
Combining QANéet and Retro-Reader Models 

Stanford CS224N Default Project 

Michael Cao Isaac Cheruiyot 
Department of Computer Science Department of Computer Science 

Stanford University Stanford University 
caom@stanford.edu icykip@stanford.edu 

Atem Aguer 
Department of Computer Science 

Stanford University 
atemjohn@stanford.edu 

Abstract 

Our task is to design a machine reading comprehension (MRC) model that can 
accurately solve question answering problems from the Stanford Question An- 
swering Dataset (SQuAD). For our model, we aim to 1) implement the QANet 

model, which is one of the highest performing non-pretrained models, and 2) 
extend QANet with a verification module inspired by Zhang et al. (2020) to better 
identify unanswerable questions and improve performance on SQUAD 2.0. We 
explored variants on both the QANet architecture as well as the Retro-Reader 
architecture, and our best single model achieved an EM/F1 score of 66.10/62.28 
on the development set and 64.422/60.659 on the test set. 

1 Key Information to include 

¢ Mentor: Lingjue Xie 

e External Collaborators (if you have any): N/A 

¢ Sharing project: N/A 

2 Introduction 

Automated question answering has been a task that has received significant interest in recent years, 
which is mostly due to the rising popularity of RNN and transformer architectures as well as the 
development of pre-trained contextual embeddings (PCE), all of which have led to impressive leaps 
in model performance on SQUAD. PCEs such as BERT and ELECTRA have led to such major 
improvements in performance that now models are generally split into two groups: PCE and non-PCE. 
Non-PCE models still rely on traditional word embeddings such as GloVe [1] and FastText [2], but as 

expected non-PCE models do not perform as well as PCE models. In this paper, we are looking to 
improve the performance on a current state-of-the-art non-PCE model, QANet, to better determine 
answerability of questions, as this is a major challenge introduced with the SQUAD 2.0 dataset. 
Because roughly half of the SQUAD2.0 dataset includes unanswerable questions, we are motivated to 
tailor our model to better address the challenge of MRC with unanswerable questions and focus on 
answerability verification by experimenting with different verification approaches and modules. 

In this paper, we implement the QANet model as laid out in [3]. This model replaces the typical 
bidirectional encoding blocks with local convolution networks and global self-attention, and compared 
to the traditional RNN encoding blocks, the model is able to keep up with their F1/EM scores while 
both training and performing many times faster. One area where the original QANet model and other 
models fall short, mostly because these models were designed for the SQuAD 1.0 dataset rather 

Stanford CS224N Natural Language Processing with Deep Learning



than SQuAD 2.0, is determining answerability of a question. Thus, we combine QANet with the 
retro-reader model from [4], which performs two stages of reading: 1) sketchy reading that skims 
over the passage and question and outputs an initial guess, and 2) intensive reading that utilizes the 
initial guess and verifies it, ultimately outputting either no answer or a final prediction. 

The task our model is expected to handle is question answering; our model will be given two inputs: 
a paragraph and a question about the paragraph, and our model will output either a span of text in 
the paragraph that answers the question, or <No Answer>, signifying that the question could not be 
answered from the information in the paragraph. 

3 Related Work 

Prior to QANet, high performing models such as BiDAF [5] generally relied on RNNs, which 
although effective were slow at training and evaluation leading to slow turnover in research and 
lack of applicability in real world situations. This was mostly due to the sequential nature of RNNs 
which made them difficult to parallelize. In order to solve this RNN dependency, taking inspiration 
and ideas from the then cutting-edge Transformer models [6], a group of researchers from Carnegie 
Mellon and Google Brain replaced the typical bidirectional encoding blocks with non-recurrent (and 
thus faster) local convolution networks and global self attention[3]. By doing so this new model was 
capable of keeping up with previous F1 scores while training 3 to 13 times faster and performing 4 to 
9 times faster in inference. This speed improvement allowed the researchers to employ techniques 
such as data augmentation to increase the amount of data that is fed through the model and improve 
performance. 

As we have begun to better understand the necessity for models to understand when there is no answer 
for a given question, enter verification. Verification allows a model to predict the probability of the 
presence of an answer within a document for a given question. One model that has emerged recently 
as noe of the top performers is the Retro-Reader model by Zhang et. al [4]. Developed by researchers 
from Shanghai Jiao Tong University, the model’s usage of verification allowed it to take one of the 
top spots[4]. They combined the usage of internal front verification and external front verification 
on top of ALBERT ultimately producing an F1 score of 93.011 on SQUAD 2.0. Since this model 
was developed recently, the verifiers they propose have not been extensively tested on other models, 
which is what we aim to experiment on. 

4 Approach 

One Encoder 
Block 

  

    

     
     

Sketchy Reading Model Answerability 

QANet QANet 
Embeddings Embedding Attention stacked E-FV 

Encoding Encoding 

Intensive Reading Model 

QANet QANet 
Embeddings Embedding Attention stacked 

Encoding Encoding 

  

  

  
  

  

Position Encoding 

    i 

  
Prediction               

    
one encoder block three encoder blocks 

Our first step was to improve our BiDAF model’s embedding layer to accommodate character 
embeddings, as we could also use this embedding layer for our implementation of QANet. We then 
implemented the QANet model following the architecture laid out in the QANet paper [3], which was 
made easier by our ability to reuse layers such as the embedding layer and context-query attention 
layer from the BiDAF baseline.



Our final model is a combination of some of the layers from our BiDAF baseline as well as several 
layers we implemented ourselves based on the QANet and Retro-Reader papers. Our first four layers 
are fairly standard layers that are common among high-performing non-PCE question answering 
models. 

Retro-QANet is composed of three major parts: the sketchy reading module, the intensive reading 
module, and a rear verification module. The intuition behind the retro reader is that humans usually 
scan through a passage of text to make some coarse judgements about the text and make a guess 
about whether the question is answerable or not, and then they read more in depth to make an actual 
prediction for the answer. The final answerability of the question is determined by the aggregation of 
both of these layers. 

Embedding Layer 
This layer is similar to most input layers in other implementations. We produce an embedding for 
each word from concatenating its GloVe word embedding and character embedding. The character 
embeddings are created where their size is the input channel size of the CNN, and they and passed 
through a 1D convolutional layer. The outputs of the CNN are max-pooled over the entire width to 
obtain a fixed-size vector for each word. Similar to the BiDAF implementation, we apply a two-layer 
highway network [7] on top of the representation. The output has dimension of 2 times the hidden 
size, where the hidden size is 100. However, the outputs of the embedding layer are passed through a 
depthwise separable layer to resize them to 128, which is the dimension of the rest of the layers. 

Embedding Encoder Layer 
This layer is implemented with the stack of three layers: a convolution layer, a multi-head self- 
attention layer, and a feed-forward layer. First, we inject positional encoding into the input, since our 
convolutional blocks are non-recurrent and does not store positional information. The convolutional 
blocks utilize depthwise separable convolutions, which is more memory-efficient than standard 
convolutions [8], and the outputs are fed into a multi-head self-attention layer (we use PyTorch’s 
nn.MultiHeadAttention module). Finally, we put the outputs through a feed-forward layer, which is a 
composition of linear and ReLU activation layers. Throughout the embedding encoder, in accordance 
to one of the optimizations the paper mentions, we apply stochastic layer dropout where each layer / 

has survival probability p, = 1 — 1G pe) The number of convolutional layers for the embedding 
encoder is 2. 

Context-Query Attention Layer 
This is a standard module that is used in both the BiDAF [5] and QANéet [3] models; it computes the 

similarities between each pair of context and query words to obtain a similarity matrix, which is then 
normalized and the context-to-query attention scores are computed. The similarity matrix S' is used 
to compute context-to-query and query-to-context attention: 

A=§-Q',B=8§-§-c" 

Where Q and C are the query and context, respectively, and S and S are the row and column- 
normalized matrix of S, respectively. 

Model Encoder Layer 
This layer uses a similar architecture as the embedding encoder layer and is comprised of a stack of 7 
encoder blocks rather than 2, which is the number of convolutional layers for the embedding encoder. 
We run the input through our stack of 7 encoder blocks 3 times to produce 3 separate outputs. 

4.1 Retro Reader 

For our standalone QANet model, we implemented the standard QANet output layer which computes 
the probabilities of each position in the context being the start and end of the answer span, but our 
final utilizes a modified version of this output layer that also performs front verification to determine 
answerability. 

E-FV I-FV: 
These layers both implement the same front verification to determine whether or not the question is 
answerable by taking the pooled representation of the outputs of all three encoding blocks used in the 
model encoder layer and passing them through a fully connected layer to obtain classification logits in



accordance with Zhang et al. (2020). We then took the max difference between the answerable logits 
and the no-answer logits to compute our prediction. We are currently using binary cross entropy loss 
for both external and internal front verification: 

h = Convld([Mo, M1, Ma]) 

x = Softmax(h) 

Yi = max(x — z(0)) 

La = —& 2% [ys log (:) + (1 — ys) log (1 — ¥)] 

Span Prediction: 
This layer predicts the answer span from the three matrices from the previous step and outputs the 
starting and ending indices of a prediction. We adopt the strategy of Yu et al. (2018) to predict the 
probability of each position in the context being the start or end of an answer span. Where the start 
prediction is constructed of the softmax of the concatenation between the top and middle encoder 
layers multiplied by a learned weight, while the end is constructed similarly but with the bottom 
encoder instead of the middle encoder as such: 

8s = softmax(W,[Mo; Mi]), e = softmax(W2[|Mo; M2]) 

where W1 and W2 are two trainable variables and M0, M1, M2 are respectively the outputs of 
the three model encoders, from bottom to top. The score of a span is the maximum sum of its start 
position and end position probabilities. To calculate the loss for our intensive model we combine the 
cross entropy loss of the span prediction: 

N 
Lispan = -+ i [log (Sys) + log (eye )] 

with the aforementioned front verification loss: 

Lintensive = Lispan + Lna 

Inference: 
While testing in order to make a final prediction our model utilizes an RV & TAV Layer; this layer 
inspired by Zhang et al. (2020) takes the answerablity predictions from both models and the span 
predictions to make a decision as to whether or not the question can be answered. To determine 
this we take the maximum score from the span predictions and subtract it from the no answer span 
prediction to get the span prediction. 

has = max(sz *e;), 1<k<Il<n, 

null = sg * €9 

span prediction = null — has 

We then take the weighted average of the two answerability predictions from our sketchy and intensive 
models to produce a predicted answerability which we sum with the aforementioned span prediction. 
Which we finally compare to a threshold that determines whether or not the question is answerable. 

external prediction = 3 * Yske + (1 — 8) * Yint 

answerable = X * external prediction + (1 — ) * span answerable 

answerable > 6 

Here we implement a novel method in which our weights(3, A) and threshold(é) parameters are 

learnable. By training our inference layer we hope to improve overall performance by optimizing the 
emphasis placed on the answerability predictions of the sketchy model versus the intensive model as 
well as the boundary for which these predictions are most accurate.



5 Experiments 

5.1 Data 

To train, develop, and test our model, we are using the SQUAD 2.0 dataset, which contains approx- 
imately 150k questions in total. The data has been split for us into three sets: train, dev, and test. 
Our train set contains 129,941 examples and is identical to the official SQUAD training set, our dev 
set contains 6078 examples and is produced by selecting half of the official dev set, and our test set 
contains 5915 examples and includes the remaining examples from the official dev set plus additional 
hand-labeled examples. The data consists of question context pairs which when passed to a model, 
produces a sets of start and end pairs that determine where in the context the answer resides. 

5.2 Evaluation method 

Our evaluation metric is the Fl and EM scores the models receive. Both are percentages; EM is 
defined as a binary measure of whether the model’s prediction exactly matches the ground truth 
answer, and FI is a less strict measure that is defined as the harmonic mean of precision and recall. 
Another important metric that was used for evaluating our sketchy reader is AVNA, which stands for 
Answer vs. No Answer and measures the classification accuracy of our model when only considering 
whether the model outputs an answer vs. no-answer predictions. 

5.3 Experimental details 

5.3.1 BiDAF 

For our baseline, we trained the BiDAF model with character embeddings for 30 epochs with all the 
default settings and hyperparameters laid out in the starter code (https://github.com/minggg/squad). 
Most importantly, our batch size is 64, hidden size is 100, learning rate is 0.5, and dropout probability 
is 0.2. Training the baseline took about 10 hours for 30 epochs. 

5.3.2 QANet 

After training the baseline, we designed and trained the QANet model by itself. For our intial 
implementation, we incorporated the core of what the paper outlined, but we left out some of the 
small optimizations. We generally followed the parameters from the QANet paper, but for our first 
run, instead of using the Adam optimizer we used Adadelta with the same parameters and learning 
rate as the BiDAF baseline. We also used a dropout rate of 0.1 for character and word embeddings 
as well as between layers. One issue we ran into initially was that we ran out of memory on the 
GPU. We moved our model to a NC6s-v3 machine, which is faster than the regular NC6 machine, 

but unfortunately we were not able to use a machine with more GPU memory. Thus, we reduced the 
size of our parameters — we used 4 attention heads instead of 8, and a batch size of 32 instead of 64. 

5.3.3. Retro-QANet 

Upon seeing success from our initial QANet implementation, we wanted to see how our intensive 
reader with the same parameters would perform, which would inform us at how effective I-FV is at 
predicting answerability. At the same time, we trained our sketchy reader with these same parameters 
to set us up for our full Retro-QANet model which ideally would increase the models ability to 
determine whether or not certain questions are answerable. 

5.3.4 Experimentation 

We performed several experiments on the intensive reader using different permutations of hyperpa- 
rameters. The performance of the intensive reader tuned with different values of hyperparameters is 
shown in Table 1. We also made some improvements to our initial implementation of QANet; we 
added Xavier initializations to all the convolutional layers and we also implemented stochastic layer 
dropout as defined in the original paper [3]. In all the experiments, we used Adam as the optimizer 
and a batch size of 32. Note that the dropout probability in the table is applied only to the character 
embeddings layer output. The standard dropout probability used across all model output layers is 0.1 
except for the character embedding layer. Unfortunately, we were unable to train our final ensemble



QANet model using the best performing Intensive reader. We made a mistake of setting the metric 
being maximized to the Loss instead of Fl or EM score, and therefore our intensive reader didn’t 
save the best performing model at checkpoints. It was only later after more than 15 hours of training 
that we realized that this mistake had been made. And it was too late to retrain the model just in time 
before the deadline. 

Table 1: Intensive Reader hyperparameter tuning 

  

Dropout Probability No. Attentionheads Fl EM AvNA 
  

  

0.1 8 65.46 61.45 72.93 
0.5 8 65.09 61.57 71.67 
0.5 4 64.89 61.17 72.17 

AvNA EM FA 
tag: dev/AvNA tag: dev/EM tag: dev/F1 

| 
| 
| 

60 | 
| 
| 

| 
ol 
“| 

iN 2h ih AN h 6h 1M 2M | IM | | 0 M M M 4M M 6M 

360 =) 2 = 

Loss 
tag: dev/Loss 

5.4 Results 

Our final model achieves test set FI/EM scores of 66.10/62.28 on the development set and 
64.422/60.659 on the test set placing us at — place on the IID SQuAD leaderboard. Though 
we see that the QANet architecture we chose to build our retro reader over performs slightly better 
than BiDAF, we were unable to see any speed and efficiency gains compared to the baseline. In 
fact, training QANet took longer than BiDAF which was likely because QANet requires many more 
trainable parameters. Perhaps if our input data was larger, for example if the context and/or query 
were much longer, we would be able to reap more of the benefits of the parallelizable nature of QANet. 
It is also important to note that in the original QANet paper, they performed data augmentation to the 
inputs which we were unable to do primarily because our implementation of QANet was not faster 
than BiDAF. We then decided to implement a Retro-Reader architecture around our QANet model 
however, we were unable to make any gains in performance. 

Our initial implementation of Retro-Reader led us to quickly find that appending a retro reader 
provided little to no advantage to our current QANet model as we quickly found that our intensive 
reader predictions were already guessing no answer more often then necessary invalidating the 
necessity for Retro-reader. To solve this we also trained a version of QANet(Intensive Model) that 

did not have the ability to predict "no answer" and instead output a span prediction every time. This 
model, trained with the same parameters above, the only difference being a loss weight of ( 1 

context size) 

was applied to the Oth position of the span prediction output. 

This model reached an F1 of 38.07 however, considering we were providing a none null prediction 
for every question, and 50% of the questions are answerable it is safe to assume we were reaching an 
F1 of nearly 80 on answerable questions. Thus, our goal became to reach this score by maximizing



Table 2: Model Results 

  

  

  

  

Model Name Fl EM AvNA 

BiDAF 59.60 55.74 67.10 

BiDAF + Char Embeddings 63.52 60.04 69.89 

QANet + Adadelta 64.688 60.897 71.09 

Intensive + Adam 66.10 62.28 73.11 

Retro-QANet 63.72 59.91 72.32 

Sketchy — — 63.38 
Naive Intensive 38.07 34.69 47.14 

Retro-QANet + Naive Intensive 57.45 51.03 61.68 
  

our sketchy models prediction accuracy. Unfortunately, we have yet to reach optimal performance 
with our sketchy model(reaching a top AvVNA of 62.38), at best we were able to improve the FI score 
of our naive intensive model to 57.45, which unfortunately still lies far below our peak performers. 
While we would like to further experiment with our sketchy module implementation as well as with 
the loss weights for our intensive model, our limited time has forced us to submit our completed 
QANet implementation as our top performer. 

6 Analysis 

6.1 Error Analysis: 

There are a few important factors to consider when performing error analysis for our model. One of 
the major factors is the different question types (What, Where, When, etc.) and how those question 
types are distributed across our dataset. We found that in both the training and development sets, 
around 60 percent of the questions were of the form "What," and the other question types, with the 
exception of "Why" and "Was" questions which were quite rare, were encountered in 5 to 10 percent 
of the examples for each category. 

For our best performing model, we randomly sampled around 100 example predictions and compared 
them to the ground truth answers. We found that among most of the question types, the most errors 
were due to both false positives (predicting an answer when there is actually no answer) and false 
negatives (predicting no answer when there actually is an answer). For both false positives and false 
negatives, we encountered them 15 percent of the time, and what is interesting is that we do not 
see too many instances where the model predicts the wrong answer when there is an answer. We 
hypothesize that the reasoning behind the high incidences of false positives and false negatives is 
that the model is not good enough at reading comprehension, and this also possibly supports our 
reasoning for why our sketchy reader could not perform well at guessing answerability. 

Another factor when performing error analysis is the length of answers and how far off our span 
predictions our in terms of comparing our predicted span length to the answer length. The vast 
majority of questions had answer lengths of 0-4 words, and in our sample, we found that our model 
was quite good at choosing answer spans that were similar lengths to the actual answer. 

6.2 Qualitative Analysis: 

While our intensive model became fairly good at predicting in answers, it generated a tendency to 
predict no answer more often then necessary(False Negatives) ultimately hindering its results, for 
example: 

Question: Issues dealt with at Westminster are not ones who is able to deal with? 

Context: Reserved matters are subjects that are outside the legislative competence of the Scotland 
Parliament. The Scottish Parliament is unable to legislate on such issues that are reserved to, and 
dealt with at, Westminster (and where Ministerial functions usually lie with UK Government 
ministers). These include abortion, broadcasting policy, civil service, common markets for UK goods 
and services, constitution, electricity, coal, oil, gas, nuclear energy, defence and national security,



drug policy, employment, foreign policy and relations with Europe, most aspects of transport safety 
and regulation, National Lottery, protection of borders, social security and stability of UK’s fiscal, 
economic and monetary system. 
Answer: Scottish Parliament 
Prediction: N/A 

Although a fairly straight forward, question outside of a little funky it is likely that the model would 
have derived an answer had, no answer not occurred as often in the testing data set. This exemplifies 
the issue we ran into when attempting to combine our intensive model with our sketchy model, while 
the sketchy model was making more accurate predictions on answerability, the intensive model had 
already predicted no answer in places it should not have, thus we turned to loss weighting to create a 
symbiotic relationship between Sketchy and Retro. 

However, our model as it is, is not perfect: 

Question: Which directive mentioned was created in 1994? 

Context: Following the election of the UK Labour Party to government in 1997, the UK formally 
subscribed to the Agreement on Social Policy, which allowed it to be included with minor amendments 
as the Social Chapter of the 1997 Treaty of Amsterdam. The UK subsequently adopted the main 
legislation previously agreed under the Agreement on Social Policy, the 1994 Works Council Directive, 
which required workforce consultation in businesses, and the 1996 Parental Leave Directive. In the 
10 years following the 1997 Treaty of Amsterdam and adoption of the Social Chapter the European 
Union has undertaken policy initiatives in various social policy areas, including labour and industry 
relations, equal opportunity, health and safety, public health, protection of children, the disabled and 
elderly, poverty, migrant workers, education, training and youth. 

Answer: Works Council Directive 

Prediction: Parental Leave Directive 

From the above output, there is no explicit way of knowing what exactly in the model structure 
or our choices of hyperparameters may have led the model to fail to predict the correct answer. 
Given that one of the words in the predicted answer is contained in the correct answer, we can only 
hypothesize that this maybe caused by the high ratio of convolution layers which bias attention locally, 
to multi-headed attention layers that can capture more global information from the surrounding words. 
Therefore it possible that the model placed more emphasize on attending to local context than global 
context, and this coupled with context-question attention could have led the model to predict any 
answer that might have contained any of the words with in the question. 

7 Conclusion 

In this paper, we extended one of the leading non-PCE question answering model architecture to 
improve answerability by implementing a retro reader over the model and training both external and 
internal front verifiers. Overall, QANet outperformed BiDAF as expected, but we had also hoped to 
be able to reap some of the supposed speed and memory-efficiency gains of QANet-unfortunately, 
we did not see a noticeable improvement with our specific setup. Going beyond this when appending 
a Retro-Reader structure to our qanet model we find that performance could not be improved due 
to qanet’s tendancy to predict no answer more often then necessary. When we attempted to correct 
this by having qanet prioritize correct span predictions, we saw improved results however, without a 
strong sketchy model to make high quality answerability predictions the model performed relatively 
poorly. To perform a better comparison of our baseline and QANet, we would aim to train on a GPU 
with more memory to remove the bottleneck to maximize the potential for QANet to outperform 
BiDAF due to its parallelizability. To increase the performance of Retro-Qanet we would spend more 
time experimenting with adjusting learning weights for our intensive reader as well as experiment 
with the methodologies used to extract an answerability predictions used in our front verification 
layer.



8 Acknowledgements 

Our group would like to thank all the CS224N instructors and staff for designing this default final 
project and providing us with the preprocessed dataset, a training/testing harness, and the BiDAF 
model which we used to develop our baseline. We are also very grateful to be able to use Microsoft 
Azure to spin up VMs to train our models. Finally, we’d like to especially thank our mentor for 
providing us with feedback and assistance in Nooks. 

References 

[1] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for 
word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages 
1532-1543, 2014. 

[2] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors 

with subword information. CoRR, abs/1607.04606, 2016. 

[3] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Nourouzi, 

and Quoc V. Le. Qanet: Combining local convolution with global self-attention for reading 
comprehension. 2018. 

[4] Zhuosheng Zhang, Junjie Yang, and Hai Zhao. Retrospective reader for machine reading 
comprehension. 2021. 

[5] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional 

attention flow for machine comprehension. CoRR, abs/1611.01603, 2016. 

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, 

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. 

[7] Rupesh Kumar Srivastava, Klaus Greff, and Jiirgen Schmidhuber. Highway networks. CoRR, 
abs/1505.00387, 2015. 

[8] Francois Chollet. Xception: Deep learning with depthwise separable convolutions. CoRR, 
abs/1610.02357, 2016.


