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Abstract 

Machine Reading Comprehension (MRC) Questions Answering (QA) systems are 

commonly used within conversational agents and search engines to support users 
information needs while saving users the effort of navigation in documents, when 
the information need is a question for which the user seeks an answer. While state 
of the art approaches have shown to be successful for QA on a general domain, 
enterprise retrieval problems where the information need for QA exists in domains 
that are specialized and have limited or none annotated data remain open. In this 
work we address adaptation to new specialized domains with very little training 
data for MRC-QA , focusing on importance weighting. We propose two features for 
importance weighting that are applicable for an unsupervised setting, and present 
preliminary results comparing importance weighting with transfer learning. 

1 Key Information to include 

¢ Mentor: Chris Waites 

2 Introduction 

Machine Reading Comprehension (MRC) Questions Answering (QA) is a task in which a model 

receives a text segment (context) and a question about that context, and infers an answer to the 
question in the form of a text span from the context. MRC-QA systems are commonly used within 
conversational agents and search engines to support users information needs while saving them the 
effort of navigation in documents, when the information need is a question for which the user seeks 
an answer. 

The SQuAD[1] competition drove important advances in MRC-based QA and led to rapid improve- 
ments. However, while successful in-domain, models trained for the MRC-QA task have been failing 

to generalize beyond the training distribution, learning superficial correlations[2]. 

This paper is focused on MRC-based QA in new specialized domains, using domain adaptation with 
very little data. This problem is highly motivated by practice via enterprise retrieval problems, where 
the information need for QA exists in specialized domains that have limited or none annotated data. 

In our experiments we take an off-the-shelf pre-trained transformer model (a QA variant of DistiIBERT 
(3, 4]) that was trained on a general domain dataset. We then utilize a general QA dataset together with 

a few examples from the specialized domain, with the goal of adapting this model for the specialized 
domain. Specifically, we use the specialized domain examples to modify the training by employing 
importance weighting[5], a technique in which we apply a weight of importance to each sample 
in the training set, based on some feature f that is a distributional feature which ideally captures 
similarity to the specialized domain data. We propose two feature for the importance weighting: 
(1) the question length measured by unique tokens, and (2) vocabulary similarity measured by the 
number of similar tokens in the question and context. We compare the effectiveness of importance 
weighting in comparison to the base-model with and without additional fine-tuning on very little 
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specialized domain data. Our features utilize the question and the context, resulting in a setup that is 
applicable where no supervised data is available for the specialized domain. 

The general QA dataset used is a combination of SQUAD[1], NewsQA[6], and Natural Questions[7], 

and we refer to it as (in-domain data). The specialized domain QA dataset used is a combination of 

DuoRC[8], RACE[9], and Relation Extraction[10], and we refer to it as (out-of-domain data). 

Our results are in line with the conclusion of previous work [5], showing that importance weighting 
can be effective in comparison to the base model, but not in comparison to additional fine-tuning. 
While previous work[5] showed that using importance sampling did not hurt model effectiveness, in 
our experiments fine-tuning with the base-model outperforms configurations that employ importance 
weighting. 

3 Related Work 

While data availability has led to improvements in the MRC-QA task when targeting general domains 
[1], this task remains open for specialized domain. Most work on MRC-based QA has been focused 

on datasets which are characterised by short factoid-style answers in a general domain, including 
SQuAD[1], NewsQa[6], SearchQA[11], Trivia QA[12], and MS-MACRO[13]; specialized domain 

datasets for this task are more rare, and are mainly in the medical domain (i.e., emrQA[14] and 

MEDIQA[15]). In our experiments we train on a general domain and focus on adapting to specialized 
domains from various topics: movie reviews[8], examination data[9], and wikipedia-synthetic[10]. 

Multiple solutions have been proposed for adaptation of deep learning models in the context or 
MRC-QA , including mixture of expert[16], data augmentation[17, 18], adversarial training [19, 20] 

and meta learning[21, 22]. Another common approach is employing transfer learning by training first 
on a general domain dataset then fine-tuning on a small set of examples from a specialized domain 
data[5, 23, 24]. We use similar approach in some of our experiments. 

Importance weighting for MRC-QA using answer length has shown to be effective in case none or 
very little data is available from the specialized domain, otherwise the added value in comparison 
to transfer learning was negligible [5]. In our work we explore different features for importance 
weighting, and use different datasets. We propose and implement two features for importance 
weighting: question length and vocabulary similarity. Our features do not require having the answer, 
and so our basemodels are applicable where no supervised data is available from the specialized 
domain. Similar to previous results [5] importance weighting configurations outperform the base 
model in our experiments. In contrast, when used with additional fine-tuning, configurations utilizing 
importance weighting show inferior results in comparison to using fine-tuning with no importance 
weighting. 

4 Approach 

In this section we are going to present the methodology we used in our experiments. 

4.1 Model Framework 

Baselines We leverage a pre-trained transformer language model called DistilBERT [4] as our 
base model. For our baselines we trained that model on an additional QA data set. We denote this 

model DistiIBERT(D), where D denotes the QA specific dataset used to train the weights of the 
model. We define two configurations for the base model: one for the in-domain dataset and one for 
the out-of-domain sdataet. DistiIBERT is 40% smaller than the original BERT[25], while retaining 
97% language understanding and improving speed by 60%[3]. The QA implementation leverages an 
additional classification head that classifies the probability of a span in the context to be the answer 
to the question. 

Importance Weighting In this configuration we adapt the base model by applying importance 
weighting to the in-domain training data used. We use the distribution of feature from the in-domain 
and out-of-domain datasets to estimate the resemblance of each training example in the in-domain to 
the out-of-domain dataset. We then weight the loss assigned to our training examples accordingly, 
emphasizing learning from examples that are likely to represent the out-of-domain when learning



the model parameters by assigning such examples higher weights. This configuration is denoted 
DistilBERT,,, where w denotes the weighting configuration used to weight the in-domain training 
dataset. We present the specific features used in Section 4.2 and the implementation details in Section 
5.3. 

Fine-tuning for Domain Adaptation We implemented a fine-tuning step for additional domain 
adaptation using the out-of-domain data. This is done as a second step, on top of an existing model 
from one of the configuration described above. We introduce additional configuration, in which we 
perform this step on top of the in-domain baseline as well as the importance weighting models. This 

models are denoted DistiIBERT! and DistiIBERTS, respectively. 

In Table | we provide a list of the resulting models and respective notation. We dedicate the rest of 
this section to elaborate on the features used for importance weighting. 

  

| Notation Training data Fine-tuning | 
  

  

Baselines 

DistiIBERT(in)! — in-domain - 
DistiIBERT(out) _out-of-domain - 
Importance weighting 

DistiIBERT yocay += weighted in-domain - Shared Vocabulary - 

DistiIBERT jen weighted in-domain - Question Length - 

Additional domain adaptation 

  

  

  

  

  

    
DistiIBERT! in-domain out-of-domain 

DistiIBERTS,,., weighted in-domain - Shared Vocabulary _out-of-domain 

DistilBERT!, weighted in-domain - Question Length out-of-domain 
  

Table 1: List of the models we used in our experiments: baseline models, importance weighting 
configurations, and configurations for which we performed additional fine-tuning with the out-of- 
domain examples. The training data used for the base model is listed in the middle column. 

4.2 Importance Weighting Configurations 

Similar to previous work[5], we define the weight given to sample s as 

_ Pout (8) 

w(s) ~~ Din(S) (1) 
  

where Pout, Pin denote the likelihood of observing a sample in the out-of-domain dataset and the 

in-domain dataset, respectively. The likelihood is estimated with respect to a given feature. We 
propose and implement two features for importance weighting: question length and vocabulary 
similarity. Our features do not utilize the answer, resulting in base models configurations that are 
applicable to unsupervised settings. 

4.2.1 Question Length 

For this feature we estimate the likelihood of a sample according to the distribution of question 
lengths. Specifically we look at the number of unique tokens that appeard in the question. We denote 
models using this feature by setting w = len. To avoid zero probabilities we smooth the distributions 
by adding 1| to each length category in the distribution. 

4.2.2 Shared Vocabulary 

Let t be a token in the out-of-domain and in-domain dataset. We calculate the maximum likelihood 
estimator for token t for each dataset D, assuming a unigram language model. We define p(t) as 
the probability of the unigram language model estimated to generate token t. In this configuration, 
we calculate a weight w’ for each individual token t by dividing the probability of the estimated 
out-of-domain language model to generate token ¢ with the probability of the estimated in-domain



language model to generate token t. We define the weight of sample s as the sum over all token 
weights in the question and context of that sample: 

w(s) = So w(t) (2) 

For the estimation of the language models we use all tokens in the question and context. If a token 
is out of vocabulary for the out-of-domain datasets, we assign it a low probability to avoid zero 
probabilities. We denote models using this feature by setting w = vocab. 

5 Experiments 

  

  

  

  

  

5.1 Data 

Data Question source Context Source Train Dev Test 

in-domain datasets 

SQuAD[1] Crowdsourced Wikipedia 50,000 10,507 - 
NewsQA[6] Crowdsourced News articles 50,000 4,212 - 

Natural Questions[7] Search logs Wikipedia 50,000 12,836 - 

out-of-domain datasets 

DuoRC[8] Crowdsourced Movie reviews 127 126 1,248 

RACE[9] Teachers Examinations 127 128 419 

RelationExtraction[10] Synthetic Wikipedia 127 128 2,693 
  

Table 2: Statistics for datasets used for building the QA system for this project. Question Source and 
Context Source refer to data sources from which the questions and context were obtained. Source: 
CS224n handout and Fisch et al.[26] 

In Table 2 we preset the data sets used in the training and in our experiments. The input data that 
is used for MRC-QA is a question and a respective context - a passage of text that includes the 
answer to the question. The output is the answer to the question - a span of text from the context 
that has the answer. The datasets that were used for training are Wikipedia/news datasets together 
with a small size of out of domain datasets from various topics: movie reviews, examination, and 

Wikipedia-synthetic. 

5.2 Evaluation Method 

We report the EM (exact match) and F1 measures on the out-of-domain validation and test set. 

5.3. Experimental Details 

We utilize a pre-trained off-the-shelf QA for our baselines and for the fine-tuning, DistilBertForQues- 
tionAnswering *. We use the parameter values provided in the robustQA project default baseline 
> and run the experiments with a fix random seed of 42. A partial list of the parameter values is 

reported in Table 3. For the best performing model, DistiIBERT”, we experimented with additional 
epoch sizes. We report the results from these experiments in Tables 5 and 6. In Table 4 and Figure 1 
we report the best result of the model (#epochs may vary). 

For the importance weighting, we pre-computed the feature weights based on the training and 
validation data and implemented an extension of DistilBertForQuestionAnswering that computes the 
weighted loss function used in training, using a weight vector and an input. 

5.4 Results 

5.4.1 Test Leader Board - RobustQA 

We report the test results in Table 4. We had a quota of 4 submissions to the RobustQA Test Leader 
Board. We selected the models that showed improvements on the validation set. As a comparison we 
  

*https://huggingface.co/transformers/model_doc/distilbert.html 

$https://github.com/MurtyShikhar/robustqa



  
Learning rate 3e-05 
Batch size 16 
# Epochs 3 

Table 3: Parameter values used‘. 
      

also used an importance weighting configuration without fine-tuning. The results are consistent with 
what we have seen on the validations data, showing that fine-tuning with the base-model outperforms 
configurations that employ importance weighting. In the next section we will present the validation 
results. 

  

Model EM FI 
DistiIBERT! 41.628 59.141 
  

DistiIBERT/,, 41.078 58.409 
DistiIBERT!,,.., 39.725 57.579 
    DistiIBERT yocap 38.073 56.798 

Table 4: Test set results: EM and F1 scores from the Test Leader Board - RobustQA. The line 

separates fine-tuned model from the weighted model that uses Shared Vocabulary without additional 
fine-tuning. Best results are boldfaced. 

    

5.4.2 Validation Results (out-of-domain ) 

  

  

    

        

(a) EM Validation Scores (out-of-domain ) (b) F1 Validation Scores (out-of-domain ) 
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Figure 1: Reporting the evaluation measures for all models. In cases of multiple options (different 
epochs number) we report the best performing configuration. 

In Figure 1 we report the EM and F1 scores for prediction on the validation out-of-domain datasets 
(both separately and pooled). Where multiple results were available per model we report the results 
of the best performing model (based on the all out-of-domain validation data). All configurations 
perform better on the Relation-Extraction dataset in comparison to the other datasets. The best per- 

forming model for both evaluations measure and in most datasets is DistilBERTS (blue), a fine-tune 
only configuration (no importance weighting). The lowest performing model is DistiIBERT (out) 
(orange), that is trained on the very small out-of-domain training data. 

When looking at Figure | at the baselines models, DistiIBERT (in) (blue) and DistilBERT (out) 
(orange), we see that training with in-domain data outperforms training with out-of-domain data, 
demonstrating that training on a large size general QA dataset can be more beneficial than training 
on a very small out-of-domain data. The amount of out-of-domain data is probably too small 
to properly train the model parameters. An exception for this is the EM scores received for the 

Relation-Extraction dataset. A possible reason for that could be the synthetic nature of the dataset.



  

  

  

  

              

Fine- 
M = tuning : : 

odel Description # All | RACE | DuoRC | RelationExtraction 

epochs 

DistilBERT (in) in-domain 31.67 | 23.44 33.33 38.28 
DistilBERT (out) out-of-domain 13.87 | 1.56 1.59 38.28 
DistilIBERT yocay | Shared Vocabulary 25.92 | 16.41 26.98 34.38 
DistiIBERTien Question Length 32.46 | 17.97 32.54 46.88 

DistiIBERT! in-domain 2 31.68 | 23.44 | 33.33 38.28 

DistiIBERTS in-domain 3 35.602} 25 29.37 52.34 

DistiIBERT! in-domain 4 36.13 25 28.57 54.69 

DistiIBERT! in-domain 7 36.13 25 28.57 54.69 

DistiIBERT.,..., Shared Vocabulary 3 31.41 | 17.19 26.98 50 

DistiIBERT/ n Question Length 3 33.7 | 17.97 31.75 51.56 

DistilIBERT;.. Question Length 4 33.77 | 17.97 31.75 51.56       

Table 5: EM validation set results: EM scores received for the different configurations calculated on 
the validation set of the out-of-domain data. Best results are boldfaced. 

  

  

  

  

                

Fine- 
: out- 

Model Base model training data a of- | RACE | DuoRC | RelationExtraction 
domain 

epochs 

DistilBERT (in) in-domain 47.1 | 36.76 | 40.31 64.12 
DistilIBERT (out) out-of-domain 23.01 | 8.22 3.03 57.47 

DistilBERT yocap Shared Vocabulary 43.4 30.67 37.04 62.39 

DistiIBERT jen Question Length 48.27 | 33.31 41.67 69.73 

DistiIBERT! in-domain 2 47.21 | 36.5 41.24 63.79 

DistiIBERT! in-domain 3 | 50.26 | 38.22 | 38.56 73.83 
DistiIBERTS in-domain 4 50.01 | 38.09 36.7 75.05 

DistiIBERTS in-domain 7 50.01 | 38.09 36.7 75.05 

DistiIBERT! Shared Vocabulary 3 46.24 | 29.74 36.38 72.46 

DistilBERT!,, Question Length 3 48.16 | 33.16 39.89 71.31 

DistilBERT/, Question Length 4 48.16 | 33.16 39.89 71.31 
    
Table 6: F1 validation set results: F1 scores received for the different configurations calculated on the 
validation set of the out-of-domain data. Best results are boldfaced. 

Additionally, Figure 1 shows that DistilBERT(in) is out-performing DistiIBERTyocay (green) 

consistently. In contrast, DistiIBERT),.,. (red) outperforms DistilBERT (in) on average - in line 
with previous work[5], however when looking at the datasets separately we see high variability in 
the effectiveness of this model in comparison to the baseline. Using importance weighting with the 
features we proposed did not consistently improve the model effectiveness over the baseline. When 
looking at configurations that employ importance weighting in Figure 1, we see that Question Length 
based configurations outperform Shared Vocabulary based configurations, across all datasets and 
independent of additional fine-tuning. This consistency suggests that better features may lead to better 
results in importance weighting without trade-offs. Given the small amount of samples, vocabulary 
features are perhaps too granular and do not allow generalization for the rest of the out-of-domain 
data. 

Fine-tuning over the baseline model, DistiIBERT! (purple in Figure 1) outperforms all other 
configurations on the out-of-domain dataset. Specifically, in most datasets importance weighting 
configurations result in inferior effectiveness in comparison to using fine-tuning with out-of-domain 
data alone. This result is inconsistent with previous work where importance weighting (however, 
with answer based features) resulted in similar effectiveness when used in addition to fine-tuning 
with out-of-domain data[5].



Tables 5 and 6 complete the information we presented in Figure 1. Similarly, we report the EM and 
F1 scores for prediction on the validation data for the different baselines, respectively, for all of our 
model configurations: baselines, importance weighting only, fine-tuning only, and the combination 
of importance weighting with additional fine-tuning. Fine-tuning is always performed with the 
out-of-domain training data, and the base-model training data is specified per model. In contrast to 
Figure 1, Tables 5 and 6 report multiple results from explorations with different epochs sizes. 

6 Analysis 

Figure 2 shows the smoothed distribution of the number of unique tokens per question in the in- 
domain and out-of-domain datasets and the relative importance weights (a sum normalization over 
the weight assigned). Looking at the Question Length based weights, we see that we are mostly 
learning from examples with very short or very long questions. We see that samples with 23 tokens 
are assigned a high weight, since 52 sample out of 117k are of that length in in-domain data in 
comparison to 1 sample out of 763 of out-of-domain data. Since the difference in size between the 
datasets is so big, it is possible that the smoothing is leading to some undesired effects. 
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Figure 2: The smoothed distribution of the number of unique tokens per question in the in-domain 
and out-of-domain datasetes, and the relative importance weights (a sum normalization over the 
weight assigned). 

Surprisingly, even with importance weighting for longer examples, the weighted configurations are 
failing to predict the correct answer for the long questions that was in the validation set: "Which is 
the best ticket to buy if you live in London and want to go to a small town 80miles away for four 

days?". The desired answer, "Monthly Returns", is correctly predicted by the DistiIBERT! model, 
but configurations that employ Question Length importance weighting get it wrong, with "up to 45% 
on the standard fare ." and "up to 45%" as predicted answers for configurations without and with 
additional fine-tuning, respectively. 

7 Conclusion 

This project addresses adaptation to new specialized domains with very little training data, focusing 
on importance weighting. Our experiments show that importance weighting is inferior to fine-tuning 
on the specialized domain data. We proposed distributional features that do not make use of the 
answer, opening the door to unsupervised importance weighting. We were able to demonstrate 
improvements when using importance weighing over the baseline using the number of unique tokens 
in the query, however this improvement was not consistent across all domains. 

This work is preliminary - to better understand the potential of importance weighting for QA domain 
adaptation (in English), additional exploration is required. Specifically, a wider verity of features and 
domains, as well as testing different parameter configurations. Comparing to importance weighting 
with answer length is lacking due to time limitations.
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