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Abstract 

In recent years, significant work in NLP research has been done to build Question 
Answering systems. QANet was the first QA model that combined self-attention 
and convolution, without any use of Recurrent Neural Networks. The goal of 
this project is to tackle the Question Answering task on the SQUAD 2.0 dataset 
using different variations of the QANet architecture. We first re-implement the 
QANet model, and then explore different versions of the architecture. We propose 
several ensemble models with different inference methods: our best model, using 

a two-step answerability prediction based inference method, achieves 71.21 F1/ 
68.14 EM on the development set, and 69.04 FI / 65.87 EM on the test set. 

1 Introduction 

The problem of machine reading comprehension has sparked interest in the NLP community, partly 
thanks to the availability of public datasets such as SQUAD [1]. One of the main tasks in MRC is 
Question Answering, defined as follows: given a question and a paragraph as inputs, find a subset of 
the paragraph that answers the question. In this work, we consider the more general formulation, in 
which a question can have no answer in the paragraph. One great interest of this problem is that it 
quantifies how well deep learning systems can ‘understand’ text all the while enabling an automatic 
understanding of pieces of text, which can be extremely useful in many industries. 

The two main approaches developed to tackle Question Answering are Pre-trained Contextual 
Embeddings (PCE) based methods, such as Bert [2] and ELMo [3], and Non-PCE methods [4, 5]. 

On the SQuAD 2.0 dataset, the state of the art methods are PCE based, even though some non-PCE 

methods are still successful in solving the task. One of those methods, QANet [5], is the main focus 

of this work. 

QAN¢et, at the time of publication, achieved state of the art results on the SQUAD 1.1 dataset all the 
while significantly improving efficiency thanks to the use of a convolution and attention-based [6] 
architecture (as opposed to Recurrent Neural Network based architectures). Here, we choose to adapt 
the QANet method to the SQUAD 2.0 dataset, where questions can have no answer, and explore 
different variations of the QANet architecture, especially regarding the size of the model, the attention 
mechanism and the parametrization of the model. We also explore different ways of ensembling our 
single models, with a focus on different inference methods. To the best of our knowledge, our best 

performing ensemble inference method, which relies on an answerability prediction step, has not 
been proposed in previous work. 

2 Related work 

Before QANet [5], most methods used for Question Answering relied on Recurrent Neural Networks, 

along with a use of attention mechanisms. Among these methods, there is the Gated Self-Matching 
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Networks [7] method and the Bidirectional Attention Flow (BiDAF) [4] method. The latter is a 

hierarchical multi-stage architecture that allows modeling of the context paragraph at different levels 
of granularity: character-level word embeddings and word-level embeddings. It employs recurrent 
units such as LSTM to keep track of sequential information in the text as well as attention mechanism 
in order to get long term dependencies. More precisely, the attention process is divided into two parts: 
Context-to-Question (context aware attention) and Question-to-Context (question aware attention). 

BiDAF was among the best performing models for the QA task when it was first published. However, 
since it is RNN based, it has the inconvenient of being computationally costly. 

The necessity to adopt a radical change of structure was concretized in 2018 by the authors of the 
QANet model [5]. This model, similarly to the Transformers architecture [6], does not use LSTM 

units at all. It encodes the question and context separately thanks to a non-recurrent Embedding 
Encoder Layer which uses convolution to get local information on the input, and self-attention to get 
long term interactions. The non-recurrent character of this network makes it much faster than the 
BiDAF model, with a 3x to 13x improvement in training speed as reported by the authors. 

While QANet has achieved state of the art performance, there are still variations of the architecture 

that were not explored in the original paper. First of all, it was not originally implemented for the 
SQuAD 2.0 framework, so the original version cannot predict answerability. Moreover, a variation 
that could potentially improve performance is in the self-attention mechanism: the original paper does 
not experiment with any other attention method than dot-product attention. Multiplicative attention, 
which we explore in this work, could enable to better capture global interactions. Also, the QANet 
authors chose to share the parameters between the components of their Model Encoder layer: here, 
we explore the case when those parameters are unshared. 

3 Approach 

As outlined in previous sections, we tackle the Question Answering task by implementing from 
scratch the QANet model described in [5]. Our implementation was made easier thanks to the 

provided BiDAF implementation, since it has some similarities with the QANet, and because it is 
already adapted for SQUAD 2.0. Then, we explore variations of the original QANet, described in this 
section. Finally, we propose different ensemble methods of our single models. 

3.1 Baseline 

We used the Bidirectional Attention Flow (BiDAF) [4] as a baseline model. The version does not use 

character embeddings. 

3.2 QANet architecture 

Let us provide a description of the original QANet algorithm by following the progression of figure 1. 
First, contexts and questions are processed separately: their words go through an Input Embedding 
Layer, which produces a concatenation of a fixed GloVe word embedding and character-based word 
representation. On top of that, a two-layer highway network (as described in the handout) refines the 
embedding and produces the hidden states q; and c;. 

This phase is followed by an Embedding Encoder Layer which takes the embeddings q; and c¢; 
and the sinusoidal position encodings as inputs, and stacks blocks each composed of 4 depthwise 
separable convolutional layers, a self-attention layer (multi-head) and a feed-forward layer. This 
phase is crucial to the understanding of the algorithm. By analogy with their use in computer vision, 
the role of the convolutional layers is to get local information in the inputs. The fundamental idea 
behind depthwise separable convolutions is to separately operate a spatial feature learning step 
(depthwise convolution) and a channel combination step (pointwise convolution). More details about 

this method are provided in [8]. As for the multi-head self-attention layer described in [6], it calls the 

query for each position in the input and computes a weighted sum of all positions, or keys, in the 
input based on the similarity between the query and key. 

Then, there is a Context-Query Attention Layer, which computes pairwise similarities between 
context and query words and then computes the context-to-query and query-to-context attention 
distributions and the attention output. More precisely, the computations made by this layer are:



* Context-to-query attention: Denoting C' the encoded context and @ the encoded query, 
we compute S a matrix of pairwise similarities. These similarities are computed using 
a trilinear function [9] f(¢,c) = Wolg,c,q © c|. The context-to-query attention is then 
A = softmax;ow(S) Q?, softmax,.o,, referring to softmax row normalization. 

* Query-to-context attention: The query-to-context is then computed as B = 
S softmax,,)(5') C7 (softmax,,; being sofrmax column normalization) 

* Attention output: The output of the layer is [C, A,C © A,C © B] 

It is followed by a Model Encoder Layer, with 3 blocks similar to those of the Embedding Encoder 
Layer that share their weights. 

Finally, the Output Layer computes the probability of each position in the context being the start 
(Dstart(2)) or the end (Dena(z)) of the answer span using the first two blocks of the model encoder 
layer for Dstart and the first and third block for peng. That is to say, denoting Mp, M1, M2 the outputs 

of the three blocks of the Model Encoding Layer, we have: 

Pstart = Softmax(W,[Mo, M;]) Pend = softmax(W2[Mo, Ma]) 

The loss for an example of which the answer span starts at 2 and ends at 7 is: 

~~ log Pstart (i) a log Pend (j) 

At inference time, similarly to the BiDAF model, the predicted start and end indexes are those 
that maximize the joint probability pstart(i)Pena(j), given that the indexes i and j are such that 
0 <7—121< M with M achosen parameter representing the maximum length of an answer. The 
case 7 = 2 is possible only when both indexes are 0, in which case the model predicts that there is no 
answer (each context’s first word is an out-of-vocabulary token used for the purpose of predicting if 
there is an answer). 
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Figure 1: QANet architecture (figure from [5]) 

      
3.3. Architecture variations 

We experimented with several variations of the QANet architecture.



¢ Model size: Due to computational constraints at the beginning of the project, the first 
QANéet model we implemented was smaller than the original one, as it had less blocks in 
the model encoder layer and less heads for the multi-head self-attention in the model and 
embedding encoder layers. We refer to this model as Small QANet. The second QANet 
model we implemented, Big QANet, is identical to the original one. More details are given 
in subsection 4.2. 

¢ Attention mechanism: The original QANet uses dot-product attention only for the self- 
attention mechanism in the encoder blocks of the model and embedding encoder layer. 
One of the models we implemented, Multiplicative QANet, replaces dot-product attention 
with multiplicative attention. The intuition behind this modification was that multiplicative 
attention would be able to capture more complex global interactions than dot-product 
attention, since it allows the model to learn the interaction terms. 

¢ Unshared parameters : The original QANet shares the parameters between the 3 blocks of 
the model encoder layer Mo, M1, M2. We experimented with an architecture where those 
parameters are unshared, thus having 3 different sets of parameters for the 3 blocks. It was 
unclear to us why sharing the parameters would be beneficial for the model to learn a proper 
probability distribution of the answer span, and we therefore chose to trade potential bias 
for variance. 

3.4 Ensemble models 

We implemented 3 ensemble models which used the single models we trained (including the baseline), 
based on 3 different inference methods. All 3 only use the predicted answer spans of the single 
models: they do not rely on the probability distributions, as we can sometimes see in the literature. 

¢ Majority voting: This ensemble model predicts an answer by taking the most common 
predicted answer among the answers given by the single models. In the case of a tie, we 
choose the answer among the most common ones outputted by the best performing single 
model (in terms of F1 score). 

¢ Answerability prediction (1): We propose a two-step inference method for this ensemble 
model. We first select the single model, denoted f*!, with the lowest False Negative rate in 
the answerability prediction (negative corresponding to no answer). For a given example 
(c,q), if f*!(c, q) = <NOANSWER>, the ensemble model outputs no answer. Else, the model 
gives the output obtained with majority voting. The rationale behind this inference method 
is that, when f*! outputs no answer, the probability that the question is not answerable is 
relatively high, so the ensemble model can output no answer with high confidence. 

¢ Answerability prediction (2): This ensemble model is very similar to Answerability pre- 
diction (1), except that the selected reference model for answerability prediction is the one 
that has the highest accuracy (AvNA) in the answerability prediction task. 

4 Experiments 

4.1 Data and evaluation 

We use the SQuAD 2.0 dataset and some hand-labeled examples (for the test set) with the following 

train/dev/test split: 

1. train: 129941 examples from the official SQUAD 2.0 training set 

2. dev: 6078 examples from the official dev set 

3. test: 5915 examples either from the official dev set or hand-labeled 

Figure 2 shows the distribution of the first words of the questions in the development set for the 10 
most frequent first words ("Other" representing all other first words). The first word is a proxy for the 
question type. We can see that there is a majority of "What" questions. 

The numerical evaluation metrics we use are the Exact Match (EM) and the F1 score. Also, the AVNA 

(Answer vs No Answer) refers to the accuracy of the prediction of answerability.
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Figure 2: Distribution of questions according to their first word 

4.2 Experimental details 

First, here are the parameters that were unchanged for all our models, and that correspond to the ones 
in [5]: 

¢ The numbers of convolution layers in the Embedding and Modeling encoder are 4 and 2, 
kernel sizes are 7 and 5. 

* hidden_size = 128, n_epochs = 30. 

e We used an ADAM optimizer with 6; = 0.8, G2 = 0.999, « = 1077. 

¢ We applied an exponential moving average on all trainable parameters with a decay rate 
0.9999. 

¢ We used a learning rate warm-up scheme with an inverse exponential increase from 0 to 
0.001 in the first 1000 steps, and then constant learning rate. 

* We used L2 weight decay with parameter \ = 3 x 1077 

¢ Dropout rate between layers is 0.1, word dropout rate is 0.1 and character dropout rate is 
0.05. 

e We used the stochastic depth method [10]: sublayers / of each embedding or model encoder 

layer are dropped out with a rate 0.14 (L is the final layer). 

For Small QANet and Multiplicative QANet, we used 4 heads for self-attention, and 3 encoder blocks 
in the Model Encoder layers. The batch size used was 32. Those models trained in approximately 20 
hours. 

For Big QANet and Unshared QANet, we used 8 heads for self-attention, and 7 encoder blocks in the 
Model Encoder layers, similarly to what is done in [5]. The batch size used was 16. Those models 
trained in approximately 40 hours. 

All ensemble models used our 4 single models, along with a "copy" of Small QANet and Big QANet, 
defining copy as the same model independently trained. That is to say, we trained Small QANet and 
Big QANet twice, thus obtaining 2 different sets of weights for each of these two models. 

4.3 Results 

For each of our single models and ensemble models, we report in Table 4.3 the F1 score, EM, AVNA, 

number of False Positives (FP), True Positives (TP), False Negatives (FN) and True Negatives (TN) 

on the development set. The best metrics, for single models and ensemble models, are in bold. 

Our best model, the ensemble model Answerability prediction (2), scored 69.04 F1/65.87 EM on the 
IID SQuAD track test set, which gives it the 4"" rank on the test leaderboard. The differences in dev



  

Model Fl Exact Match AvNA FP TP FN TN 
  

  

BiDAF 59.44 56.02 66.12 1492 2324 524 1611 
Small QANet 66.86 63.91 73.38 995 2259 589 2108 

Multiplicative QANet 66.36 62.51 73.20 1160 2413 435 1943 
Big QANet 68.66 64.93 74.73 1010 2354 494 2093 

Unshared QANet 68.73 64.88 75.03 1023 2385 463 2080 
Majority voting 70.50 67.33 75.82 939 2348 500 2164 

Answerability prediction (1) 70.79 67.74 75.89 839 2252 596 2264 
Answerability prediction (2) 71.21 68.14 76.29 802 2239 609 2301 
  

Table 1: Comparison of models’ performances on the development set 

and test scores are probably due to differences in data distribution, as well as model selection which 
was done on the dev set. 

First, we observe that all our models largely outperformed the baseline BiDAF model, which is 
consistent with what we observe in the literature. However, the baseline could largely be improved, 
for example through the use of character embeddings. While we cannot conclude with certainty that 
the QANet-based models would outperform the improved BiDAF models, results already observed 
indicate that they probably would. This performance gap was expected: the QANet models are 
probably better at having both local focus and global understanding of the text. 

Second, we notice that the bigger versions of the model outperform the smaller ones with a +1 margin 
on the EM and a +2 margin on the F1 score. Having significantly more parameters, with an increased 
number of heads and number of blocks in the model encoder layer, helped the bigger models learn 
a better probability distribution of answer spans. While those bigger models are more prone to 
overfitting, this does not seem to have affected negatively the performance on the development set. 

Our variations of the architecture of QANet did not clearly outperform the original versions. Due 
to the model size of our models, the effects of these variations can only be observed through the 
comparison of Small QANet and Multiplicative QANet on one side, and Big QANet and Unshared 
QANet on the other. Multiplicative QANet was outperformed by Small QANet, which is surprising 
since we expected the multiplicative self-attention to enable a better modeling of the interactions. 
This might be due to overfitting, since multiplicative self-attention adds a lot of parameters to the 
model, and due to the fact that hyperparameters (such as dropout parameters or 12 regularization 
factor) were chosen for the original QANet in [5]. Due to time and computational constraints, we 

could not tune the hyperparameters for all our models. However, we can observe that Multiplicative 
QANet has the best False Negative and True Positive rate: it seems to predict that there is an answer 
more often than other models, but relatively reasonably since its FP and TP are significantly better 
than those of BiDAF. 

As for the Unshared QANet, it has a slightly higher F1 score and AvNA than Big QANet, but a slightly 
lower EM. The performances are therefore quite similar, and it is difficult to know whether the small 
differences observed are random or if they are due to real differences in predictive performance. 
Again, this model is more prone to overfitting and hyperparameter tuning could help improve its 
performance. 

As expected, the ensemble models perform significantly better than single models. The best ensemble 
model, Answerability prediction (2), has a +0.7 F1 score margin and +0.8 EM margin on Majority 
Voting. The idea of separating answerability prediction and answer prediction using the best classifier 
seems to be the best one for inference: it is a convenient way of making the model easily classify 
examples which have no answer. 

5 Analysis 

In this section, we perform the analysis of our best performing model. 

Figures 3 and 4 show the metrics obtained by model on different subsets of the data, those subsets 
being defined by the first words of the questions. First, we can observe that the easiest examples for 
our model are the ones with questions that start with "When". This is expected since those questions 
have numerical answers most of the time, which can be more easily spotted by the model (errors
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Figure 3: AvNA with respect to questions’ first word 
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Figure 4: Fl score and EM with respect to questions’ first word 

probably happen when there are several numerical substrings in the context). The model also has 
good performance on "Who" questions, probably for similar reasons than for "When" questions: the 
answers to these questions are often a name. 

The model makes more errors for "How", "Where" and "Why" questions, which is not surprising for 
"How" and "Why" questions since they require logical reasoning, which is a hard skill for an NLP 
model to learn. Interestingly, the gap between F1 score and EM for "Why" questions is very big: the 
model seems to be able to output an answer that overlaps with the ground truth, meaning that it has a 
reasonable knowledge of where the answer approximately is, but it has trouble identifying it exactly. 
For "How" questions, we can see that the AVNA is among the lowest: the model has trouble detecting 
if there is an answer, as if it did not really understand the question. 

In Table 5, the first example illustrates our last claim: this example, a "How" question, requires 
logical reasoning, which makes it hard for the model to make a prediction, as it rather outputs no 
prediction. The second example shows that the model does understand that a "How many" question 
calls for a numerical answer, but it selected the only one in the text and it was not correct. The 
model’s understanding of the context-query was limited to the format rather than the meaning. The 
third example shows that the model made a semantic error, probably due to erroneous context-query 
matching based on the similarity of the query word "bacteria" and "bacteriophages".



  

Context Question Prediction   
Forces act in a particular direction and have sizes | How do you deter- 
dependent upon how strong the push or pull is. | mine the acceleration 
Because of these characteristics, forces are clas- | of a rope when two 
sified as "vector quantities". For example, when | people are pulling it? 
determining what happens when two forces act on 
the same object, it is necessary to know both the 
magnitude and the direction of both forces to calcu- 
late the result. For example, if you know that two 
people are pulling on the same rope with known 
magnitudes of force but you do not know which 
direction either person is pulling, it is impossible 
to determine what the acceleration of the rope will 
be. Associating forces with vectors avoids such 
problems. 
  
As interesting examples of expositions the most | How many posters | 60 
notable are: the world’s first Museum of Posters | are in Warsaw? 
boasting one of the largest collections of art posters 
in the world, Museum of Hunting and Riding and 
the Railway Museum. From among Warsaw’s 60 
museums, the most prestigious ones are National 
Museum with a collection of works whose origin 
ranges in time from antiquity till the present epoch.   
Immune systems appear even in the structurally | What is the main de- | bacteriophages 
most simple forms of life, with bacteria using a | fense mechanism of 
unique defense mechanism, called the restriction | bacteria known as? 
modification system to protect themselves from 
viral pathogens, called bacteriophages. Prokary- 
otes also possess acquired immunity, through a 
system that uses CRISPR sequences to retain frag- 
ments of the genomes of phage that they have come 
into contact with in the past, which allows them 
to block virus replication through a form of RNA 
interference.           

Table 2: Error examples 

6 Conclusion 

In this work, we designed and evaluated several models for the Question Answering task on the 
SQuAD 2.0 dataset, all based on the QANet architecture. We re-implemented the QANet from scratch 

and experimented with different variations of its architecture, and then designed several ensemble 
methods with different inference methods. 

In terms of results, our models significantly outperformed the RNN-based baseline BiDAF, and our 
variations did not yield significant performance differences compared to the original QANet method, 
even though we did observe some interesting differences. A hyperparameter tuning phase might be 
necessary to have a better understanding of whether those changes to the original model can help it 
perform better. Our ensemble models achieved very good performance, especially the Answerability 
prediction (2) model, which was based on a novel inference method. Future work might include 
hyperparameter tuning as well as other architecture modifications. Also, it might be key to train a 
better version of BiDAF to build a stronger ensemble model.
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