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Abstract

We have seen tremendous progress on natural language understanding problems
over the last few years. Meanwhile, we face issues that models learnt from a
specific domain couldn’t be easily generalized to a different domain. I explored
different models to build robust question answering system that can be applied to
out-of-domain datasets. Models explored are baseline with and without fine tuning,
adding dataset prefix in question with and without fine tuning, switching question
and context in question answering system with and without fine tuning, and shorter
question and context in model input with and without fine tuning. Different fine
tuning techniques like changing epochs, batch size and Adam optimization learning
rate were explored to find the best model performance. The best model achieved
40.367 EM and 58.467 F1.
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2 Introduction

We have seen tremendous progress on natural language understanding problems over the last few
years. Meanwhile, we face issues that models learnt from a specific domain couldn’t be easily
generalized to a different domain [1, 2, 3, 4], whereas human beings can easily generalize knowledge
learnt from a book to a movie.

Very large models trained on very large dataset can help to solve the generalization problem. For
example GPT-3 model [5] demonstrated astounding few-shot capabilities on myriad language un-
derstanding tasks. However, while remarkable, GPT-3 consists of 175B parameters and it makes it
challenging to use in most real-world applications.

In this work, I will build a question answering system that can adapt to unseen domains with only
a few training samples from the unseen domain. The question answering system will be given a
paragraph and a question about that paragraph as input, the goal is to answer the question correctly.
The system will not use very large models and will only use medium sized model - DistilBERT [6] as
the pretrained model.

3 Related Work

TS5 model [7] showed astounding results on training multiple language tasks. Two major techniques
used are: first use different prefixes for input to differentiate different tasks, second sample the input
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by a temperature so that smaller input can also have a relatively high chance to be sampled. I mainly
experimented the first technique in this work. A future work is to experiment the second technique.

Making Pre-trained Language Models Better Few-shot Learners [8] demonstrated that different
label format can have huge impact on model performances. For example, the paper showed that when
the positive/negative label is expressed as "It was great/terrible", the model will perform the best, and
it would be much better than label "It was terrible/great". Inspired by that, I explored if changing the
question/answer format can have impact on the model performances.

Adapt Language Models to Domains and Tasks [9] showed that continue to fine tune pretrained
models on new domain can greatly help to improve the model performance on new domain. So I
would first pretrain models on in domain questions using the pretrained DistilBERT model, and fine
tune the pretrianed model on out of domain questions.

4 Approach

Inspired by T5 model [7], Making Pre-trained Language Models Better Few-shot Learners [8], Adapt
Language Models to Domains and Tasks [9], I first pretrained baseline model and models with 3
different techniques using in-domain datasets mentioned in Table 2, and then fine tuned the pretrained
model using out-of-domain datasets mentioned in Table 2.

4.1 Baseline

Convert each (question, paragraph) in all datasets into multiple chunks of size 384 with a stride
of 128. For example, let (¢, p) be a question, paragraph pair where ¢ = {qo, q1,-..q10} and p =
{po, p1, ---ps00 }- They will be converted into chuncks ¢; and ¢z, where ¢; = [CLS]q[SEP]p![SEP]
with p* = {po,p1, ..., p371} and o = [CLS|q[SEP]p?[SEP] with p*> = {p12s, p129, .., Ps00 }- Each
chunk is labeled with a start position and end position based on its offset. For chunks that do not
contain the answer the start and end positions are (0, 0).

The baseline model pretrains DistilBERT [6] on the training data. I’ll compare the model perfor-
mances of baseline model with and without furtuer finetuning on out-of-domain datasets.

The loss function is the sum of the negative log-likelihood (cross-entropy) loss for the start and end
locations.

IOSS = 'logpstart(i) - Inge'ndG)

where i is the gold start location and j is the gold end location.

During inference, (question, paragraph) will be preprocessed in the same way as training data
preprocess, and will be splitted into multiple chunks. Each chunk will be passed to model to
get corresponding start and end locations. Then select the locations with the highest sum. More
specifically, choose the pair (i, j) that maximized pstqrtPena With satisfying i < jand j —i 4+ 1 <
Loz Where L, is a hyperparameter that sets the maximum length of a predicted answer and it’s
set to 15 by default.

4.2 Add dataset prefix

Inspired by TS5 model [7], which showed astounding results on training multiple language tasks, and
different tasks are distinguished by adding different prefix in input, I’ll first experiment adding dataset
prefix.

For each dataset, each question g will become Dataset N ame: q, and each (question, paragraph) pair
will be converted to (DatasetName: question, paragraph) pair.

For example, for SQuAD [10] dataset, each question g will become squad : ¢, and each (question,
paragraph) pair will be converted to (squad: question, paragraph) pair.

Then the (DatasetName: question, paragraph) pair in all datasets are converted into multiple chunks
of size 384 with a stride of 128 in a similar way as shown in baseline.



For example, let (DatasetName: q,p) be a question, paragraph pair where ¢ = {qo, 41, ---q10}

and p = {po,p1,---P500}- They will be converted into chuncks c¢;, c¢o and cs,
where ¢; = [CLS]|DatasetName: q[SEP|p![SEP] with p'! = {po,p1,...,p370} and
cy = [CLS]DatasetName:q[SEP}p2[SEPl with p* = {pi2s,P129,...,P100}, and c3 =

[CLS]Dataset N ame: g[SEP]p3[SEP] with p°> = {pase, P257, ---, Ps00}- Each chunk is labeled
with a start position and end position based on its offset. For chunks that do not contain the answer
the start and end positions are (0, 0).

The model pretrains DistilBERT [6] on the training data. I'll compare the model performances with
and without further finetuning on out-of-domain datasets.

The loss function and inference are similar to baseline model.

4.3 Switch question and paragraph

Inspired by Making Pre-trained Language Models Better Few-shot Learners [8] which demonstrated
that different label format can have huge impact on model performances, I'll experiment whether
switching the positions of question and paragraph can have impact on model performances.

Convert each (question, paragraph) to (paragraph, question) in all datasets and then into multiple
chunks of size 384 with a stride of 128. For example, let (g, p) be a question, paragraph pair where
q=190,q1,---q10} and p = {po, p1, ---Ps00 }- They will be converted into (p, ¢) first. Then (p, q) will
be converted in to chuncks ¢; and ¢y, where ¢; = [CLS]p! [SEP]q[SEP] with p* = {pg, p1, ..., 371 }
and c3 = [CLS|p?[SEP]q[SEP] with p? = {p12s, 129, ---, Ps00 } Each chunk is labeled with a start
position and end position based on its offset. For chunks that do not contain the answer the start and
end positions are (0, 0).

The model pretrains DistilBERT [6] on the training data. I’'ll compare the model performances with
and without furtuer finetuning on out-of-domain datasets.

The loss function and inference are similar to baseline model.

4.4 Shorter chunk

Also Inspired by Making Pre-trained Language Models Better Few-shot Learners [8] which demon-
strated that different label format can have huge impact on model performances, I'll experiment
whether a shorter chunk can have impact on model performances.

Convert each (question, paragraph) in all datasets into multiple chunks of size 120 with a
stride of 40. For example, let (¢,p) be a question, paragraph pair where ¢ = {qo,¢1,..-q10}
and p = {po,p1,---p200}. They will be converted into chuncks c¢;, co, c3, c4, Where
¢ = [CLS|q[SEP]p'[SEP] with p! = {po,p1,..,p107}> c2 = [CLS|q[SEP]p?[SEP] with
p® = {pao,Pa1, -, P1a7}, c3 = [CLS|q[SEP]p?[SEP] with p* = {pso, ps1,---; P1s7} and ¢4 =
[CLS]¢[SEP]p*[SEP] with p* = {p120, ps1, ---, P200 }. Each chunk is labeled with a start position
and end position based on its offset. For chunks that do not contain the answer the start and end
positions are (0, 0).

The model pretrains DistilBERT [6] on the training data. I'll compare the model performances with
and without furtuer finetuning on out-of-domain datasets.

The loss function and inference are similar to baseline model.

S Experiments

5.1 Data

As shown in Table 2, datasets used are divided into in-domain datasets and out-of-domain datasets.
In-domain datasets contain SQuAD [10], NewsQA [11] and Natural Questions [12], and they will be
used for training and dev, and generate the pretrained model. Out-of-domain datasets contain DuoRC
[13], RACE [14] and RelationExtraction [15], and they will be used for training, dev and test, and
fine tune the pretrained model. The final model will be evaluated with out-of-domain test dataset.



Dataset Question Source Pasage Source Train  Dev Test

in-domain datasets

SQuAD [10] Crowdsources Wikipedia 500000 10,507 -

NewsQA [11] Crowdsources Wikipedia 500000 4,212 -

Natural Questions [12] Search logs Wikipedia 500000 12,846 -
oo-domain datasets

DuoRC [13] Crowdsources Movie reviews 127 126 1248

RACE [14] Teachers Examinations 127 126 419

RelationExtraction [15] Synthetic Wikipedia 127 128 2693

Table 1: Statistics for datasets used for building the QA system for this project. Question Source and
Passage Source refer to data sources from which the questions and passages were obtained. Table
borrowed from [16]

5.2 Evaluation method

Model performance is measured via two metrics: Exact Match (EM) score and F1 score.

For example, if the system answered a question with "York" but the ground truth answer was "New
York".

EM is a binary measure of whether the system output matches the ground truth answer exactly. For
the example mentioned above EM = 0

F1 is the harmonic mean of precision and recall. For the example mentioned above, the precision
is 100% (answer is a subset of the ground truth) and 50% recall (answer only included 50% of the
words in the ground truth), and the F1 score is 2 * (precision * recall) /(precision + recall) =
2 % (100 % 50) /(100 4 50) = 66.67%

5.3 Experimental details

Most model configurations: Batch size: 16, Epochs: 3, Optimization algorithm: Adam, Learning rate:
3e-5

I’ll mention the difference if the experiment model use different configurations

5.4 Results

I’m on the RobustQA track, and the scores obrained on the test leaderboard are:
EM: 40.367, F1: 58.467

The scores are as expected. Because with all the experiments shown in Table2, models performances
are improving because of different pretraining and different fine tuning. However, I believe there is
still a lot of room to further improve the scores by using different approaches.

6 Analysis

6.1 With fine tuning vs without fine tuning

As shown in Table 2, on out-of-domain validation test, baseline model without fine tuning obtained
31.41 EM and 46.71 F1 respectively, and baseline model with fine tuning obtained 31.91 EM and
47.23 F1 respectively. We can see baseline model with fine tuning performs better than baseline
model without fine tuning. It’s expected because fine tuning would provide more information about
the out-of-domain dataset. The same results are shown for all models including adding dataset prefix,
switching question and context, and shorter question and context.

6.2 Fine tuning models

When we compare baseline with fine tuning, switching question and context with fine tuning, shorter
question and context with fine tuning, we can see that both switching question and context and shorter



Experiment EM F1

Baseline
Baseline no fine tuning 31.41 46.71
Baseline with fine tuning 31.94 47.23
Switch question and context
Switch question/context no fine tuning 19.37 29.41
Switch question/context with fine tuning 20.16 30.14

Shorter question and context

Shorter question context no fine tuning 31.41 46.71
Shorter question context with fine tuning 31.94 45.86
Add dataset prefix
Add prefix no fine tuning 31.68 47.63
Add prefix with fine tuning 31.94 47.60
Add dataset prefix - more fine tuning
Add prefix with fine tuning 20 epochs 31.94 47.60
Add prefix with fine tuning 4 batch size 31.94 48.02
Add prefix with fine tuning 1 batch size 32.20 48.29
Add prefix with fine tuning 1 batch size and Se-5 adam 32.46 48.66
Add prefix with fine tuning 1 batch size and 5.5e-5 adam 32.46 49.01

Table 2: Model performance on out-of-domain validation set

question and context won’t help to improve model performance. Switching question and context
with fine tuning EM and F1 are 20.16 and 30.14, and shorter question and context with fine tuning
EM and F1 are 31.94 and 45.86, whereas baseline model with fine EM and F1 are 31.91 and 47.23
respectively. That is because neither switching question and context nor shorter question and context
provides extra information for out-of-domain dataset compared with baseline model, and as shown in
"Making Pre-trained Language Models Better Few-shot Learners [8]" paper, the prompt format can
have big impact on model performance, and switching question and context and shorter question and
context would change the data format and those changes happen to have negative impact.

Especially switching question and context with fine tuning, both EM and F1 dropped around 30%
compared with baseline with fine tuning, which means chunck format [CLS]¢[SEP]p[SEP] used by
baseline models is better than the chunk format [CLS|q[SEP|p[SEP] used by switching question and
context models.

When we compare baseline with fine tuning and adding dataset prefix with fine tuning, we can see
that adding dataset prefix with fine tuning improved the F1 score from 47.23 to 47.60. That is because
adding dataset prefix can help to provide extra information about the domain of data.

6.3 Further fine tuning for adding dataset prefix models

Since adding dataset prefix with fine tuning showed the largest model performance improvement
compared with baseline model without fine tuning, I fine tuned the adding dataset prefix without fine
tuning model in a couple of different ways to furture improve the model performance.

We can see that the adding prefix with fine tuning using default model parameters obtained 31.94 EM
and 47.60 F1, and increasing fine tuning epochs from 3 epochs to 20 epochs also obtained 31.94 EM
and 47.60 F1. So increasing adding prefix fine tuning epochs won’t help with model performance.
That is because 3 epochs is already reaching the optimal model performance and increasing epochs
will not further increase the model performance.

We can also see that decreasing batch size of adding prefix with fine tuning from 16 to 4 would
improve F1 from 47.60 to 48.02, and decreasing the batch size to 1 would further improve EM from
31.94 to 32.20 and EM from 48.02 to 48.29. So the smaller the batch size is the better the adding



dataset prefix with fine tuning model performance is. That is because smaller batch size reduces the
variability of the batch, and each batch will have a better gradient update towards the optimal.

Besides epochs and batch size, I also experimented different learning rate for Adam optimization.
The default learning rate is 3e-5, and I experimented le-5, 1.5e-5, 2e-5, 2.5¢e-5, 3e-5, 3.5e-5, 4e-5,
4.5e-5, 5e-5, 5.5e-5 and 6e-5, and found the model would perform the best when Adam learning rate
is 5.5e-5, and it achieved 32.46 EM and 49.01 F1.

7 Conclusion

7.1 Achievement and Main findings

I experimented different models with or without fine tuning on out-of-domain dataset to improve
the EM and F1 score on out-of-domain test dataset. Different models are baseline model, switching
question and context in model input, using shorter question and context as input, and adding dataset
prefix in questions.

I found that models with fine tuning perform better than models without fine tuning on out-of-domain
dataset. Among models with fine tuning on out-of-domain dataset, input format can have huge impact
on model performance. For example, chunck format [CLS|¢[SEP]|p[SEP] used by baseline models
is better than the chunk format [CLS|¢[SEP]p[SEP] used by switching question and context models.
Adding dataset prefix can help to provide extra information for dataset, thus help to improve the model
performance. And various fine tuning techniques can help to forthur improve model performance,
including having smaller batch size, and I found Adam optimization 5.5e-5 learning rate will help to
achieve the best scores among all the models I experimented.

7.2 Limitations

The input format changes like switching question and context in model input, using shorter question
and context as input are manually selected, and there should be many other input format that would
change model performances. This report didn’t explore more possibilities. More over, there can be
some automatical way to select the input format as mentioned in "Making Pre-trained Language
Models Better Few-shot Learners [8]" paper.

7.3 Future work

Explore automatic ways to select input format as mentioned in "Making Pre-trained Language Models
Better Few-shot Learners [8]" paper. Explore more fine tuning techniques besides optimization
learning rate, epochs and batch sizes. Explore sampling the input by a temperature so that smaller
input dataset can also have a relatively high chance to be sampled.
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