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Abstract 

In this project, we explore the use of various Neural Language Models applied 
to Question Answer tasks from the SQUAD dataset. We’re specifically interested 
in exploring the transition from RNN-based models to transformer-based models. 
RNN Neural Language Models were dominant in language tasks for many years, 
but the introduction of the transformer demonstrated that the fall-backs of RNN 
models could be overcome by using architectures that optimize for larger, more par- 
allelizable models. In this work, we compare the impacts of expanding model size 
with the impact of changing attention layer implementations using a Bi-Directional 
Attention Flow baseline model. We find that model size has a significantly greater 
impact on model performance on the SQuAD dataset, but larger models fail to 
improve performance on unanswerable question-answer examples. 
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2 Introduction 

Question Answering (QA) tasks are one of the fundamental activities for modern neural language 
models. Over the last five years, there have been various datasets curated and released to help 
researchers develop and evaluate the performance of different language modelling approaches for QA 
tasks. SQUAD 1.0 [1] was one of the first successful datasets published that provided a benchmark and 
leaderboard for comparing model architectures and training approaches. Within two years of SQUAD 
being released, models using various Recurrent Neural Network approaches had demonstrated near- 
human performance on the initial SQUAD dataset, but it was unclear whether these models would 

perform well on adversarial examples that intentionally distract from the question presented to the 
model. Jia and Liang augmented the SQuAD dataset with adversarial examples that intentionally 
distract model-generated answers without changing the groundtruth answer, or confusing humans 
[2]. They found that models trained on the SQuAD dataset perform poorly on adversarial examples 
at test-time, achieving an F1 score of 36% on an adversarial test set, versus an initial 75% F1 score 

on SQuAD. This raised the question of how much true language understanding these models were 
gaining, and led to the development of SQUAD 2.0 [3]. 

SQuAD 2.0 augmented the initial dataset by adding 50,000 unanswerable QA examples to the initial 
100,000 QA examples included in SQUAD 1.0. This augmentation of the initial dataset forces models 
to consider how to perform well on a more diverse corpus of QA examples in order to attain a 
performant score. Since the introduction of SQUAD 2.0, leading models have begun to deviate from 
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the traditional Recurrent Neural Network (RNN) models that had exceeded human performance on 

SQuAD 1.0 in exchange for transformer-based models that prioritize attention layers rather than 
recurrent, sequential layers. These transformer approaches are currently the leading models on the 
SQuAD 2.0 leaderboard and have begun to replace older RNN models in nearly all language tasks. 
The defining feature of transformer models is the replacement of recurrence and convolution layers 
with attention layers, achieving comparable performance on various language tasks, including on 
the SQuAD dataset [4] [5]. In this work, we focus on understanding the impact of this transition 

towards exclusively transformer-based models by implementing slight alterations on a baseline model 
architecture based on the BiDirectional Attention Flow (BiDAF) model used as the baseline model in 

the SQuAD 2.0 paper [3] as well as the impacts of various attention layers on the same BiDAF model. 
We find that model size adjustments yield a significantly greater impact on validation set performance 
as opposed to variations in attention layer design. Additionally, we conduct an evaluation of model 
performance on answerable and unanswerable QA examples, finding that that models with more 
complex attention layers are more capable of recognizing questions that are not answered by the 
given context as opposed to models with larger embedding layers. 

3 Related Work 

The ability to utilize context about a situation in answering a question is a fundamental element 
of language understanding. This task comes naturally for humans, we’re able to extract important 
information from a given contextualizing paragraph, and apply that context to a question prompt. An 
important aspect of this activity is our ability to apply judgement on the contextualizing paragraph to 
extract what we deem to be important details to retain. This extraction exercise is akin to language 
model attention layers that now dominate most neural language model architectures. 

For several years, language models relied heavily on RNN models utilizing Long-Short Term Memory 
(LSTM) unit architectures to process language sequences for most language tasks. These models 
work by using numerous LSTM cells processing sequences of data and remembering a variable 
percentage of each element it views in the sequences [6]. Though intuitive, the sequential nature of 
these models makes parallelization during training challenging, which becomes problematic when 
expanding model sizes or when processing examples with long sequences. In contrast, Transformers 
solely rely on the use of attention layers, which eliminate the need for considering sequences and 
allow for modelling of dependencies without regard for their distance in the input or output sequences 
[7]. Seo et al formally introduced the Transformer architecture, which utilized an encoding and 
decoding layer derived from attention mechanisms that had been applied as an additional layer 
in many sequential models previously [4]. By eliminating the sequential elements of the model 
architecture and thus increasing the parts of the model that can be run in parallel, the model size for 
transformer architectures can potentially be larger than traditional RNN models. We focus on the 
attention and size aspects of transformers in our work in order to augment a BiDirectional Attention 
Flow (BiDAF) model, presented in [3], to improve its performance on the QA tasks using the SQUAD 

dataset. 

The SQuAD 2.0 dataset was released by Rajpurkar et al in 2018, and replaced the SQuAD 1.1 dataset 
as a standard QA task training and evaluation dataset [3]. SQUAD 2.0 consists of 100,000 traditional 

QA examples extracted from Wikipedia articles, and 50,000 QA examples that do not contain answers, 
but have been curated to match the format and style of the answerable questions. Along with SQUAD, 
the authors utilized a version of BiDAF to evaluate the dataset and to provide a baseline reference for 
other models to compare against. We use this model as a starting point in this work. 

The BiDAF architecture is a multi-stage, hierarchical model that utilizes context at various levels of 

granularity as well as attention flow between encoder and decoder layers to obtain a query-aware 
context representation on QA tasks [8]. BiDAF computes attention scores in order to generate a 
similarity matrix for question-context inputs. In its initial evaluation on SQUAD, Rajpurkar et al. find 
that BiDAF achieved an average exact match score (EM) of 59.2 and an F1 score of 62.1, significantly 
lower than those scores achieved by the same model on SQUAD 1.1 (EM of 68.0, F1 of 77.3), but 

still providing a competitive baseline for the dataset. We expand upon the BiDAF model and our 
alterations to the architecture in part 4.



4 Approach 

As previously mentioned, we use the BiDAF model as a reference architecture to evaluate the 
impact on improving model performance on the SQuAD 2.0 dataset using model size changes versus 
changing attention layer formats. We expand upon the baseline BiDAF model by implementing a 
character embedding layer, co-attention layer [9], and a self-attention layer [10]. 

4.1 Bi-Directional 

Our baseline model follows a variant of the BiDAF architecture proposed in [11]. This model uses the 
same word embedding layer approach, but omits the character level embeddings, which we include as 
a means of testing the impact of model size on performance on SQUAD. A description of our baseline 
model architecture follows. 

4.1.1 Embedding Layer 

The embedding layer takes the word indices of the context and question to produce embeddings 
C1,-..,¢n € R? and q,,...,q¢y € R® respectively. Each embedding is projected to have dimension- 
ality H to produce hidden vectors h and then transformed twice by a highway network. 

For a hidden vector, h;, a one-layer highway network will compute 

g =0(W,h; +b,) € R® 

h,=gOt+(1—g) Oh, €R® 

where W,, W, € R# and b,, b; € R” are learnable parameters. 

4.2 Encoding Layer 

The Encoding layer takes the output of the embedding layer and applies a bidirectional LSTM to 
generate temporal dependencies between timesteps of the embedding layer output. The output are the 
hidden states at each position. For a given timestep 1, the full output is the vector concatenation of the 
forward and backward hidden states, h’; € R27. 

4.3 Attention Layer 

The fundamental element of the BiDAF baseline model, and the layer that we focus our work on is 
the bidirectional attention flow layer which enabless attention to flow from the context to the question, 
as well as from the question to the context. 

First we computer the the similarity matrix S ¢ R“*™ where for a given (ci, q 5) 

Sij = Wimleii gj; Oa] ER 

We determine Context-to-Question (C2Q) attention as follows 

Si. = softmax(S;,.) € RM 

M 

a; = S> $i54; € R27 

j=l 

and Question-to-Context (Q2C) attention as follows, 

A 

S.; = softmax(S.,;) € RY 

s'=88 eRNxN 
N 

b = S> 5S) 5503 € R24 

j=l



The final output of the bidirectional attention flow layer is 

9; = (ci; ai; c © ay; c; © Bj] € R8# 

4.4 Modelling Layers 

A two layer bidirectional LSTM is applied to the inputs g; € R®” to integrate temporal information 
between context representations conditioned on the question. The full output of this layer is the 
vector concatenation of the forward and backward states, m; € R27. 

4.5 Output Layers 

The output layer generates a vector of probabilities corresponding to the start and end positions in the 
context. It applies a bidirectional LSTM to the outputs from the modelling layer m; € R?” to give 
mi’; € R?” by concatenating the forward and backward states. Then, 

Pstart = softmax(W gtar[G; M)) 

Pend = softmax(W ena[G; M"’)) 

where W gta, and W eng are learnable parameters, G € R8“XN is the matrix with columns Gis IN 

from the bidirectional attention flow layer and M,M’ € R?4*% be matrices with columns 
Mj;,...,My and m’;,,...,m'n. 

Notice that we are again using the output of the attention layer here in the final span prediction. The 
attention layer is a core element of the BiDAF model, and we intend to explore this dependency 
further in our experiments. 

4.6 Character Embeddings 

Our baseline model uses only pre-trained lookup word embeddings, as compared to the original 
model presented in [11] which also utilizes character embeddings. Character level work embeddings 
are used in order to expand the capacity for the model to condition at a character level within words, 
rather than solely conditioning directly on word embeddings [11]. They allow us to condition on 
the internal structure of words and better handle out-of-vocabulary words. We implement character 
embeddings and use the embedding layer size to tune our model size. 

4.7 Co-Attention 

The first alternative attention layer we experiment with is the Co-Attention layer proposed in [9]. 
Similar to the simple bi-directional attention implemented in [11], co-attention utilizes a second-level 
attention representation to further extract context from the presented question and context paragraph. 
First, a linear layer with tanh nonlinearity is applied to the question hidden states q1,...,qaz € R' to 
obtain qj, ..., Qh € R' projected hidden states. 

qj, = tanh(Wq; + b) € R! 

Vj €1,..,M 

Sentinel vectors cg, gg € R! which are trainable parameters of the model and facilitate not attending 
the provided hidden states are incorporated to the question and context states to give q}, ..., Thy, 90 © 

R! and cy, ...,¢~, cg € R’. The affinity matrix with scores L;; for every pair (c;, q’ j) 

Li; = cq; ER 

The affinity matrix is then used to determine attention outputs for both Context-to-Question (C2Q) 

Attention and Question-to-Context(Q2C) Attention. C2Q attention outputs are calculated as 

a; = softmax(L;,.) € RM@+! 52 

M41 
ai = S ayqg; € R! 

j=l



and for Q2C attention, 

B; = softmax(L.;) € RNt! 

N+1 
bj = S- Bic ER’ 

i=l 

Second-level attention outputs are calculated by using C2Q attention distributions to take weighted 
sums of the Q2C attention outputs. 

M-+1 

3; = S> av; € R! 

j=l 

WeE1,...,N 

The concatenated sequence of s;, a; are run through a bidirectional LSTM and the results 

{u1,..., Un} are the coattention encoding to be fed into the modelling layer or self-attention layer. 

4.8 Self-Attention 

A self-attention layer was incorporated so that the inputs were able to interact with each other, i.e. 
every hidden state is able to attend to all the hidden states including itself. Self-attention by matching 
question-aware passage representations against themselves collects evidence from the whole passage 
for words in passage and encodes the relevant evidence of the passage word of interest and its 
respective question [10]. 

We calculate the attention scores of each word representation g, with all the other word representations 
g, to determine the final weighted sum representation of every word. 

First we compute a matrix S ¢RN*N where for a given context words 7, 7 in a passage, 

Si; =v! tanh(W}g; + Wigi) ER 

Next, we take the softmax of every column of Sto give § and use it to take weighted sums of the 
attention outputs from the bidirectional attention flow layer g; 

Si. = softmax(S;,) € RY 

N 

j=l 

where v', WP, and W? are trainable weights >We om . 

We also include a gate function to reduce the contribution of information with less significance. 

g = (W,,[a; g]) 

a* = 9 © [a;g] 

5 Experiments 

5.1 Data 

The Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset that contains 

around 150k (context, question, answer) triples where the contexts are excerpts of Wikipedia articles, 
the question is the the query to be answered given the context, and the answer is either the subse- 
quence of text from the context that appropriately responds to the query or indicates the question is 
unanswerable. The goal of the model is to determine the answer associated with the context-query 
pair in the SQUAD database.



5.2 Evaluation method 

Both Exact Match (EM) scoring, and F1 scoring is used to evaluate the model. Exact match is a strict 
evaluation of whether the system output matches the exact expected output for each example. F1 
score is a less strict evaluation metric that uses a mean of precision and recall that matches each word 
on the expected output result (i.e. if some words match, the resulting F1 score will be higher than if 
no words match). 

5.3 Experimental details 

Our experimentation was limited to tuning the hyperparameters we chose to train our models with. 
We wrote a bash script to cycle through dropout probabilites (ranging from 10% - 40% in 10% 
increments), hidden layer size (ranging from 70 - 130 in increments of 10), learning rate (ranging 
from 0.1 to 0.8 in increments of 0.1), and learning rate decay regularization (ranging from 0.9 to 
0.99 in increments of 0.01). We randomly sample 10 sets of values for these parameters from the 
specified ranges, and train each model for 3 epochs with the specified parameters. We then select 
the models with the lowest loss at the end of that 3 epoch training period and train the model with 
the selected hyperparameters for the full training duration. Our baseline model uses all the default 
hyperparameters provided in the starter code. Each of our experimental models use the following 
hyperparameters: 

Char Embed + Basic Attention: dropout: 30%, hidden: 110, Ir: 0.6, Ir decay: 0.93 
Char Embed + Co-Attention: dropout: 10%, hidden: 100, Ir: 0.5, Ir decay: 0.98 

Char Embed + Self-Attention: dropout: 20%, hidden: 50, Ir: 0.7, Ir decay: 0.99 

5.4 Results 

We present the results for our experimental models on the dev set below: 

  

  

  

  

Dev Set EM / F1 Scores 

Model type Exact Match Fl 

BiDAF (Baseline) 57.23 60.97 

Char Embed + Basic Attention 61.37 64.57 

Char Embed + Co-Attention 61.82 65.27 

Char Embed + Self-Attention 52.08 53.14           

From our models, it’s clear that the addition of character embeddings in our model yielded the most 
impactful accuracy increase on our validation set. By adding sizable (applying a 1D convolution with 
256 output channels) character embedding layers to the baseline model, we increased our EM score 
by 4.14%, in contrast to our addition of Co-Attention, which only yielded a performance increase of 
4.59%. 

Since we were working on the default final project for the IID track, we chose to submit our highest 
performing model to the Test Set leaderboard. We submitted our Character Embedding + Co-Attention 
model to the leaderboard since that model had the highest EM and F1 scores on our validation set and 
saw a test set performance for the model of 61.82.% exact match score, and an F1 score of 64.39%. 

As expected, our performance on the test set is slightly worse than that of our performance on the 
validation set since we use the validation set to track our performance throughout training. 

The most striking reaction to these results is generally the poor performance of our model imple- 
menting self-attention. The self-attention model performs significantly worse than the baseline 
model, despite implementing character embeddings at the same layer size used in both the character 
embeddings model and the character embeddings + co-attention model. Successful execution of our 
implementation on the virtual machine necessitated a 50% decrease in the size of the hidden layer 
and it is likely that this modification impacted the accuracy of our model, though not necessarily 
to the extent of the decrease seen. We attribute this result to a potential bug in our self-attention 
implementation but its plausible that this result could also be because of a numerical overflow when 
computing our gradients for the self-attention layer. We chose to include the results in order to point 
out the impacts of a faulty attention layer in these models. The model still performs reasonably 
well (better than a random guess), but it becomes clear from these results that a faulty attention 
implementation can yield dramatically worse results for this model architecture.



The poor results from our self-attention model, provides an interesting data point to consider when 
analyzing the impacts of different architecture elements on model accuracy performance. The addition 
of character embeddings seems to yield a significant performance increase, but the elimination of a 
proper attention layer yields a dramatic drop in model performance that insinuates that attention may 
hold a greater importance on model performance than was initially supported by the properly func- 
tioning models. This becomes an important consideration when evaluating which layer improvements 
may yield the greatest performance depending on the hardware platform used for running a model. 

6 Analysis 

We reviewed 30 sample outputs from the dev set evaluation for each of our models in order to 
better understand what kind of examples performed better for each model. Of the 30 examples, we 
randomly chose 15 that were correctly predicted, and 15 that were incorrect. From our analysis, 
we found that our character embedding model seemed to perform better on context examples that 
were answerable, whereas the co-attention model seemed to perform better on examples that were 
unanswerable. Additionally, the self-attention model, seemed to only perform reasonably well on 
example inputs that were answerable, suggesting that the faulty attention layer could be distracting 
from recognizing that a context example did not contain an answer. These points require significant 
more analysis in order to reach a more nuanced explanation, but from a general perspective these 
observations were made about our models. 

In general, we find that our models are more successful on examples that contain shorter context 
paragraphs and longer, more descriptive questions. This intuitively makes sense since a shorter 
context paragraph would provide fewer variations in where the answer might lie, and a more specific 
question paragraph offers more opportunities for the model to trigger off of a specific word. 

7 Conclusion 

Overall, we present three models building off of a baseline BiDirectional Attention Flow architecture 
and demonstrate that models increasing their effective learnable parameter size appear to have 
the greatest impact on increasing the performance of the model on the SQUAD 2.0 dataset. Our 
highest performing model utilized both character embeddings with a layer size of 256 in addition to 
implementing a co-attention layer to replace the original bi-directional attention layer. We struggled 
to refine our implementation of self-attention and thus the performance of our self-attention model 
was disappointing. Our models in this work do not fully represent the various neural language models 
that can be applied to this task, and a reasonable next-step would be to expand on our exploration 
of attention in our model by implementing a transformer-based model for SQUAD 2.0 and compare 
the learnable parameter count for the transformer to that of the BiDAF model to further estimate the 
impact of model size on performance on SQUAD. 
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