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Abstract 

In this project, we implemented models that were trained and evaluated using 
the Stanford Question Answering Dataset (SQuAD) 2.0. For a majority of our 

models, we incorporated character-level embeddings to strengthen the system’s 
understanding of the semantics and syntax of each context and question. Our 
implementations were based on two main architectures: the baseline Bidirectional 
Attention Flow (BiDAF) model and the Dynamic Coattention Network (DCN), 

which we implemented in full. We found that the baseline BiDAF model with 
character-level embeddings performed the best and received an EM/F1 score of 
61.771/65.089 on the test set. 

1 Key Information to include 

¢ Mentor: Zihan Wang, Sharing project: N/A 

2 Introduction 

Question Answering (QA) is a benchmark for measuring computers’ understanding of human 
language. The primary goal of this task is to allow researchers to construct systems and models that 
are able to understand human language on both a semantic and syntactic level. Such deep knowledge 
of language is difficult for computers to achieve. This is why QA remains a useful way to evaluate 
the strength of an NLP model. Historically, a bottleneck for robust QA models was the lack of 
structured data since the available datasets were annotated by humans. With the rise of deep learning, 
the need for a large, high quality dataset to evaluate QA tasks on grew. 

In 2016, the Stanford NLP Group released the Stanford Question Answering Dataset (SQUAD) 

which consists of over 100,000 question-answer pairs. Two years later, SQUAD 2.0 — which includes 
50,000 unanswerable questions in addition to the pairs from the first version — was released [1]. 
These datasets enable the standardized training and evaluation of large deep learning models on QA. 

In our implementation, we improved upon the performance of the Bidirectional Attention 
Flow (BiDAF) model on the SQuAD 2.0 dataset primarily by incorporating character embeddings 
into the model’s embedding layer [2]. This was our most successful implementation and yielded an 
F1 of 65.089 and an EM of 61.771. 

Additionally, we implemented two versions of a Dynamic Coattention Network (DCN) proposed by 
Xiong et al.: one with a highway maxout (HMN) layer and one with a multi-layer perceptron (MLP) 
[3]. These models, which were designed for SQUAD 1.0, did not yield optimal results on SQUAD 2.0 

even when we attempted to boost their performance by adding character level embeddings, because 
of their inability to properly distinguish between answerable and unanswerable questions. We also 
experimented with composing different elements from the BiDAF and DCN models, and with varying 
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our hyperparameters to achieve optimal results. Among our experiments, we found that the BiDAF + 
character-level embeddings implementation created the most robust model that both distinguished 
between answerable and unanswerable questions and predicted answers spans well. 

3 Related Work 

Xiong et al. introduced the Dynamic Coattention Network (DCN) in 2016. The most innovative 
contribution in the paper was the iterative decoder. A model that only makes a single pass through the 
estimations when predicting answer spans could incorrectly choose one of said plausible spans. In 
contrast, the DCN uses a dynamic pointer decoder to iterate over various potential answer spans. By 
iterating over a number of potential answer spans, this model makes getting stuck in local maxima 
that correspond to incorrect answer spans less likely, thus increasing the accuracy of the model. 
While the iterative decoder was an important contribution, the coattention mechanism described in the 

DCN paper is relatively weak because it is simply matrix multiplication and does not incorporate any 
nonlinearities. DCN was designed for SQUAD 1.0 and achieved an EM/F1 of 66.2/75.9 on that dataset. 

BiDAF, the baseline model used in this project, implements a rich attention mechanism by incor- 
porating a learnable weight vector into its matrix multiplication scheme that is applied to both the 
context and query hidden states. It computes both query-to-context and context-to-query attention 
which are fed into bidirectional LSTMs to yield probabilities for how likely it is that a given word is 
the start/end word of the answer span. The original BiDAF model was also designed for SQUAD 1.0 
and achieved an EM/F1 of 68.0/77.3. 

Our goal in conducting this project was to explore effective ways to apply and adapt these models for 
QA on the updated SQUAD 2.0 dataset. 

4 Approaches 

For this project, we explored multiple approaches to improve on the scores achieved by the baseline. 
The approach that produced the best result consisted of adding character-level embeddings to the 
baseline model. The main papers that our exploration was based on were BiDAF [2] and DCN [3]. 

4.1 Baseline Model 

The baseline model is a modified implementation of (BiDAF) described in [2] with character-level 

embeddings removed. The various approaches described below use code from the baseline model ( 
https://github.com/mingg¢g/squad.git) as a framework within which we added the layers relevant to 
the different implementations. 

4.2 Character-Level Embeddings 

The most successful of our approaches involved augmenting BiDAF with character level embeddings, 
using the model described in the original BiDAF paper (see Appendix, Fig. | for a diagram of 
the full model from the original paper) [2]. Here, embeddings are produced by loading pretrained 
character-level vector representations, then passing them through a 1D Convolutional Neural Network 
(CNN). These are then appended to the word embeddings, and the concatenated result is then passed 
to the encoder layer. 

Since the original paper did not specify the CNN configuration, we ran sub-experiments to obtain the 
optimum size of the convolving kernel, and the optimum setting for the number of output channels 
(or the dimensionality of the character-level embeddings). We did this by training the model with 
different settings of these parameters for an epoch then selecting the setting which led to the steepest 
decrease in training loss. In our model, we use a kernel size of 3 and 140 output channels.
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Fig. 1. Character Embedding Layer Diagram. 

4.3 Character Level Embeddings + Coattention 

The second model that we trained involved adding the coattention mechanism described in the DCN 
paper to the baseline BiDAF implementation enhanced with character-level embeddings described 
above. 

In the baseline, the encoder produces context hidden states ¢1, ..., cy € IR! and question hidden states 
l qa, gu ER’. 

Our modification, based on the parts of the encoder from the DCN paper, works as follows. Both 
a linear layer and tanh nonlinearity are applied to the question hidden states by the equation 
q; =tanh(Wq; + b) € R’. This is done to introduce variation between the context encoding 
space and the document encoding space. Trainable sentinel vectors initialized to zero are then 
appended to the q’ and d hidden states to allow coattention layer to not attend to any particular word 
in the context. These states are then passed to the coattention layer from the DCN paper, the details 
of which are described in Section 4.5. 

4.4 Coattention + BiDAF Output 

A third approach that we explored — our earliest attempt at improving on the baseline — was composing 
the baseline BiDAF implementation (without character-level embeddings) with the coattention layer 
described in the DCN paper [3]. The architecture of DCN approach is described in further detail in 
the following section. Specifically, we combined the embedding, encoder, and coattention layers 
described in the DCN paper with the modeling and output layers in the BiDAF paper. 

4.5 Dynamic Coattention + Character Level Embeddings 

The fourth model that we implemented was the full Dynamic Coattention Network [3]. Our best 
results using this model came from concatenating character level embeddings to the word level 
embeddings of documents and questions. 

DCN has four main layers: embedding, encoder, coattention, and decoder. The coattention layer 
consists of a series of matrix multiplication between different concatenations and products of the 
document encodings, D, and the question encodings, Q. These values are then put into a bidirectional 
LSTM to compute U — new updates for the model’s representations of each document word. U is 
later used to select new estimates of the start and end words of the answer span. An iteration of the 
dynamic pointing decoder is as follows: The DCN model chooses its prediction for the start and end 
index of the answer span by using an LSTM and a Highway Maxout Network (HMN) with 3 separate 
maxout layers and a tanh layer to compute scores for each word in the document as the start index 
and as the end index, providing a measure of how strong of an estimate it is. Our next predictions for 
the start/end indices are the argmax values across the scores for each word in the document [4] [5]. 

We repeat this "predict, recompute, update" mechanism until either our estimates converge or we 
carry out 4 iterations. To train the model, we use the average of the cumulative cross entropy loss



across all of the iterations of our dynamic decoder. See Figures 2 and 3 in the Appendix for DCN 
architecture diagrams. 

Since the original paper was written prior to the introduction of SQUAD 2.0, there is no specification 
for the handling of questions with no answer. We handle these in a similar manner to the baseline: 
we prepend an out of vocabulary token to the beginning of each context. When the DCN decoder 
selects this token as either the start or ending position for an answer, we predict no answer. 

4.6 Coattention + Multi-layer Perceptron 

Our final model is identical to the DCN model described above, except for the final layer. Here, the 
HMN in the decoder layer is replaced with a multi-layer perceptron (MLP). This version was an 
ablation implemented by Xiong et al. in the DCN paper. However, they used a 2-layer MLP while we 
implemented a 3-layer MLP. 

5 Experiments 

5.1 Data 

We used the updated version of the Stanford Question Answering Dataset, SQUAD 2.0 with unanswer- 
able questions [1]. The task that our model aims to achieve with this dataset is question answering, 
and the identification of unanswerable questions. Given a context and question, the model outputs an 
answer or classifies the question as having no answer. 

5.2 Evaluation method 

Our evaluation metrics are EM, F1 scores, and AvNA. Our goal was to improve on the metrics of the 
baseline model on the dev set which were AVNA: 67.38, F1: 60.96 and EM: 57.8. In addition to this, 

we analyzed the specific types of errors produced by our models by observing sample predictions 
produced on evaluation steps while training on TensorFlow. 

5.3 Experimental details 

5.3.1 Baseline + Character Embeddings 

We ran three experiments training our BiDAF model enhanced with character embeddings. In all 
experiments, the size of the convolving kernel was set to 3 and the dimensionality for the character 
embedding was set to 140. For each experiment, we trained our model for 30 epochs and used hidden 
layers with 100 features. 

  

5.3.2. Other Approaches 

Below we present our additional approaches. Some of the approaches were run for a lower number of 
epochs because we terminated training upon observing suboptimal scores relative to the baseline or 
to the approaches above. 

+ Character 

+ BiDAF 

 



5.4 Results 

5.4.1 Character Level Embeddings 

The experiments with the Baseline + Character Embedding model that performed best were Experi- 
ments | and 2 which both used a dropout rate of 0.2. Our best performing model achieved an EM 
score of 61.771 on the test leaderboard and an F1 score of 65.089 for the IID SQuAD track. 

We present a summary of the results in comparison with those achieved by the baseline below. 

  

The performance boost that resulted from adding character embeddings to the baseline were higher 
than we expected. These results show that richer embedding data helped the BiDAF mechanism 
perform far better on SQUAD 2.0 than just word embeddings. 

5.4.2 Other Approaches 

Our other models performed relatively poorly on SQUAD 2.0. In order to optimize our search for a 
model that beat the baseline, we terminated their training at earlier epochs once we observed that 
they significantly underperformed. However, it is still useful to compare the relative effectiveness 
of our different models based on our evaluation metrics. We compare the scores they achieve at 15 
epochs — halfway through training time — in the table below, and include the metrics for the baseline 
and our character-level embedding models for the same timestep. The graphical version of the table 
is presented in Appendix, Fig 4. 

  

We expected our approaches that used elements from DCN to perform better on the updated SQUAD 
2.0 than they did. This indicates that elements from DCN do not translate well to the more difficult 
task of handling a dataset with unanswerable questions. 

6 Analysis 

Before we begin our sectioned discussion on the different model architectures that we explored, 
we note an interesting trend across all models. For many of our incorrect predictions that did not 
involve N/A as the true or predicted output, our models predicted one named entity in place of another 
(see Appendix, Example 1). In some cases, the models predicted a defining clause in place of its 
corresponding noun (see Appendix, Example 2). The first observation shows us that, though the 
models recognized when named entities were required as answers, they were sometimes unable to 
differentiate between the correctness of different named entities. The second observation highlights 
a limitation of our evaluation metric: though in some instances predicting a defining clause was 
technically correct, this resulted in a score of 0 on both EM and F1.



6.1 Baseline + Character Embeddings 

Our most successful approach involved augmenting the the baseline BiDAF implementation by 
concatenating the word embeddings with character embeddings. Character level embeddings allow 
the model to learn from the morphemes that make up the words in the context and question which 
allows for richer data to be passed to the encoding layer. Further, since these embeddings are done 
at a subword level, our augmented model is better able to handle out-of-vocabulary words than the 
baseline. 

It is likely that this experiment worked the best, because it boosted the components of the baseline 
model — which already performed relatively well on SQUAD 2.0 — by providing the encoder with 
richer input. The DCN model is the basis of much of our exploration of the alternate approaches 
which performed comparatively poorly. Though DCN performs well on SQuAD 1.0, our results show 
that the components of the BiDAF model translate much better to the more difficult task of selecting 
answers from the context in addition to classifying questions as unanswerable than the components 
of DCN. 

We ran three main experiments involving the BiDAF model with character embeddings. Our first 
pair of experiments involved varying the optimizers that we used during training. In the graph below, 
we see that the two optimizers produced relatively similar EM, F1 and AvNA scores. A particularly 
interesting difference between the graphs is the faster convergence of the Adam optimizer on earlier 
epochs. The Adam optimizer makes use of momentum, which is likely what accounts for faster 
convergence. In spite of this, the model plateaus more abruptly than the one trained using Adadelta 
and finishes with a value slightly lower than the Adadelta optimizer across all three evaluation metrics. 
This tells us that though using Adam leads to faster convergence, it can perform slightly worse than 
Adadelta if it gets stuck in poor local optima. 

FI EM AvNA 
tag: dev/F1 tag: dev/EM tag: dev/AvNA 

a = i 3 ne 

Fig. 2. Fl, EM and AvNA scores for the Character Embedding model trained with Adadelta (higher orange), the 

Character Embedding model trained with Adam (brown), and the Baseline model with only Word Embeddings 

(lower orange). 
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Our third experiment involved using a higher dropout rate of 0.5. This model performed poorly in 
comparison to experiments which used a dropout rate of 0.2. This is likely because the high dropout 
rate led to the model predicting answers nearly at random. Though dropout helps with making models 
more generalizable, a high dropout rate can hurt a model since the nodes in the network are zeroed 
out with high frequency. This causes the model to lose too much of the information it learns during 
each iteration of training. 

To determine the limitations of our strongest model, we conducted an error analysis on the types of 
questions for which it produced incorrect predictions based on the text produced in Tensorboard on 
our evaluation steps. Of the 100 examples that we observed, 29 resulted in predictions that would 
have received 0 on both EM and F1. A vast majority - 62% were as a result of incorrectly predicting 
a span when there was no answer (N/A). 17% involved predicting N/A when there was a correct span, 
and 21% involved choosing the wrong span. 

The most interesting error that we saw involved a correct prediction — the model predicted the Chinese 
translation of a noun (Answer: Yudn Chao Prediction: JC#A) rather than its English translation. 

Though the example answer had the same noun in English, here the model would have achieved EM 
and F1 scores of 0. This example highlights the limitations of evaluating using Fl and EM when 
there is an insufficient range of references and there are multiple correct answers.



6.2 Baseline + Character Embeddings + Coattention 

After running this implementation for 15 epochs, we found that it underperformed greatly in com- 
parison to the baseline. To perform an in depth error analysis, we tallied the number of completely 
incorrect predictions (those that would achieve an F1 score of 0) and classified the types of incorrect 
predictions. 

At the time of our analysis, we observed 100 predictions of which 39 were completely incorrect. In 
an overwhelming majority of the incorrect predictions, our model incorrectly guessed N/A though 
there was an answer present. This result is unsurprising since 33.3% of the questions in the SQUAD 
2.0 dataset have no answer based on their context: indeed, a model might perform better if it biases 
towards predicting N/A in cases of uncertainty. This reveals a very interesting trend. In the previous 
section, we saw that many of the incorrect answers involved incorrectly predicting a span even in the 
cases where there was no answer. Here, most of the incorrect answers involve incorrectly predicting 
no answer even though there is a correct answer span in the context. This supports the hypothesis that 
either the coattention mechanism from the DCN paper on its own, or its composition with BiDAF 
results in a model that relies too heavily on defaulting to no answer predictions. This reliance might 
have caused the model to be less likely to attempt to guess a span in the cases where there was 
some probability that N/A was the correct output. Perhaps this behavior is what resulted in the 
discrepancy in scores between the BiDAF model with character embeddings and the models which 
used components from the DCN paper. 

COMPARATIVE ERROR ANALYSIS 

m Character Embeddings m@ Character Embeddings + Coattention 

PREDICTING THE WRONG ANSWER SPAN [BO 

INCORRECTLY PREDICTING N/A aS a 

INCORRECTLY PREDICTING A SPAN WHEN N/A [SSS a 

Fig. 3 Error Analysis Chart 

6.3 Coattention and BiDAF Ensemble 

We originally expected that replacing the BiDAF model’s attention layer with the DCN’s coattention 
mechanism would strengthen the model. This hybrid model actually performed worse than the 
baseline. 

An examination of our incorrect predictions reveals a similar problem to the one described in the 
section above — the incorrect predictions tended to result from predicting N/A even though there 
was a span in the context that correctly answered the question. This bolsters our hypothesis that the 
coattention mechanism combined with layers from BiDAF might have resulted in a model that relied 
too heavily on predicting N/A in uncertain cases. 

6.4 Dynamic Coattention with Highway Maxout Network + Character Embeddings 

The architecture of the DCN was designed for SQUAD 1.0, not SQUAD 2.0. Because we applied the 
model to a task that it was not originally intended to handle, it performed relatively poorly. 

A possible explanation for this poor performance is the dynamic nature of the decoder. Shifting 
predictions when solely predicting spans may affect the EM, but the model can still achieve a high 
F1. However, when both predicting spans and determining whether or not a question is answerable, 
having an iterative decoder may lead the model to have a higher chance of incorrectly shifting 
original span predictions to N/A classifications or incorrectly shifting original N/A classifications 
to span predictions. Example 3 in Appendix demonstrates an instance where the DCN predicts an



answer span, but the question is unanswerable. 

This hypothesis is supported our analysis of the predictions in TensorFlow. Nearly all the errors 
that we observed involved incorrectly classifying questions as unanswerable or predicting answers 
when none was present. We observed 34 incorrect predictions out of 100 examples. 29% involved 
predicting a span when there was no answer, 58% involved predicting no answer when there was an 
answer span and 18% involved picking the wrong span. 

Another possible explanation for the DCN’s poor performance is that the embeddings and encodings 
required for accurately determining whether a question is unanswerable are not the same as those 
useful for predicting spans. Therefore, the encoder and coattention layers would not translate well 
into this new, more complex task and so the decoder also performs poorly. 

6.5 Coattention Network with Multi-layer Perceptron 

This implementation was an ablation of the original DCN, so our reasoning for why it performed 
poorly on SQuAD 2.0 is consistent with Sections 6.3 and 6.4. Example 4 in Appendix is a demonstra- 
tion of this model outputting N/A when the question was answerable. The similarities between the 
erroneous predictions in Examples 3 and 4 — making mistakes with N/A classifications — highlight 
both the similarities between the HMN and MLP implementations of the DCN and its general inability 
to discern answerable questions from unanswerable questions. 

7 Conclusion 

In this project, we explored multiple approaches for improving upon the baseline model’s 
performance on the question answering task on SQUAD 2.0. We improved upon the baseline on 
the QA task by a difference of 3.8 on AVNA, 3.97 on EM and 4.13 on F1 by adding character-level 
embeddings. This shows that enriching the embedding layer of an NLP model can significantly boost 
its performance. We also learned that though models like DCN performed well on QA for SQUAD 
1.0, their components did not translate well to SQUAD 2.0. A primary limitation of our work is that 
because of the limited time frame of the project, we were unable to do a highly exhaustive parameter 
search. Though we explored different dropout rates, learning rates, hidden layer sizes and optimizers, 
it might have been interesting to do this exploration on an even broader scale. Another limitation is 
that our models were trained and optimized primarily on English text data. One avenue for future 
work is implementing a new method for identifying unanswerable question that composes well with 
DCN, which allows it to perform well on both classifying potentially unanswerable questions, and 
predicting correct spans when an answer is present. 
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Question: Who designed the garden for the University Library? 
Context: Another important library — the University Library, founded in 
1816, is home to over two million items. The building was designed by 
architects Marek Budzyfiski and Zbigniew Badowski and opened on 15 
December 1999. It is surrounded by green. The University Library garden, 
designed by Irena Bajerska, was opened on 12 June 2002. It is one of the 
largest and most beautiful roof gardens in Europe with an area of more than 
10,000 m2 (107,639.10 sq ft), and plants covering 5,111 m2 (55,014.35 sq 
ft). As the university garden it is open to the public every day. 
Answer: Irena Bajerska 
Prediction: Marek Budzyfski and Zbigniew Badowski       
Example 1: An example where a model (here, baseline + character embedding) incorrectly 
predicts one named entity in place of another. 

  

Question: What German ruler invited Huguenot immigration? 
Context: Frederick William, Elector of Brandenburg, invited Huguenots to 
settle in his realms, and a number of their descendants rose to positions of 

prominence in Prussia. Several prominent German military, cultural, and 
political figures were ethnic Huguenot, including poet Theodor Fontane, 
General Hermann von Francois, the hero of the First World War Battle of 
Tannenberg, Luftwaffe General and fighter ace Adolf Galland, Luftwaffe 
flying ace Hans-Joachim Marseille, and famed U-boat captain Lothar 
von Arnauld de la Periére. The last Prime Minister of the (East) German 

Democratic Republic, Lothar de Maiziére, is also a descendant of a 

Huguenot family, as is the German Federal Minister of the Interior, Thomas 
de Maiziére. 
Answer: Frederick William 
Prediction: Elector of Brandenburg       
Example 2: An example where a model predicts a defining clause corresponding to a noun. 

  

Question: Optional Committees are committees which are set down under 
what? 
Context: Committees comprise a small number of MSPs, with membership 
reflecting the balance of parties across Parliament. There are different 
committees with their functions set out in different ways. Mandatory 
Committees are committees which are set down under the Scottish 
Parliament’s standing orders, which govern their remits and proceedings. 
The current Mandatory Committees in the fourth Session of the Scottish 
Parliament are: Public Audit; Equal Opportunities; European and External 
Relations; Finance; Public Petitions; Standards, Procedures and Public 

Appointments; and Delegated Powers and Law Reform. 
Answer: N/A 
Prediction: the Scottish Parliament’s standing orders       
Example 3: Incorrect Prediction from DCN + Character Embeddings 
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Question: Economy, Energy and Tourism is one of the what? 
Context: Subject Committees are established at the beginning of each 
parliamentary session, and again the members on each committee reflect the 
balance of parties across Parliament. Typically each committee corresponds 
with one (or more) of the departments (or ministries) of the Scottish 

Government. The current Subject Committees in the fourth Session are: 
Economy, Energy and Tourism; Education and Culture; Health and Sport; 
Justice; Local Government and Regeneration; Rural Affairs, Climate 

Change and Environment; Welfare Reform; and Infrastructure and Capital 
Investment. 
Answer: current Subject Committees 
Prediction: N/A       

Example 4: Incorrect Prediction from MLP + Character Embeddings 
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