oodomain corpora

To use oodomain_train for pretraining, we chunk the 248 passages available in the dataset into
512-length tokens with stride of 128. This results in 273 sentences of length 512 tokens. We perform
the same process for oodomain_val and oodomain_test. We also try combining all of oodomain
available to generate 9,535 sentences of length 512 tokens. Finally, we try using data from the original
corpora of duorc, race, and relation_extraction data sets to generate even more unlabeled pretraining
training data. However, instead of using the entire corpora, we curate the most similar sentences
using cosine-similarity of sentence embeddings as described in the next section.

4.3.2 Curating pre-training data using cosine-similarity of sentence embeddings

Since the provided oodomain_train data is only a subset of the corpora from which they are derived,
it might be helpful to incorporate more data from the original corpora. We use the unlabeled data as
descried in Table 1 from the original corpora to augment the pretraining dataset.

| Corpus Data |

DuoRC [9] 5,133 paraphrase passages (train)

RACE [10] 18,728 passages from middle and high (train)

Relation extraction [11] 107,765 unique sentences from "positive_examples"
Table 1: Pretraining data

10 4

0.9 4

0.8 4

07 4

0.6 5

co
si

ne

si
mi
la
ri
ty

0.5 -

04 4
O3 T T T T T T T T

0 20000 40000 80000 80000 100000 1270000 140000

oodomain corpora sentences

Figure 2: Cosine similarity between oodomain_train and oodomain corpora

As using the entire corpora could negatively affect the performance if a large portion of the data is
unrelated to the task, we use cosine similarity of sentence embeddings to curate only the most similar

sentences from the corpora [4]. Specifically, we obtain a representative sentence embedding of the
oodomain data and then compare against all sentence embeddings in the original corpora. In order to
obtain the representative sentence embedding of oodomain data, we average the last hidden layer
outputs of DistilBertModel of all 512-length sentences in the oodomain_train data to obtain a vector

of size R* "8.

The original duorc, race, and relation_extraction corpora shown in Table 1 are chunked to 512-length
sentences resulting in a total of 147,419 sentences. For each sentence, we use DistilBertModel to

generate the sentence embedding. For each sentence embedding, we compute the cosine similarity
against the representative embedding of the oodomain data to quantify how similar each sentence is
to the oodomain training data. We then pick the 1,000, 10,000, and 100,000 most similar sentences

for pretraining.

Figure 2 shows the cosine similarities of the sentences in the original corpora to the oodomain data,
sorted by cosine similarity. It shows that the top 100,000 most simliar sentences have a high similarity
value of at least 0.9, but it sharply drops off after around 100,000 most similar sentences. We exclude
the sentences with low similarity from pretraining since they could negatively affect the downstream
task performance.

5 Experiments

5.1 Data

The datasets used are shown in Table 2. For training a QA model, we use the indomain_train data

which consists of 5,000 SQUAD, 5,000 NewsQA, and 5,000 Natural Questions question and answer

pairs. For fine-tuning a QA model, we use the oodomain_train data which consists of 381 question
and answer pairs from DuoRC, RACE, and RelationExtraction. For validation while fine-tuning the
QA model, we use the oodomain_val which consists of 382 question and answer pairs from DuoRC,

RACE, and RelationExtraction datasets.

| | Data Description Purpose

‘ : ’ 15,000 QA pairs from -
indomain_train SQuAD, NewsQA and Natural Questions training a QA model

. . 381 QA pairs from .
oodomain_train DuoRC, RACE, and RelationExtraction fine-tuning the QA model

“ 382 QA pairs from ;
oodomain_val DuoRC, RACE, and RelationExtraction evaluating the QA model

duorc 5,133 unlabeled paraphrase passages pre-training

race 18,728 passages from middle and high pre-training

relation_extraction 107,765 unique sentences from "positive_examples' pre-training

Table 2: Data sets and their purposes

5.2 Evaluation method

We use the F1 and EM (Exact Match) scores for evaluation. The F1 score is a harmonic mean of

precision and recall. It is a "soft" metric to measure how much overlap exists between the tokens in
the predicted answer and the tokens in the expected answer. The EM score is a "hard" metric that
indicates whether the predicted answer exactly matches the expected answer. For each question and
answer pair, the maximum F1 and EM scores are 1.0 each. The Fl and EM scores shown in the
results section in this report are aggregate values across the entire validation or test set which are
scaled to a maximum value of 100.

5.3. Experimental details

5.3.1 Baseline

The baseline model is trained for 20 epochs on the out-of-domain dataset with a fixed learning rate
of 3-10~°. The baseline achieves F1 score of 49.697 and EM score of 34.555 on the validation
leaderboard.

5.3.2 TAPT model

For the "TAPT (indomain-first)" model, we start off with the model that is trained on the in_domain

QA task. We then further pre-train the model using the unlabeled data from the out-of-domain data
sets. The pretraining is performed for 10 epochs using the masked LM loss. Finally, we train the
model using the labeled out-of-domain data. The training is performed for 20 epochs with a fixed
learning rate of 3 - 10~°. We evaluate the TAPT model against the out-of-domain validation dataset.
We explored different learning rates of 3- 10~°, 1- 10~°, 2- 10~° as well, but it did not impact the
results noticeably.

5.4 Results

The results show that the TAPT model can improve over the baseline model, but not necessarily for
all cases. The results are summarized in Table. 3

| Model Pretraining Data FI (val) EM(val) FI (test) EM (test) |

ase.

main_train

main _

main_test

_ train, test

most s

most

most

most

most

e

The results show that TAPT model with just using the oodomain_train data can improve on the
baseline model, but it also performed poorly in other cases. This is unexpected because we expect
that the more relevant pretraining data we use, the better the model should perform, but the results
show that using 100,000 most similar sentences performs worse than using 1,000 most similar
sentences. This might be because for the "TAPT (in-domain first)" approach, the weights of the
Transfomer layers start to become less compatible with the weights of the QA head layers, since the
QA head layers cannot be updated during pretraining while the Transformer layers are changing.
The best performing model based on the F1 metric achieves 57.7 and 40.092 for F1 and EM scores,
respectively.

5.4.1 Pretrain duration

We look at the impact of number of epochs in pretraining on the downstream task. Unlike training
for a downstream task, there is no validation set to use during pretraining. Since it is unclear how to
determine how many epochs to pretrain for without the validation set, we evaluate the downstream
QA task performance using models pretrained for different number of epochs.

Figure 3 shows how the QA model performs when it is fine tuned on models that got pretrained for
different number of epochs. The results indicate that pretraining for multiple epochs actually leads to

EM Fl
35

—— pretrain for 1 epochs

t t t u t t t t ———_pretrain for 3 epochs
0 25 50 15 100 125 150 175 200 0 23 50 7S 100 125 #150) 17!——~0pretrain for 5 epochs

Steps —— pretrain for 7 epochs

—— pretrain for 9 epochs

Figure 3: Effect of pretraining epochs

degradation in performance for the downstream task, when using "TAPT (in-domain first)" method.
This is likely due to the fact that the Tranformer layers start to drift from the Question and Answer
head layer that was trained using indomain data. This problem does not appear to happen in the
"TAPT (pretrain first)" approach.

6 Analysis

The following question and answer pairs show some of the examples where the baseline model’s
F1 score was 0, while the TAPT model’s score was 1.0. It is interesting that the baseline model

provided wrong answers for the passages with highly technical terms, while the TAPT model provided
correct answers. This improvement over baseline on the specific domain about chromosome might be
attributed to the fact that the TAPT model has been further pretrained on the relevant data, while the
baseline model has not been.

1. ¢ F1 - Baseline: 0.0, TAPT: 1.0

¢ Context - In humans, the gene RUNX1 is 260 kilobases (kb) in length, and is located

on chromosome 21 (21q22.12).

* Question - What is the name of RUNX1’s chromosome?

¢ Answer(Baseline) - 21q22.12

¢ Answer (TAPT) - chromosome 21

¢ Answer (Correct) - chromosome 21

2. ¢ F1 - Baseline: 0.0, TAPT: 1.0

* Context - By genomic sequence analysis, the FOXP3 gene maps to the p arm of the X
chromosome (specifically, Xp11.23).

* Question - Which chromosone can you find FOXP3?

¢ Answer(Baseline) - Xp11.23

¢ Answer (TAPT) - X chromosome

¢ Answer (Correct) - X chromosome

3. ¢ F1 - Baseline: 0.0, TAPT: 1.0

¢ Context - In follicular lymphoma, a chromosomal translocation commonly occurs
between the fourteenth and the eighteenth chromosomes — t(14;18) — which places the
Bcl-2 gene from chromosome 18 next to the immunoglobulin heavy chain locus on
chromosome 14.

* Question - Which chromosone can you find Bcl-2?

¢ Answer(Baseline) - immunoglobulin

¢ Answer (TAPT) - chromosome 18

¢ Answer (Correct) - chromosome 18

7 Conclusion

We implemented the TAPT technique with different pretraining data to improve performance on a
low-resource QA task. In addition to using the provided dataset, we tried augmenting the dataset by
curating additional data from the original corpora using cosine-similarity metrics.

Results show that although TAPT showed improved performance when using only oodomain_train,
oodomain_val, or oodomain_test as unlabeled data set for pretraining, it showed worse performance
when using more data for pretraining. This was unexpected because intuitively, the more relevant
data is used for pretraining, the better model should have performed. Specifically, pretraining the
model with the combination of oodomain_train, oodomain_val, and oodomain_test led to worse

performance than using each one separately. However, this might be because the approach "TAPT
(in-domain first)" was potentially flawed. The right approach to explore more extensive might have
been the "TAPT (pretrain first)" approach. However, it was too expensive to perform the in-domain
training multiple times after each different pre-training data set, so that approach could not be pursued
more thoroughly.

For future work, we could try additional techniques for augmenting the training dataset such as back
translation and word substitution with synonyms. We could also explore the use of DAPT (domain-
adaptive pretraining) to curate more pretraining data and use "TAPT (pretrain first)" approach instead
of "TAPT (indomain-first)" approach. Another possibility is to use span masked LM technique [12]
for pretraining instead of the plain masked LM technique.

References

[1] Suchin Gururangan, Ana Marasovi¢, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
8342-8360, 2020.

[2] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019.

(3] Suchin Gururangan, Tam Dang, Dallas Card, and Noah A. Smith. Variational pretraining for

semi-supervised text classification. In Proceedings of ACL, 2019.

[4] Roee Aharoni and Yoav Goldberg. Unsupervised domain clusters in pretrained language models.
arXiv preprint arXiv:2004.02105, 2020.

[5] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classifica-
tion. arXiv preprint arXiv: 1801.06146, 2018.

[6] Murty Shikhar. Starter code for robustqa track. https://github.com/MurtyShikhar/
robustqa.

[7] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony

Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,

Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain

Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-

art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 38-45, Online, October 2020.
Association for Computational Linguistics.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint arXiv: 1810.04805,
2018.

[9] Amrita Saha, Rahul Aralikatte, Mitesh M. Khapra, and Karthik Sankaranarayanan. DuoRC:

Towards Complex Language Understanding with Paraphrased Reading Comprehension. In
Meeting of the Association for Computational Linguistics (ACL), 2018.

[10] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale

reading comprehension dataset from examinations. arXiv preprint arXiv: 1704.04683, 2017.

[11] Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction
via reading comprehension. arXiv preprint arXiv: 1706.04115, 2017.

[12] Mandar Joshi, Dangi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy.

Spanbert: Improving pre-training by representing and predicting spans. Transactions of the
Association for Computational Linguistics, 8:64—77, 2020.

