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Abstract 

To explore the effectiveness of domain-related information on QA model robust- 
ness, we leverage potential domain information, both domain-specific and domain- 
invariant, from the text data. During training on the in-domain training set, we 
experiment adversarial training with three adversarial functions, the Kullback- 
Leibler divergence, Jensen-Shannon divergence and creating fake labels. At this 
in-domain pre-training stage, we conjecture that the QA model can learn domain- 
invariant feature representations from the in-domain training set through adversarial 
training. In addition to domain-invariant learning from in-domain training, we 
propose a data augmentation method that can retain high-level domain information 
by using named entity recognition and synonyms replacement. This augmenta- 
tion method is applied to the oo-domain training set and we hypothesize that the 
model can better learn domain-specific information from augmented out-of-domain 
datasets and thus improve performance on out-of-domain tasks. We designed and 
conducted several experiments to test the effectiveness of our proposed adversarial 
training and augmentation methods. The experiment results, analysis and learning 
are provided in this report. 

1 Introduction 

Question Answering (QA) models trained on specific datasets and perform well in corresponding 
domains often perform poorly handling out-of-domain tasks. Additional training and finetuning with 
large amounts of out-of-domain data can be the ideal solution. However, such data is often not readily 
available or insufficient. This cross-domain learning challenge has been addressed by many effort, 
including with pretrained language models, domain generalization, and adversarial training. Previous 
works demonstrate various degree of successes, which suggests that domain-invariant features can be 
learned and utilized for cross-domain language tasks. 

As illustrated in Figure 1, we approach this cross-domain learning challenge by combining in-domain 
adversarial training with oo-domain data augmentation in order to learn both in-domain domain- 
invariant and out-domain information. During in-domain training, an adversarial domain discriminator 
classifies domain labels from hidden representations from the QA model using DistilBERT. By 
doing adversarial training, the QA model fools the discriminator by making hidden representations 
indistinguishable so as to learn parameters that invariant to domain-specific inputs. In addition, 
we leverage out-of-domain information by augmenting limited amounts of out-of-domain datasets 
which might help to improve QA model robustness. We find that different out-of-domain datasets 
usually have different domain focuses. One way to differentiate their domains is to use named entity 
recognition. When augmenting the datasets, the entity level domain information is retained so that 
domain-specific feature representations can be better utilized. 
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Figure 1: Overview of proposed in-domain adversarial training and out-of-domain data augmentation 
approach for robust QA model training. 

2 Related Work 

2.1 Question Answering 

Given a paragraph and a question about the paragraph as input, question answering model aims to 
extract the correct answer from the paragraph, usually by predicting the start and end positions. There 
are a variety of models leveraging pretrained BERT that performs well within the same domain such 
as DeBERTa[1], RoBERTa[2] and question answering using DistiLBERT [3]. The DistiIBERT QA is 

the baseline in this project and our approaches are built upon the the DistiIBERT QA model. 

2.2 Adversarial Training 

Adversarial training is first proposed by Generative Adversarial Network (GAN) with a generator and 
a discriminator [4] to generate images using Jensen—Shannon divergence loss. The concept of GAN 
is then used for text generation by modeling the data generator as a stochastic policy and directly 
performing gradient policy update to overcome the problems of discrete tokens[5]. 

Besides text generation, adversarial training is applied to domain adaption. DANN[6] proposes 
augmenting feed-forward models with a few standard layers and a gradient reversal layer. For 
classification problems such as image classification and document sentiment analysis, in addition to 
a classifier for the main learning task, there is also a domain classifier that discriminates between 
the source and target domains during training. Based on DANN which learns domain-invariant 
feature representations through a domain classifier, shared LSTMs and domain-specific LSTMs 
through gated connection[7] are added to learn both domain-specific and domain-agnostic feature 
representations. Domain classifiers can also be applied in semi-supervised learning. AdaMRC[8] 
generates pseudo questions for unlabeled passages in the target domain and incorporates a domain 
classifier to distinguish the source domains from the target domains. For domain-agnostic question 
answering tasks, [9] uses the adversarial training with KL divergence loss and achieves promising 
results. In this project, we adopt parts of the adversarial training method from [9] and expand on it. 

2.3 Data Augmentation 

Data augmentation has been explored in many NLP tasks. Synonym replacement is first introduced 
in text classification [10] which replaces words or phrases with their synonyms based on geometric 
distribution. It is effective to combine synonym replacement, random insertion, random swap, and 
random deletion[11]. For reading comprehension, back-translation from a neural machine translation 
model[12] is proposed to paraphrase. In neural machine translation, low-frequency words are 
emphasized by altering existing sentences in the parallel corpus[13]. For question answering, This 
method [14] augments questions and answers following symmetry and transitivity logical rules. With 
limited training passages, questions and answers for out-of-domain datasets, the data augmentation 
can be useful for oo-domain finetuning.



3 Domain Invariant Learning 

Previous works suggest that the domain-invariant feature representation can be learned and utilized 
for cross-domain NLP tasks. We hypothesize that the QA model robustness correlates with how 
well the domain-invariant features can be extracted and learned. In this section, we will describe 

the question answering model and different adversarial methods to learn domain-invariant feature 
representations. 

3.1 Question Answering Model 

The QA model is trained (finetuned) on the DistilIBERT [3] question answering model and the 

in-domain question, context and answer triplets {q, c, y}. During in-domain training, the model is 
trained to minimize the cross entropy loss £g4 (Equation 1) of the start and end positions between 

answer y“) and predicted probabilities p™ of all in-domain training samples. 
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Notice that here we average the losses of start and end positions for each samples. This model is the 
baseline model that adopted from the given code. 

3.2. Domain Discriminator 

As proposed in [9], one way to let the QA model learn domain-invariant features is by using a domain 
discriminator. The main purpose of the discriminator is used to discriminate the domains for each 
training samples using cross entropy loss. 

For Kk in-domain domains, the discriminator is trained with the £p loss as shown in Equation 2, 

where p is the predicted probability for the true domain label of the zth sample by forwarding the 

last layer CLS embeddings to an MLP and ys) is the domain label for zth sample. 
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3.3. Domain Invariant Loss 

To make the model learn domain invariant features, the model needs to be trained with an additional 

loss £;. Here we introduce three approaches of calculating £7, including the the Kullback-Leibler 
divergence, Jensen-Shannon divergence and the fake label. 

3.3.1 Kullback-Leibler Divergence 

Kullback-Leibler (KL) divergence measures how probability distribution of predicted domain q 
diverge from expected probability of domain distribution. This is the loss used in [9] that shows 
promising results on domain-invariant feature learning and implementation is available. 

As we want the QA model to learn domain-invariant feature representations, the expected probability 
of domain distribution p should be a discrete uniform distribution with respect to number of domains 
XC that each domain should have a PMF of x: 

Therefore, the KL divergence can be described as 
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where 7 denotes the zth sample.



3.3.2 Jensen-Shannon Divergence 

Jensen-Shannon (JS) divergence is based on KL divergence and offers a symmetric and smoother 
approach of calculating divergence between two probability distributions. It is often used in computer 
vision and but seems have not been used in NLP QA related tasks. Using the aforementioned settings, 
the JS divergence in domain QA can be calculated as shown in the Equation 4. 
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3.3.3. Fake Label 

The last approach is called the fake label, which is also often used in computer vision but not used 
in the NLP QA. Instead of measuring the distance between two distributions, we can create a fake 

label D’ for each samples. The model learns to predict all domain labels on the fake label D’. The 
additional loss is 

N a Lr = Lp =-% Lye log(p)) (5) 

3.4 Adversarial Training 

In general, the QA model is trained with the QA loss £g 4 and an additional loss £; with a importance 

weight factor \ on the second loss. 

L=LoatrLy (6) 

The QA model is trained in adversarial manner. The model is at first trained with loss £ and updates 
the model parameters. Then the discriminator will be updated by back-propagating the loss Lp. In 
another word, during the first step, the model tries to learn both QA features and domain invariant 
feature representations. In the second step, the discriminator tries to make domain specific predictions. 
In this manner, we argue that the model may learn to better separate features from in-domain training 
datasets into QA specific and domain-invariant features and then the domain invariant features can be 
useful to the cross-domain tasks. 

4 Domain Specific Data Augmentation 

Through adversarial training, the model can learn domain-invariant feature representations from in- 
domain datasets. Such domain-invariant feature representations can be further balanced and learned 
from the oo-domain training datasets. To improve the model performance on out-of-domain question 
answering, model finetuning with oo-domain samples may be important. However, finetuning on few 
out-of-domain samples might not be sufficient. We propose and implement by ourselves a simple but 
effective data augmentation technique that can retain the domain information and augment oo-domain 
samples rapidly. 

4.1 Named Entity Recognition 

Named entity recognition locates and maps entity words to some pre-defined categories and is a 
challenging natural language processing problem. Using the named entity recognition, a list of words 
is extracted and classified into a relatively high-level categories. For question paragraph pair (q, c), 
the named entity recognition can be described as following 

E = {w|(w,e) € s(q,c)} (7)



  

Context: Ray Eberle died of a heart attack in Douglasville, 

Georgia on August 25, 1979, aged 60. 

Question: Why did Ray Eberle die? 

  

    

Answer: heart attack Person 

Location 

Context: Allen Cortney died of a heart attack in Snellville, Time and Number 
Alabama on April 25, 1982, aged 30. 

Question: Why did Allen Cortney die? 

Answer: heart attack       

Figure 2: An example of the augmented sample using the proposed augmentation approach. 

Here s is a named entity recognition model and E is the set of extracted words that each word has a 
recognized entity e. Therefore, the extracted words in E can be treated as the “keys" for the question 
paragraph pair (q, c). 

4.2 Named Entity for Different Domain QA 

Different question answering datasets usually have different domain focuses. The distinct focuses 
can lead to different number of named entities for each entity category. We argue that the extracted 
named entities contains rich domain information. For example, in the DuoRC dataset [15] from 

movie reviews, the entities are usually people, location and time. Whereas in the RACE dataset [16], 
there are not many people entities as that corpus is mostly from examinations. The different number 
entities in person entity category exhibits some degree of different domain focuses. 

4.3. Word Replacement with Named Entity Recognition 

Word replacement, including the synonym replacement, is frequently used as data augmentation 
method in natural language processing. Given the extracted named entity word set E, instead of 
randomly choosing words to replace, we perform the word replacement on the words that appear in 
E. The replaced word is described as following equation 

h, U 

w = argmax( ),w € Eand w € (q,c) (8) 
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For each word w in the extracted set E and in the question paragraph pair, we will find the most 
similar word v by searching through some low dimension embedding space and replace the word 
w by v. After replacing all words in the extracted set E, a new sample (q’,c’) is generated. In this 
way, the training set is augmented and guided by named entities, and still retain a high level domain 
information. Figure 2 is an example of generated sample using our proposed augmentation approach. 

5 Experiments 

We design and conduct several experiments with the given in-domain and oo-domain datasets and 
show the final performance by using the baseline and our approaches on the oo-domain test set. 

5.1 Data 

We use in-domain training set for all model training and finetuning on the oo-domain training set. For 
data augmentation, we augment (double) the o0-domain dataset using proposed augmentatin method. 

5.2 Evaluation method 

The model performance is measured via two metrics: Exact Match (EM) score and F1 score.



ase. 

ase + 

+ Augmentation + 

+ Augmentation + 

  

Table 1: Experiment results on oo-domain test set. 

5.3. Experimental Details 

During in-domain training the best model is chosen by the best performance on in-domain validation 
set and during finetuing the best model is chosen by the best performance on oo-domain validation 
set. For our proposed augmentation method, we use the NER method from spaCy [17] and use 
GloVe [18] embeddings. All the models, including baseline and models with adversarial methods, 
are trained (finetuned) on the in-domain training set with the default parameter. For finetuning, we 
implement in two ways. The first one is to freeze all layers excluding the last linear layer in the 
QA system. The other is to finetune all the parameters. The training time for all models is about 20 
hours and the finetuning time is about 1 hour. We set the \ value to 0.5, use cls embedding as the 
input to discriminator, and use a three-layer MLP as the discriminator. These three settings and some 
discriminator implementation details such as the dropout layers in discriminator are referred from 
the MRQA [9] implementation !. All models are trained with are the default hyperparameters. For 
models finetuned without freezing any layers, the best model is chosen from the model finetuned with 
learning rates 10~°,2-10~°,--- ,7- 107°. For models freezing all layers excluding the last layer, 
the learning rates are 10~°,2-1073,--- ,7- 107°. 

5.4 Results 

The models performance on the test set is shown in Table 1. On test set, it does not seems that our 
approaches offer better performance. However as shown in Table 2, in-domain adversarial training 
and oo-domain data augmentation generally improve the performance on oo-domain validation 
set. The two JS divergence adversarial models with augmentation achieve higher Fl and EM on 
oo-domain validation set. The discrepancy between validation and test are not what we expected. 

We first try to update all the parameters during finetuning but it might make the model easily forget 
feature representations learned during pretraining and also easily results in overfitting. Then we freeze 
all the layers except for the qa_outputs layer to only update the parameters of qa_outputs layer, 
so as to utilize what the model has learned from in-domain training. For example, the Jensen-Shannon 
divergence adversarial model with augmentation and BERT layer freezing has similar performance 
with the model without freezing on the test set. That’s probably because the oo-domain training set is 
so small and is not representative enough. The model fails to learn sufficient feature representations 
across different domains. Also, the validation set is also small and might not fully represent the data 
distribution of the test set. In addition, the test oo-domain datasets are not as evenly distributed as the 
validation set. The dataset issue might cause the model with last layer finetuned on 00-domain has 
even worse performance, shown in the table. These are the possible reasons causing the discrepancy 
between the model performance on the validation set and test set. 

6 Analysis 

We analyze our approach on the robustness of different adversarial training methods and different 
augmentation approaches. Although the experiment results on the test set are not expected, our 
analysis suggest the proposed methods can still be promising in improving the model robustness. 

6.1 Robustness of Adversarial Methods 

To measure the robustness of different adversarial methods, we at first train (finetune on in-domain 

training set) one model for each adversarial loss functions, including the baseline model, using the 
  

"https://github.com/seanie12/mrqa
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Table 2: Experiment results on o0-domain validation set. 
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Table 3: Summary of model performance on different augmentation methods. 

default hyperparameters. In this step, four models are trained. Then, we finetune each model on the 
oo-domain training set with 7 different learning rates and thus we have 28 finetuned models. Notice 
that here we finetune on all parameters as we want to check the performance and learning process of 
the whole model parameters on unmet domain (00-domain) data. Each of the 28 models during the 

finetuning is evaluated on the oo-domain validation set after finetuned with every 160 samples. All 
models are finetuned with 20 epochs. Figure 3 and Figure 4 show the averaged F1 score and EM for 
the baseline model and models with different loss functions. 

6.1.1 F1 score 

As shown in Figure 3, adversarial methods seem to be more robust that they have higher F1 scores 
than that of the baseline model during the full parameters finetuning and evaluated on the validation 
set. The robustness is more apparent when the model is finetuned to be relatively overfitted, during 
the finetuning steps from 8000 to 15000. The model using Kullback—Leibler divergence shows 
the best performance and strongest robustness. This might make sense because the discriminator 
tends to predict one label for each sample, but KL divergence try to balance on the domain label 
distribution. The Jensen—Shannon divergence is much smoother and thus the general balance effect is 
less apparent than that of the KL approach. The fake label approach, tries to predict all samples to 
just one additional fake label, might add more noise to the model and thus have worse performance. 

6.1.2 EM 

As shown in Figure 4, the adversarial methods might not improve the model performance on exact 
match and there is no apparent robustness when the models are finetuned on the oo-domain datasets. 
It seems that the learned domain invariant representation only makes the models achieve relatively 
high EM faster and the model using the JS divergence has relatively good result. We conjecture that 
compared to other adversarial methods which shift the model relatively a lot and make the exact 
match performance a little bit hard. But because the Jensen—Shannon is a relatively smoother one 
that it does not shift the model a lot and thus it can balance relatively well on exact match. 

6.2 Augmentation Performance 

Similar to the settings in the last subsection, we also tested various augmentation approaches perfor- 
mance finetuned on the oo-domain training set and evaluated on the validation set. Other augmentation
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Figure 3: The average F1 score of the models during finetuning on oo0-domain training set. The F1 
score is averaged on 7 models (with different learning rate) for each of the 4 models. 

  

35/7 

34F 

33r 

31F 

  

297     1 1 1 1 L 1 L L i 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

Steps x104 

  

Figure 4: The average EM of the models during finetuning on oo-domain training set. The EM is 
averaged on 7 models (with different learning rate) for each of the 4 models. 

approaches include synonym replacement and word dropping using existing augmentation implemen- 
tation 7. The result is shown in Table 3. This shows that our method can achieve relatively better 
results than compared augmentation methods when full model is finetuned on the oo-domain training 
set and evaluated on the oo-domain validation set. 

7 Conclusion 

In this project, we explore various adversarial learning approaches, the loss functions, on the out-of- 
domain question answering task and propose a new named entity guided data augmentation method 
that can retain domain information. The experiment results on the oo-domain test set do not match our 
expectations. There are several conjectures including that no hyperparameter tuning when pretraining 
the model due to the limitation of computing resouces, relatively small and non-representative 
oo-domain training set, and biased choice on the best model using small and non-representative 
oo-domain validation set. Our analysis suggestes that our approaches can be promising and the future 
work includes training by trying more model hyperparameters, choosing more advanced named entity 
recognition method, and mixing batches of in-domain and out-of-domain data for our augmentation 
method. 

  

*https://github.com/searchableai/KitanaQA
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