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Abstract 

Data augmentation has been proved effective in analyzing a neural model’s robust- 
ness and improving it by re-training with augmented data. Because text data’s 
discrete feature space, most data augmentation techniques require querying multiple 
systems for language knowledge and meticulous augmentation rule design by re- 
searchers. This paper aims to explore the effectiveness of an automatic, black-box 
data augmentation method using language models, bert context rewriter, 
and to compare it with another augmentation algorithm, token reorderer, which 
uses Universal Sentence Encoder’s semantic knowledge. Given a baseline ques- 
tion answering model, we employ DistiIBERT masked language model (mlm) to 
rewrite masked context data and evaluate whether re-training with the augmented 
data can improve the robustness of the baseline model. This augmentation relies 
on the existing language knowledge learnt by DistiIBERT mlm and does not use 
additional hand-crafted rules. We also explore how different configurations, includ- 
ing masked token percentage and additional mlm fine-tuning, affect our method’s 
effectiveness. Preliminary experiments show that both our methods obtain im- 
proved performance on out-of-domain dev set over the baseline and reduce the 
performance gaps between in-domain and out-of-domain datasets. However, token 
reorderer’s performance is consistently better than bert context rewriter’s 
in both out-of-domain evaluation (+2.9 F1/+2.9 EM versus +1.9 F1/+1.6 EM) and 

reducing in-domain out-of-domain gaps (-5.3 F1/-4.8 EM versus -1.7 F1/-2.5 EM) 
and therefore is more effective in improving the baseline model’s robustness. 

1 Introduction 

In recent years, machine learning models can achieve outstanding performance on held-out test sets in 
a variety of NLP tasks. BERT is the first model that beats human performance in tasks such as question 
answering [1]. However, there have also been increasing concerns about whether the powerful models 
that achieve high BLEU and F1 scores indeed understand language or instead just learn superficial 
patterns. In particular, research has shown that many neural models’ performances significantly 
decrease with minor input perturbation that is not perceivable to humans [2]. Because standard 
metrics are lenient on models that rely on superficial cues, adversaries with data augmentation have 
been proposed as an additional method to evaluate model robustness [3]. 

In addition to being an auxiliary evaluation method, data augmentation introduces more variety to 
the original dataset, and re-training with the augmented data can in some cases improve the original 
model’s performance on existing data and resilience to other adversarial attacks. In the case of 
unbalanced train and test datasets, data augmentation may effectively disrupt domain-specific features 
and improve model’s transfer-ability. 

Data augmentation in NLP is challenging because language token space is discrete: gradient and 
generator based models are oftentimes not applicable [4]. Many existing data augmentation techniques 
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rely on linguistics knowledge from either existing or newly built language knowledge bases. However, 
it is hard to separate the contribution of each system and evaluate their impact independently, and 
to find effective manual augmentation rules researchers need to do extensive experiments. This 
paper aims to explore whether it is feasible to utilize language models to implicitly retrieve this 
knowledge, instead of explicitly querying systems and writing augmentation rules. In particular, 
our data augmentation techniques augment data for question answering tasks and are evaluated on a 
baseline DistiIBERT question answering (QA) model. We implement bert context rewriter 
by employing DistiIBERT masked language model to rewrite question answering context data. 
We also experiment different configurations and analyze how they affect the question answering 
baseline model’s performance on in-domain and out-of-domain datasets. As a comparison, we also 
implement another simple data augmentation method, token reorderer, that changes the structure 
of questions based on semantic knowledge from Universal Sentence Encoder [5]. Our results show, 
while both techniques can improve baseline model’s performance on the out-of-domain dataset, 
token reorderer consistently performs better than bert context rewriter in both test dataset 
evaluation and reducing the evaluation gaps between in-domain and out-of-domain datasets. We 
conclude that before we can fully understand what BERT knows about language, data augmentation 
with explicit linguistics rules is still more effective than black-box augmentation with BERT. 

2 Related Work 

Text data augmentation techniques have been extensively explored in the context of adversarial 
attack and adversarial training for NLP neural models. Due to text data’s distinct discrete space, 

it is challenging to perturb the original data without altering its meaning too much or breaking its 
coherence [6]. Researchers have found success in utilizing manual linguistics rules to mutate text 
at character, word and short phrase levels. Such methods include introducing typos [7], synonym 
replacement [8] and inserting/removing phrases with no semantic meanings [2]. Recently, powerful 
language models have been employed to generate augmented data with less rule design by human 
[9]. However, to construct meaningful attacks, most techniques listed above perturb tokens in a 
sentence sequentially and greedily until the attacked model produces erroneous outputs. While 
they are applicable to some NLP tasks, such as sentence classification, where text data is relatively 
short, the techniques are often not parallelizable and therefore not scalable in tasks such as question 
answering where contexts can be several hundred words long. 

Several data augmentation algorithms have been introduced to specifically target question answering. 
AddSent [3], the first algorithm to attack reading comprehension models, concatenates a distracting 
sentence, either random or carefully crafted, at the end of a context. AddSentDiverse [10] further 

expands on AddSent by introducing more thorough attack rules and proves that re-training on the 
augmented data significantly improves the attacked model’s robustness. These two methods, just 
like most methods listed above, both query extensive language knowledge from existing systems 
and use the knowledge to generate attacks in well-designed pipelines. For example, to construct a 
distraction sentence, AddSent would consult WordNet for antonym replacement, query GloVe for 
named entity replacement and call Stanford’s CoreNLP library for POS tagging information. While 
the depending systems provide ample knowledge in English, they may not be all as powerful in other 
lower-resource languages. Because the depending systems are used jointly, it is hard to measure 
whether the augmentation techniques will be equally effective if one of the systems is unavailable 
or weaker. Further, as can be seen from the complexity of such a pipeline, researchers need to 
spend quite a lot of time doing experiments to craft manual rules. Therefore, it is useful to develop 
a generation method that has fewer dependencies and can effectively augment data with minimal 
human guidance, which motivates the design of bert context rewriter. 

3 Approach 

The baseline model is a DistiIBERT QA model [11] trained on in-domain datasets. We come up 

with and implement two data augmentation techniques: token reorderer and bert context 
rewriter. The first method is suitable for short sentences, whereas the second works for long 
paragraphs. In the context of question answering, we use the first method to augment questions and 
the second to augment contexts.



3.1 Token Reorderer 

For each token in the question, we determine its importance by removing it and comparing the 
similarity of the new sentence with the original one, which is measured with Universal Sentence 
Encoder [5]. The more dissimilar the mutated sentence is, the more important we deem the removed 

token is. In the end, we concatenate the reordered question sentence with the original one. The 
pseudo code is shown in Algorithm I. 

  

Algorithm 1: Token Reorderer 
  

q_enc + encode(original_question); 
sim_to_token + {}; 
for (i in q) do 

mutated < q.remove(t); 
sim_to_token|cosine(encode(mutated), q_enc)| = i; 

end 
sim_to_token.sort_by_key(ascending = True); 
reordered <~ sim_to_token.values(); 
return original_question + reordered; 
  

3.2 Bert Context Rewriter 

The pseudo code for masking logic is shown in Algorithm II. On a high level, we rewrite contexts 
by masking tokens and replacing them with DistiIBERT’s most confident predictions corresponding 
to the masks, which is a fairly standard usage of language models. There are a few design choices 
we'd like to highlight. First, our masking scheme implementation is inspired by SpanBERT [12]. 
Without SpanBERT’s extensive pre-training, however, DistiIBERT mlm would produce gibberish for 
long mask streams. As a result, we change the max mask length to 3 and change the parameter of 
geometric distribution, from which the mask length is sampled, to 0.8. Note that long continuous 
masks can still form because multiple mask spans may merge. Analysis over an empirical run shows 
that while around 75% mask spans are of length 1, the longest mask span can be up to 55 tokens. 
Originally other than masking we also implement keeping and replacing with random words logic 
just like BERT and SpanBERT, but we realize in practice they have little effect, so we remove the 
latter operations in all experiments. 

In order to preserve question answer labels, we don’t mask words directly, since after tokenization the 
mutated words may be longer or shorter than the original ones, which will make the labels inaccurate. 
Instead, we directly mask on the token level after tokenization but always round up the mask spans to 
whole words. We never mask tokens in answer spans. To prevent exceedingly long run time, we stop 
masking when 2/3 of all tokens are either masked or belong to the answer span. 

Our masking logic is both used for fine-tuning DistiIBERT mlm and rewriting contexts. More details 
in the experiment section. 

4 Experiments 

4.1 Data 

Datasets and splits are listed in Table 1 and they are standard for this default project. Training is 
conducted on in-domain train datasets and evaluation is conducted on in-domain and out-of-domain 
dev datasets respectively. In some cases, we also report metrics on the test datasets. 

4.2 Evaluation method 

We use EM and F1 to evaluate the performance of our QA model. In cases where in-domain metrics 
drop and out-of-domain metrics improve, we believe the data augmentation methods have removed 
domain-specific features the model learns and successfully increased the system’s robustness.



  

Algorithm 2: Bert Context Rewriter 
  

nr_masked < 0; 
mutated <~ {}; 
while (nr_masked < budget) do 

sample_len < min(Geometric(0.8), CAP); 
start_idx <~ Uni form(context_start, context_end); 
start_idz, end_idx < 

round_to_whole_word(start_idx, sampled_len, of f set_mapping); 
if range(start_idx, end_idx) not in mutated or answer_span then 

original_tensor|start_idx : end_idx] < tokenizer.mask_token_id; 

nr_masked <~ nr_masked + end_idx — start_idx; 
mutated.appends(range(start_idx, end_idx)) 

end 

end 
  

Table 1: Experiment Datasets 
  

Dataset Train Dev Test 
  

in-domain datasets 

SQUAD [13] 50000 10507 - 
NewsQA [14] 50000 4212 - 
Natural Questions [15] 50000 12836 - 

oo-domain datasets 

DuoRC [16] 127 126 1248 
RACE [17] 127 128 419 
RelationExtraction [18] 127 128 2693 

  

  

  

  

4.3 Experimental details 

For token reorderer, we augment both training and test datasets, since the algorithm only mutates 
question data and does not rely on any knowledge about answer span. We study two configurations 
for token reorderer: whether the original question is completely replaced by or concatenated 
with the reordered question. For bert context rewriter, we only augment training data, because 
we don’t have labels for test data and may unwittingly alter tokens in the answer span, making it 
impossible for the model to predict correctly. There are several different configurations that we study: 
1) whether the DistiIBERT mlm is further fine-tuned on out-of-domain dataset 2) what the percentage 
of masked tokens is. We do not tune hyperparameters, including learning rate, batch size and training 
time otherwise, in order to have an apple-to-apple comparison with the baseline. 

4.4 Results 

Experiment results can be found in Table 2 and we analyze how different configurations affect 
augmentation’s effectiveness. While we recognize parameters may work in conjunction in subtle 
ways, due to time constraint we mostly control one variable at a time and do pair-wise analysis. 

4.4.1 Baseline 

The baseline model shows a significant gap between in-domain validation and out-of-domain valida- 
tion metrics, indicating that the model has learnt domain-specific, non-transferable features. Overall, 

the performance of the baseline model is already quite good. 

4.4.2 Token Reorderer 

Token reorderer #1 replaces the original question with the reordered one, whereas token 
reorderer #2 concatenates the reordered question after the original one. Token reorderer #2



Table 2: Experiment Results 

  

  
Method FI/EM (00 dev) FI/EM(indev) FI/EM (ootest) maskratio mlm fine tuning 

baseline 48 .43/33.25 70.08/55.07 59.0/- - - 

token reorderer | 47.66/31.94 66.55/50.49 -/- - - 

* token reorderer 2 51.31/36.13 68.33/52.48 60.58/42.5 - - 

bert context rewriter 1 50.38/34.82 70.29/54.15 59.62/41.08 5% 

bert context rewriter2 49.81/34.55 69.49/53.37 -/- 15% 

bert context rewriter3  48.12/33.25 67.45/51.09 -/- 15% 
  

achieves the best performance overall across all methods and configurations - it not only beats the 
baseline in both Fl and EM for out-of-domain evaluation (+2.9 F1/+2.9 EM), but its in-domain 

validation scores also decrease (-1.7 F1/-2.5 EM). These two signals imply that token orderer 
#2 helps the model drop some features overfitting to the in-domain datasets and learn transferable 
features. Compared to token reorderer #1, token reorderer #2 also retains more signals by 
preserving the original semantics of the question and therefore performs better. Token reorderer 
#1 shows a slight decrease in out-of-domain evaluation (-0.8F1/-1.3EM) but an even larger decrease 
in in-domain evaluation (-3.5F1/-4.5EM). We suspect that some domain-specific question structures 
may be disrupted due to token reordering, and consequently the model becomes less domain-specific. 
However, question re-ordering also breaks its semantics and makes answering harder across both 
domains. 

4.4.3 Bert Context Rewriter 

Bert context rewriter #1 achieves the best performance on out-of-domain dev set among all 
bert context rewriters with different configurations (+1.9 F1/+1.6 EM). Likely, this rewriter 
magnifies some signals such as replacing a context word with a synonym that aligns well with a 
question word. However, it barely decreases the in-domain performance (+0.2 F1/-1.9 EM). While 
the out-of-domain performance is marginally improved, we don’t believe the algorithm has instructed 
the model to become more robust or domain-independent. Below we also discuss how two parameter 
choices affect augmentation. 

¢ Masked token percentage. Bert context rewriter #1 and #2 differ only in masking per- 
centage: #1 masks 5% tokens whereas #2 masks 15%. Both achieve marginal improvement 
over the baseline for out-of-domain evaluation, and compared to #1 both in-domain and 
out-of-domain performances for #2 are a bit worse (by around 0.5 in F1). This is expected, 
because more tokens are mutated and the datasets are more noisy. However, in general the 
mutation at 15% surprisingly does not affect model performance much. We conclude that 
the DistiIBERT QA model is quite resilient to token-level replacement noise, especially 
when it is introduced by another BERT model. 

e Mim fine-tuning. In bert context rewriter #3, before rewriting the contexts we fine- 
tune the mlm on the out-of-domain test dataset for 60 epochs. Comparing to #2, this 
significantly decreases in-domain evaluation (-2.8 F1/-2.9 EM). We believe rewrites adapt 
original contexts closer to the distribution of out-of-domain test dataset. Unfortunately, 
this does not translate to a better performance on out-of-domain dev dataset. Rather than 
removing domain-dependent features and improving model’s robustness, #3’s augmentation 
merely makes in-domain question answering harder by rewriting the context in an unfamiliar 
language. We also experiment fine-tuning with 10 epochs and 30 epochs. In those cases, 
in-domain and out-of-domain performances are almost identical with those of the baseline 
mlm, indicating that our fine-tuning does not change the mlm in any significant way. 

5 Analysis 

In retrospect, there are many reasons why token reorderer, which is based on external semantic 
knowledge, may outperform bert context rewriter. We list a couple below.



¢ Token reorderer introduces new semantic knowledge from Universal Sentence Encoder 
that DistiIBERT QA model likely does not know / focus on. After question tokens are 
re-ordered by their importance, DistiIBERT QA model may focus on answer spans cor- 
responding to the important tokens first, which may more likely to be right. It is unclear 
whether DistiIBERT’s model has direct concepts of "token importance" at this point, but at 
least from evaluation results, introducing such a concept brings improvement. This observa- 
tion also rationalizes why other data augmentation methods usually consult various systems 
for language knowledge. Each system likely introduces something new to the evaluated 
model and helps improve it in a different way. As such, hand-crafted augmentations that use 
linguistics rules do have their strength. 

¢ DistiIBERT mlm and DistiIBERT QA model’s feature spaces are too similar. We find an 
example, where context phrase "dyed yellow hair" is rewritten to "colored yellow hair" and 
the question is "what color did she use to color her hair". At first glance this may help 
improve the model’s answer. In reality, either way the model can find the correct span. 
The idea is simple - both DistiIBERT mlm and QA model know "color" and "dye" are 
synonyms, so at best the rewrite magnifies the signal but it won’t add new knowledge. If 
there are synonym replacements that DistiIBERT question answering does not know and 
can benefit from, DistiIBERT mlm won’t know either. This can potentially be changed with 
additional fine-tuning of DistiIBERT mlm, but given our data size, we cannot change the 
mlm’s parameters in significant ways. Alternatively, we can try using BERT mlm to augment 
data for another model that is not BERT based, or vice versa, to make sure augmentation 

can indeed bring new information to the system. 

¢ Token reorderer breaks question structures which is a more drastic perturbation. By 
contrast, BERT models are known to be overly stable to semantic perturbation. Adversarial 
training research has shown that BERT does not change its answer even if the relevant 
context’s meaning is completely reversed by introducing antonyms and negation words 
[3]. In the original design, we recognize that this will be a flaw in our rewrite results but 
think it is acceptable - if the QA model is agnostic to semantic changes but still can find the 
answer span given the surrounding context and structure, it still has some merits. After all, 
when performing a question answering task, even humans identify answers by surrounding 
structures and potentially miss details that render their answers wrong. However, just 
because BERT is agnostic to semantic details, replacement only augmentation is very weak - 
our experiment shows that even replacing 15% tokens won’t affect the model’s performance 
much. One potential improvement is that we can introduce operations other than token 
replacement, such as insertion and deletion, which may result in more drastic structural 
changes and improve model’s robustness. 

6 Conclusion 

Our project shows that token reorderer, a semantic-based augmentation method using Univer- 
sal Sentence Encoder, and bert context rewriter, an automatic augmentation method using 
DistiIBERT mlm, both can improve the baseline DistiIBERT QA model’s performance on out-of- 
domain dataset. The former, however, is more effective in generalizing the model by removing its 
domain-specific features. Therefore, our answer to the question in the title - can BERT do the work 
for you — is: not quite yet. Careful design of augmentation rules based on semantic and linguistics 
knowledge is still important in exposing a neural model’s robustness issues and improving them. It 
may still be possible to utilize BERT mlm to do data augmentation, but before we can understand 
how to extract any specific linguistics knowledge from the model better, researchers still need to 
be highly involved in designing how to best combine its strength with other systems. To make this 
conclusion more complete, we can do further work to verify the limitations we hypothesize in the 
analysis section. Namely, we can experiment using bert context rewriter to augment the data 
for another QA model that is not based on BERT, and we can introduce more structural mutations, 

including inserting and removing tokens, to bert context rewriter. We hope our work will shed 
light on the strength and weaknesses of BERT mlm in the context of automatic data augmentation 
and inspire future researchers to find how to best incorporate BERT mlm into their data augmentation 
techniques.
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