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Abstract 

It is often hard to find a lot of labeled data to train a QA (question answering) model. 

One possible approach to overcome this challenge is to use TAPT (task-adaptive 
pretraining) in which the model is pretrained further using the unlabeled data from 
the task itself [1]. We implement the TAPT technique to make a QA model perform 
robustly on a task with low-resource training data by first pertaining on the larger 
unlabeled data set. We then fine tune the model with a smaller labeled dataset. 
The results are mixed. Although a preliminary model that is pretrained on just 
the out-of-domain train oodomain_train data performed better than the baseline, 

additional pretraining using more unlabeled out-of-domain data performed worse 
than expected. 

1 Key Information to include 

¢ Mentor: N/A 

¢ External Collaborators (if you have any): N/A 

¢ Sharing project: N/A 

2 Introduction 

Performing well on low-resource task is difficult, because large language models such as BERT 
require a lot of data to train. However, it is expensive to obtain labeled data, and they are often 
unavailable. One possible way to address this problem is to further pre-train the model with additional 
data in order to make the language model perform better on the downstream tasks [2]. However, 
performing additional pre-training on large corpus of data can be expensive as well. The TAPT 
technique shows that if the pre-training data is chosen to be specific to the task at hand, it gives 
significant improvement to the task performance even if the amount of data is small. We implement 
the TAPT technique with various types of pretraining data to evaluate its effectiveness in improving 
performance on low-resource out-of-domain QA task. 

3 Related Work 

The main TAPT paper [1] considers two techniques, DAPT (domain-adaptive pretraining) and TAPT 
(task-adaptive pretraining), for further pretraining a language model. DAPT consists of further 
pretraining the language model on the data in the same domain as that of the task, while TAPT 
consists of directly training on the task data itself, but using it as unlabeled data. They found that 
DAPT improves on the off-the-shelf RoBERTa baseline model across all domains, and that TAPT can 
be competitive with DAPT even with a very small amount of data. The paper shows that combining 
both DAPT and TAPT results in the best performance. 
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They also explore data selection method for optimal transfer learning using the VAMPIRE embedding 
[3]. Similar work [4] uses cosine similarity of sentences to cluster corpus domains, which can help 

with data selection for task-specific pretraining. 

The TAPT technique fits into the wider context of task-adaptive pretraining of an existing language 
model to improve performance on a specific NLP task. Task-adaptive pretraining has been studied in 
[5] where they perform general LM pretraining followed by task-specific LM fine-tuning to improve 
performance. 
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Figure 1: Model training approaches. Left: TAPT (indomain-first), Right: TAPT (pretrain-first) 

4.1 Baseline 

The baseline model is a DistilBertForQuestionAnswering model that is trained on the high-resource 
dataset and then further trained using the low-resource out-of-domain dataset. The implementation 
for the baseline model is obtained from [6]. Figure 1 summarizes the approaches in generating the 
baseline and the TAPT models. 

4.2 TAPT approach 

The approach we take is to perform TAPT using the unlabeled data from the low-resource out-of- 
domain training dataset. Specfically, we further pretrain a DistilBertForQuestionAnswering model [7] 
that is already trained on a question answering task with the in-domain datasets that are high-resource, 
as shown in the left half of Figure 1. We also try pretraining the base DistilBertForMaskedLM model 
with unlabeled out-of-domain data first, and then train with the in-domain high-resource train dataset, 

as shown in the right half of Figure 1. Finally, we train the pre-trained models with the low-resource 
out-of-domain labeled training data. 

4.3 Pretraining 

We implement the masked LM pretraining method. We use the standard masked LM cross-entropy 
loss described in the original BERT paper [8] with 15% mask probability. The words are randomly 
masked with 15% probability and the model is trained to guess the correct word for the masked 
tokens. Following the original masked LM training procedure, for 80% of the time, we replace it 
with the mask token, for 10% of the time, we replace with a random token, and 10% of the time we 
leave it unchanged.



4.3.1 Pretraining data 

We try different pretraining data in the following list to see the effect of data used for TAPT. 

* oodomain_train as unlabeled data 

* oodomain_val as unlabeled data 

¢ oodomain_test as unlabeled data 

¢ Combination of oodomain_train, oodomain_val, oodomain_test as unlabeled data 

¢ Curated unlabeled data from the original oodomain corpora 

To use oodomain_train for pretraining, we chunk the 248 passages available in the dataset into 
512-length tokens with stride of 128. This results in 273 sentences of length 512 tokens. We perform 
the same process for oodomain_val and oodomain_test. We also try combining all of oodomain 
available to generate 9,535 sentences of length 512 tokens. Finally, we try using data from the original 
corpora of duorc, race, and relation_extraction data sets to generate even more unlabeled pretraining 
training data. However, instead of using the entire corpora, we curate the most similar sentences 
using cosine-similarity of sentence embeddings as described in the next section. 

4.3.2 Curating pre-training data using cosine-similarity of sentence embeddings 

Since the provided oodomain_train data is only a subset of the corpora from which they are derived, 
it might be helpful to incorporate more data from the original corpora. We use the unlabeled data as 
descried in Table 1 from the original corpora to augment the pretraining dataset. 

  

    

  

| Corpus Data | 

DuoRC [9] 5,133 paraphrase passages (train) 

RACE [10] 18,728 passages from middle and high (train) 
  

Relation extraction [11] 107,765 unique sentences from "positive_examples"           
Table 1: Pretraining data 
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Figure 2: Cosine similarity between oodomain_train and oodomain corpora 

As using the entire corpora could negatively affect the performance if a large portion of the data is 
unrelated to the task, we use cosine similarity of sentence embeddings to curate only the most similar



sentences from the corpora [4]. Specifically, we obtain a representative sentence embedding of the 
oodomain data and then compare against all sentence embeddings in the original corpora. In order to 
obtain the representative sentence embedding of oodomain data, we average the last hidden layer 
outputs of DistilBertModel of all 512-length sentences in the oodomain_train data to obtain a vector 

of size R* "8. 

The original duorc, race, and relation_extraction corpora shown in Table 1 are chunked to 512-length 
sentences resulting in a total of 147,419 sentences. For each sentence, we use DistilBertModel to 

generate the sentence embedding. For each sentence embedding, we compute the cosine similarity 
against the representative embedding of the oodomain data to quantify how similar each sentence is 
to the oodomain training data. We then pick the 1,000, 10,000, and 100,000 most similar sentences 

for pretraining. 

Figure 2 shows the cosine similarities of the sentences in the original corpora to the oodomain data, 
sorted by cosine similarity. It shows that the top 100,000 most simliar sentences have a high similarity 
value of at least 0.9, but it sharply drops off after around 100,000 most similar sentences. We exclude 
the sentences with low similarity from pretraining since they could negatively affect the downstream 
task performance. 

5 Experiments 

5.1 Data 

The datasets used are shown in Table 2. For training a QA model, we use the indomain_train data 

which consists of 5,000 SQUAD, 5,000 NewsQA, and 5,000 Natural Questions question and answer 

pairs. For fine-tuning a QA model, we use the oodomain_train data which consists of 381 question 
and answer pairs from DuoRC, RACE, and RelationExtraction. For validation while fine-tuning the 
QA model, we use the oodomain_val which consists of 382 question and answer pairs from DuoRC, 

RACE, and RelationExtraction datasets. 

  

  

  

  

  

  

  

| | Data Description Purpose 

‘ : ’ 15,000 QA pairs from - 
indomain_train SQuAD, NewsQA and Natural Questions training a QA model 

. . 381 QA pairs from . 
oodomain_train DuoRC, RACE, and RelationExtraction fine-tuning the QA model 

“ 382 QA pairs from ; 
oodomain_val DuoRC, RACE, and RelationExtraction evaluating the QA model 

duorc 5,133 unlabeled paraphrase passages pre-training 

race 18,728 passages from middle and high pre-training 
  

relation_extraction 107,765 unique sentences from "positive_examples' pre-training           

Table 2: Data sets and their purposes 

5.2 Evaluation method 

We use the F1 and EM (Exact Match) scores for evaluation. The F1 score is a harmonic mean of 

precision and recall. It is a "soft" metric to measure how much overlap exists between the tokens in 
the predicted answer and the tokens in the expected answer. The EM score is a "hard" metric that 
indicates whether the predicted answer exactly matches the expected answer. For each question and 
answer pair, the maximum F1 and EM scores are 1.0 each. The Fl and EM scores shown in the 
results section in this report are aggregate values across the entire validation or test set which are 
scaled to a maximum value of 100.



5.3. Experimental details 

5.3.1 Baseline 

The baseline model is trained for 20 epochs on the out-of-domain dataset with a fixed learning rate 
of 3-10~°. The baseline achieves F1 score of 49.697 and EM score of 34.555 on the validation 
leaderboard. 

5.3.2 TAPT model 

For the "TAPT (indomain-first)" model, we start off with the model that is trained on the in_domain 

QA task. We then further pre-train the model using the unlabeled data from the out-of-domain data 
sets. The pretraining is performed for 10 epochs using the masked LM loss. Finally, we train the 
model using the labeled out-of-domain data. The training is performed for 20 epochs with a fixed 
learning rate of 3 - 10~°. We evaluate the TAPT model against the out-of-domain validation dataset. 
We explored different learning rates of 3- 10~°, 1- 10~°, 2- 10~° as well, but it did not impact the 
results noticeably. 

5.4 Results 

The results show that the TAPT model can improve over the baseline model, but not necessarily for 
all cases. The results are summarized in Table. 3 
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The results show that TAPT model with just using the oodomain_train data can improve on the 
baseline model, but it also performed poorly in other cases. This is unexpected because we expect 
that the more relevant pretraining data we use, the better the model should perform, but the results 
show that using 100,000 most similar sentences performs worse than using 1,000 most similar 
sentences. This might be because for the "TAPT (in-domain first)" approach, the weights of the 
Transfomer layers start to become less compatible with the weights of the QA head layers, since the 
QA head layers cannot be updated during pretraining while the Transformer layers are changing. 
The best performing model based on the F1 metric achieves 57.7 and 40.092 for F1 and EM scores, 
respectively. 

5.4.1 Pretrain duration 

We look at the impact of number of epochs in pretraining on the downstream task. Unlike training 
for a downstream task, there is no validation set to use during pretraining. Since it is unclear how to 
determine how many epochs to pretrain for without the validation set, we evaluate the downstream 
QA task performance using models pretrained for different number of epochs. 

Figure 3 shows how the QA model performs when it is fine tuned on models that got pretrained for 
different number of epochs. The results indicate that pretraining for multiple epochs actually leads to
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Figure 3: Effect of pretraining epochs 

degradation in performance for the downstream task, when using "TAPT (in-domain first)" method. 
This is likely due to the fact that the Tranformer layers start to drift from the Question and Answer 
head layer that was trained using indomain data. This problem does not appear to happen in the 
"TAPT (pretrain first)" approach. 

6 Analysis 

The following question and answer pairs show some of the examples where the baseline model’s 
F1 score was 0, while the TAPT model’s score was 1.0. It is interesting that the baseline model 

provided wrong answers for the passages with highly technical terms, while the TAPT model provided 
correct answers. This improvement over baseline on the specific domain about chromosome might be 
attributed to the fact that the TAPT model has been further pretrained on the relevant data, while the 
baseline model has not been. 

1. ¢ F1 - Baseline: 0.0, TAPT: 1.0 

¢ Context - In humans, the gene RUNX1 is 260 kilobases (kb) in length, and is located 

on chromosome 21 (21q22.12). 

* Question - What is the name of RUNX1’s chromosome? 

¢ Answer(Baseline) - 21q22.12 

¢ Answer (TAPT) - chromosome 21 

¢ Answer (Correct) - chromosome 21 

2. ¢ F1 - Baseline: 0.0, TAPT: 1.0 

* Context - By genomic sequence analysis, the FOXP3 gene maps to the p arm of the X 
chromosome (specifically, Xp11.23). 

* Question - Which chromosone can you find FOXP3? 

¢ Answer(Baseline) - Xp11.23 

¢ Answer (TAPT) - X chromosome 

¢ Answer (Correct) - X chromosome 

3. ¢ F1 - Baseline: 0.0, TAPT: 1.0 

¢ Context - In follicular lymphoma, a chromosomal translocation commonly occurs 
between the fourteenth and the eighteenth chromosomes — t(14;18) — which places the 
Bcl-2 gene from chromosome 18 next to the immunoglobulin heavy chain locus on 
chromosome 14. 

* Question - Which chromosone can you find Bcl-2? 

¢ Answer(Baseline) - immunoglobulin 

¢ Answer (TAPT) - chromosome 18 

¢ Answer (Correct) - chromosome 18



7 Conclusion 

We implemented the TAPT technique with different pretraining data to improve performance on a 
low-resource QA task. In addition to using the provided dataset, we tried augmenting the dataset by 
curating additional data from the original corpora using cosine-similarity metrics. 

Results show that although TAPT showed improved performance when using only oodomain_train, 
oodomain_val, or oodomain_test as unlabeled data set for pretraining, it showed worse performance 
when using more data for pretraining. This was unexpected because intuitively, the more relevant 
data is used for pretraining, the better model should have performed. Specifically, pretraining the 
model with the combination of oodomain_train, oodomain_val, and oodomain_test led to worse 

performance than using each one separately. However, this might be because the approach "TAPT 
(in-domain first)" was potentially flawed. The right approach to explore more extensive might have 
been the "TAPT (pretrain first)" approach. However, it was too expensive to perform the in-domain 
training multiple times after each different pre-training data set, so that approach could not be pursued 
more thoroughly. 

For future work, we could try additional techniques for augmenting the training dataset such as back 
translation and word substitution with synonyms. We could also explore the use of DAPT (domain- 
adaptive pretraining) to curate more pretraining data and use "TAPT (pretrain first)" approach instead 
of "TAPT (indomain-first)" approach. Another possibility is to use span masked LM technique [12] 
for pretraining instead of the plain masked LM technique. 
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