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Abstract 

This project aims to explore the effectiveness of extending input token features in 
BiDAF [1] model to improve on SQUAD v2 QA task [2]. The extension is inspired 

by existing approaches in open domain QA and neural translation and is motivated 
by reading comprehension techniques I have learned as a human who doesn’t speak 
English as first language. The extra features include part-of-speech (POS) tag, 
named entities (ENT) tag, sentiment and lemma match. The addition of those extra 

features has shown significant performance improvement over the baseline BiDAF 
model [1], scoring EM/F1 score of 61.9/65.1 on the validation set and 59.4/62.1 on 

the test set. 

1 Introduction 

Question Answering (QA) is a challenging task in natural language processing (NLP), as it tests the 
reading comprehension ability of the machine system. This includes understanding the information 
provided in the context, and extracting such information when presented a question. With the 
introduction of the SQUAD v2 QA dataset [2], a further challenge is presented to the machine system 

to determine that the context does not have the necessary information to answer the presented question. 
This requires the machine to build a stronger correspondence between the question and the context. 

In this project, I explored the effectiveness of providing explicit linguistic features from the spaCy [3] 
English model, with the overall goal to improve performance on the SQUAD v2 QA task [2] over the 
baseline BiDAF model [1] without character-level embeddings. I experimented with various methods 
to encode such labels as input and different methods to join those with the word embeddings input. I 
found that providing the labels as one-hot vector and concatenating those to the word embedding 
provides the most performance boost. I also found that although the model is able to have improved 
performance, it also suffers from some overfitting on the explicitly provided linguistic features. 

2 Related Work 

In open domain QA tasks, one approach is to read Wikipedia as source for factoid questions. [4] 
In this approach, proposed by Danqi Chen et al., tokens in a paragraph are encoded with a feature 
vector which includes the word embedding of the token, an exact match feature which is a boolean 
feature denoting if the token can be matched to some form of a word in the question, and token 
features including part-of-speech (POS), named-entity-recognition, and normalized term frequency. 
The experiments involving performance with varying inclusion of those features show that those 
additional explicit features are very helpful at improving performance. 

To improve performance of language models trained on large corpra on knowledge based task, 
Zhengyan Zhang et al. proposes to use a linear combination of multi-headed attention over word 
encodings and entity encodings to incorporate information from knowledge graphs. [5] The method 
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have also shown significant performance improvement when extra linguistic features are provided on 
top of word embeddings. 

3 Approach 

3.1 Baseline 

The baseline model for this project is a BiDAF [1] implementation with only word-level embeddings, 
using pretrained GloVe word embeddings [6]. The baseline model is trained for 30 epochs, with 
hidden size 100, and evaluates on the validation set at: 

F1: 60.44, EM: 57.03, NLL: 03.12 

3.2 Motivation 

As a human learning English as a second language, similar challenges often come up in tests such 
as SAT and GRE, where we would need to discern, in the given options for answers to a question, 
which has complete and necessary information from the given passage. Since many of those tasks are 
presented under time constraint, one effective method to tackle those problems is to skim through the 
text and when reading the question, find correspondences in the text, and quickly rule out options that 
don’t match with the text. Another challenge would be reading comprehension with unseen words. 
One method to tackle those is to infer its role in the sentence by its surrounding words’ POS, and 
infer its sentiment by its surrounding words’ sentiment. With a rough interpolation of the potential 
meaning of the word, correspondence can be made with the question for an answer. 

One of the main challenges in the SQUAD v2 QA task [2] is discerning if sufficient information is 

provided in the context to answer the question. This usually takes the form of the question having 
few different key words than the context and unmentioned words in the context. Since using explicit 
linguistic features have shown performance improvement in other NLP tasks [4] [5], and is used in 

human reading comprehension, this project aims to improve performance of the baseline BiDAF 
model by providing similar linguistic features. 

3.3. Tokenizer Linguistic Features 

In the baseline model, the spaCy [3] English model is used for tokenization during data preprocessing. 
Using the same model during data processing, I obtained several linguistic features of each token. 
pos_, ent_type_ are strings representing POS and named entity type (ENT) labels on the token. 
Those are then mapped to an index set where no label is indexed at 0 for tokens in the context and in 
the question. sentiment is a float representing the sentiment of the token, provided for tokens in the 
context and in the question. lemma is an integer label representing the lemma form of the token. By 
comparing lemma of the token in the context with the lemma of each token in the question, I obtain 
a boolean feature for the context tokens only, represented by a 0 or | integer, called lemma match 
denoting if the lemma of a context token can be matched to the lemma form of some token in the 
question. Those are then stored alongside the word embeddings for the dataset to be used as inputs to 
the model. 

3.4 Incorporating Linguistic Features 

3.4.1 Encoding POS and ENT 

Since POS and ENT are integer labels, they need to be provided to the model as some form of 
embedding. In this project I compared training embeddings of various dimensions from scratch 
during training for the QA task and frozen one-hot vector encoding of those indices while the 0 index 
representing an empty label is represented as a zero-vector. Experiments show that one-hot vector 
encoding provides better performance increase. Details in section 4. 

3.4.2 Incorporating into word embeddings 

To incorporate the linguistic features to the word embeddings to be encoded by the highway encoder 
layer [7] to be fed to the RNN layer, I compared between concatenation and linear combination.



In concatenation (see Figure 1), the vectors for POS and ENT and the values of sentiment and 

lemma match are directly concatenated to the word embedding vector. The resulting vector of is then 
projected down to the word embedding size using a linear layer with no bias to be fed to the highway 
encoder. 
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Figure 1: Concatenating Features to Context Word Vector 

In linear combination (see Figure 2), each feature is projected to a vector of the same length of the 
word embedding using a linear layer without bias, then summed to the word vector to be fed to the 
highway encoder. 
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Figure 2: Linear Combination of Context Word Vector and Features 

Experiments show that generally concatenation works better, with the most effective combination 
shown to be concatenation with one-hot vectors. Details in section 4. 

3.5 Bottleneck 

Another commonly used technique to combat overfitting is a bottleneck layer, where a feature vector 
is projected down to a smaller size then projected up to the desired hidden size for the model to learn 
a compressed feature. In this project, a bottleneck layer (Figure 3) is applied after combining the 
vectors before the highway encoder and yielded some performance improvement. Details in section 
4. 

3.6 Dropouts on Linguistic Features 

Dropout is a common regularization technique used in neural networks to combat overfitting on input 
features and in the baseline BiDAF, dropout is applied to pretrained word vectors. By comparing 
the performance of applying dropouts to different additional features, we observe that the model is 
overfitting on the extra provided linguistic features. Consistent results on validation and test set is 
achieved when dropouts are applied to all features. Details in section 4.
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Figure 3: Bottleneck layer before highway encoder 

3.7 Hidden Size 

I have chosen to use hidden size 80 instead of the default size of 100 as another method to combat 
overfitting by reducing the number of parameters in the model. I have not tried and compared lower 
hidden sizes since 80 performs well and that there is a time constraint on the project. 

4 Experiments 

4.1 Data 

The dataset used for training is the training split of the provided SQUAD v2 QA dataset [2] and the 
dev split is used for evaluation. The pretrained word embeddings used for the model are the GloVe 
vectors [6]. Linguistic features for the tokens are provided by the spaCy [3] English model. 

4.2 Evaluation method 

The baseline and the models are evaluated on the validation split of the provided dataset on 3 metrics: 
EM, F1 and NLL. 

4.3 Experimental details 

All experiments ran for 30 epochs which the same learning rate at 0.5 and the same dropout rate at 
0.2. 

4.3.1 Encoding POS and ENT, and combination method 

Since POS and ENT has similar total number of labels (21 and 20 respectively), I experimented with 
the same learned embedding size for both. Table 1 shows the performance of different embedding 
sizes when the features are combined using linear combination. Table 2 shows the performance of 
different embedding sizes when the features are combined using concatenation. Both experiments are 
conducted at hidden size 80 without bottleneck. 

From those two sets of experiments, we can see that generally the longer the embedding length the 
better the performance. This can be attributed to the fact that a higher dimensionality is able to encode 
more information about the labels and their relations to each other. However, we can also observe 

that frozen one-hot encoding performs the best, potentially due to the fact that no extra training from 
scratch is involved and the information and relation with other features can be encoded in the weights 
used to combine with other vectors.



Embedding Length |_ Fl EM NLL 
  

baseline 60.44 57.03 3.12 
8 61.73 584 3.12 

10 61.8 58.6 2.9 
12 62.25 59.18 2.86 
16 62 58.88 2.97 

one-hot 62.46 59.6 2.74 
Table 1: Performance of Different Embedding Sizes when Linearly Combined 

Embedding Length | _ Fl EM NLL 
  

baseline 60.44 57.03 3.12 
12 64.73 61.49 2.72 
16 64.9 61.82 2.73 

one-hot 65.84 62.71 2.63 
Table 2: Performance of Different Embedding Sizes when Concatenated 

Those two sets of experiements, we can also observe that concatenation performs better than linear 
combination. One possible explanation for this is that concatenation uses less number of weights and 
hence is less prone to overfitting and vanishing gradients. 

4.3.2 Bottleneck Size 

To control for overfitting, I experiemented with a bottleneck layer between the combined vector and 
the highway encoder, at hidden size 80, feature embedding size 16 and using linear combination. 
(Table 3) 

Bottleneck Size | Fl EM NLL 

baseline 60.44 57.03 3.12 

No Bottleneck 62 58.88 2.97 

60 63.28 60.33 2.69 

50 62.42 60.21 2.73 

Table 3: Performance of different bottleneck sizes 

  

The limited experiment shows that adding a bottleneck of size 60 gives the best performance given 
the condition. Assuming that this generalizes to concatenation, I have fixed the bottleneck size at 60 
for later experiments. 

4.3.3 Dropouts on Linguistic Features 

To combat overfitting I have experimented dropouts on different combination of features. The 
experiments are run with hidden size 80, concatenation of linguistic features and bottleneck of size 
60. (Table 4) 

Although dropout on POS and ENT only gives the best result on the validation test, the same 
combination produced a much lower score on the test set, suggesting that there is heavy overfitting on 
some of the features. For comparison, I submitted the test set results for the other two combinations, 

with scores in Table 5. 

Comparing performance on both the validation and the test set, we can see that the model is likely 
heavily overfitting on the explicit sentiment and the lemma match feature. With dropouts on all 
features, I see that the performance on the validation and test set is more consistent. Since I did not 
compare the results of no dropout on POS and ENT, I cannot draw a conclusion on the extent of 
overfitting on those 2 features. However, this does show the importance and effectivness of using 
dropout as a regularization technique.



Dropout | Fl EM NLL   
baseline 60.44 57.03 3.12 

POS and ENT 65.2 62.26 2.66 
POS, ENT and Sentiment | 65.09 61.91 2.72 

All 62.78 59.72 2.75 
Table 4: Performance of Different Dropout Combinations, on validation set 

  Dropout | Fl EM 
POS and ENT 45.374 40.490 

POS, ENT and Sentiment | 62.114 59.442 
All 61.064 57.853 

Table 5: Performance of Different Dropout Combinations, on test set 

4.4 Results 

From Table 4 and 5 we can see that providing the model with extra linguistic features is effective 
in improving performance of the model on the validation set over the baseline. However, the test 
results on the test set suggests that the model also overfits on those explicit features and dropouts 
need to be applied to all features to control overfitting. Since I do not have the performance of the 
baseline model on the test set, I cannot draw any conclusions about the effectiveness of the provided 
linguistic features on the test set. From the quantitative results, I can only conclude that it is likely 
that the addition of pretrained explicit linguistic features provides a inexpensive way to improve the 
performance of the model but requires regularization to be effective on generalizing the use of such 
features. 

5 Analysis 

From the validation set I identified 3 questions, each of a different type, where my model answered 
correctly that the baseline model did not. In each figure: 

* Question keywords are highlighted in blue 

¢ Close context match is highlighted in yellow 

¢ Exact context match is highlighted in green 

¢ "wh-" question word is underlined and colored blue 

¢ Correct match to the "wh-" word is underlined and colored blue 

¢ Wrong match to the "wh-" word is underlined and colored red 

¢ Important keywords are bolded 

Those examples demonstrate that with inclusion of explicit linguistic features, my model is better 
able to correctly find question context correspondence, or the lack thereof, to return a correct answer 
for the question, compared to the baseline model, on the validation set. 

5.1 Missed Keyword 

Figure 4 shows a wrong answer potentially caused by a missed keyword in the question. The 
baseline correctly identified the designers of the University Library and matched "who" to two 
names. However, the question is actually asking about the garden, where "garden for the University 
Library" in the quesiton is analogous to "University Library Garden". Here, my model successfully 
identified the designer of the building actually asked for in the question. In reading comprehension, 
it is important to match every word from the question to the context to obtain an accurate answer 
and this shows that the included linguistic features, potentially lemma match, allowed my model to 
correctly match all keywords in this sample question.



   
    

  

Question: Who 
Context: Another important library — 

over two million items. 

and opened on 15 December 1999. It is surrounded by green. 

, Was opened on 12 June 2002. It is 

one of the largest and most beautiful roof gardens in Europe with an area of more than 

10,000 m2 (107,639.10 sq ft), and plants covering 5,111 m2 (55,014.35 sq ft). As the 

university garden it is open to the public every day. 

Answer: Irena Bajerska 

Baseline Prediction: Marek Budzynski and Zbigniew Badowski 

Our Prediction: Irena Bajerska 

: founded in 1816, is home to 

    

Figure 4: Sample Question 1: Missed Keyword 

Question: Who 
2 

Context: Aristotle provided a philosophical discussion of the concept of a force as an 

integral part of Aristotelian cosmology. In Aristotle's view, the terrestrial sphere contained 

four elements that come to rest at different "natural places" therein. Aristotle believed that 

motionless objects on Earth, those composed mostly of the elements earth and water, to 

be in their natural place on the ground and that they will stay that way if left alone. He 

distinguished between the innate tendency of objects to find their "natural place" (e.g., for 

heavy bodies to fall), which led to "natural motion", and unnatural or forced motion, which 

required continued application of a force. This theory, based on the everyday experience of 

how objects move, such as the constant application of a force needed to keep a cart 

moving, had conceptual trouble accounting for the behavior of projectiles, such as the 

flight of arrows. The place where the archer moves the projectile was at the start of the 

flight, and while the projectile sailed through the air, no discernible efficient cause acts on 

it. 

This explanation demands a continuum 

like air for change of place in general. 

Answer: N/A 

Baseline Prediction: Aristotle 

Our Prediction: N/A 

Figure 5: Sample Question 2: Miss Matched Keyword 

5.2 Mismatched Keyword 

Figure 5 shows a wrong answer potentially caused by a miss matched keyword in the question. 
This is a typical adversarial example of an unanswerable question, since one changed key word of 
the question means that the sentence cannot be matched exactly to the context and when no other 
relevant information is provided, no answer from the context can be provided. Here the baseline 
model successfully identified the very similar sentence in the context, and correctly identified that 
Aristotle corresponds to who in the question. However it did not recognize that air keyword from the 
context is replaced by water in the question, making the entire sentence a spurious match. My model 
correctly recognized that air does not match to water in the question and hence cannot provide an 
answer from the context given. 

5.3. Missed Relation 

Figure 6 shows that the baseline model wasn’t able to provide an answer when an answer is available 
in the context. One possible reason is that the baseline model is looking for "associated with constant 
velocity" in the question but wasn’t able to recognize that "associate" is a symmetric relation and "a 
associates with b" is equivalent to "b associates with a". This may have caused the baseline model to 
unable to make a question context correspondence to extract the correct answer. My model was able 
to recognize constant velocity can be matched to the context before "associated with" and the noun 
phrase after it is the correct answer matching to "what".



  

Question: \ insight of Galileo was associated with constant velocity? 
Context: Newton's First Law of Motion states that objects continue to move in a state of 

constant velocity unless acted upon by an external net force or resultant force. This law is 

an extension of 

{G8 (see a more detailed description of this below). Newton proposed that every object 
with mass has an innate inertia that functions as the fundamental equilibrium "natural 

state" in place of the Aristotelian idea of the "natural state of rest". That is, the first law 

contradicts the intuitive Aristotelian belief that a net force is required to keep an object 

moving with constant velocity. By making rest physically indistinguishable from non-zero 

constant velocity, Newton's First Law directly connects inertia with the concept of relative 

velocities. Specifically, in systems where objects are moving with different velocities, it is 
impossible to determine which object is "in motion" and which object is "at rest". In other 

words, to phrase matters more technically, the laws of physics are the same in every 

inertial frame of reference, that is, in all frames related by a Galilean transformation. 

Answer: lack of net force 
Baseline Prediction: N/A 

Our Prediction: lack of net force 

Figure 6: Sample Question 3: Missed Relation 

6 Conclusion 

In this project, I have successfully provided explicit token linguistic features to a modified BiDAF 
model to achieve better performance on SQUAD v2 QA task [2], scoring EM/F1 score of 61.9/65.1 

on the validation set and 59.4/62.1 on the test set. 

Motivated by question context correspondence in my experience with reading comprehension, and 
inspired by similar works in NLP, supplying token linguistic features has shown to be able to increase 
performance, especially when strict correspondence is needed to provide a correct answer. My 
approach involves encoding indexed features as one-hot vectors and concatenating those to the token 
word vector. The combined vector is then passed through a bottleneck before passing to the highway 
encoder to control for overfitting. The use of those features doesn’t require extensive extra time on 
training and only increases data preprocessing time which is a one-time cost. So when compared 
to the baseline model, where those linguistic features can be hidden in the pretrained word vectors 
and the question context relation can be learned as parameters of the model, adding explicit features 
provides an efficient way of improving performance. However, as they are not learned from scratch, 
those features are also very prone to overfitting, which needs to be carefully controlled in the model. 
As I have learned in a hard way, regularization cannot be overlooked when adding or learning extra 
features. 

Due to time constraint on the project, I did not have the oppurtunity to conduct complete controlled 
experiments for comparison of different combination methods, different encoding methods and 
different regularization methods. Hence further work may include designing complete experiments 
for a more rigorous comparison between the methods tested in this project. Another potential 
experiment is to look into the true effectiveness of the additional features, by designing experiments 
with randomly generated features for each token. By comparing the performance with mostly correct 
labels and randomly generated placebo labels, we can check if it was the features that improved the 
performance, or just the fact of extra weights that improved the performance. Other further work may 
also include finding a most efficient set of linguistic features to include while minimizing overfitting 
effect since POS, ENT and sentiment are not the only features of a token. 

As with the problem with overfitting on the current model, further work may include modifying the 
attention layer to learn to better extract question context correspondence instead of using an explicit 
match feature. Another limitation is that the current model still only considers the start and end 
positions of the answer in context independently, where they should considered jointly when making 
correspondence with the question. Hence further work may include incorporating conditioning 
between the start and end position prediction, in junction with the context question correspondence.
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