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Abstract 

In this work, we build a question answering (QA) system and apply it on the 
Stanford Question Answering Dataset (SQuAD) version 2.0. Our goal is to achieve 
strong performance on this task without using pre-trained language models. Our 
primary contribution is a highly performant implementation of the QANet model. 
Additionally, we experiment with various modifications to this architecture. Most 
notably, we show that modifying the output layer, such that the answer span’s 
ending position prediction is a function of the starting position prediction, yields 
significant improvements over the original design. Using a QANet ensemble, we 
achieve an F1 score of 71.87 and an EM score of 68.89 on the unseen SQUAD 

2.0 test set (rank #1 out of 100+ submissions to the test leaderboard for the ITD 

SQuAD Track of CS224N at Stanford University, Winter 2021). 

1 Introduction 

QA systems aim to answer questions about a document or passage which are posed in natural 
language. More specifically, given a context paragraph and a question, we would like to build a 
system that can output a contiguous span from the context paragraph that answers the question, or 
predict that the question is unanswerable. Clearly, such systems have a wide array of important 
applications: they are used in search engines, dialogue systems, and medical applications [1]. 

QA is a challenging task for many reasons. For one, answering questions can require reasoning over 
long time horizons, as it may be necessary to combine information from different parts of the context 
passage. Furthermore, a QA system needs to learn subtle nuances in wording and lexical ambiguities. 
In the English language, small changes in wording can often change the meaning of a statement 
entirely. Finally, consider the passage in Figure 1. Here, the model has to correctly predict that the 
posed question is unanswerable given the information in the passage. To do this, the model not only 
has to develop an understanding of the individual facts presented, but also needs to determine that 
none of these facts can be used to infer an answer. Clearly, this requires a deep understanding of 
natural language. 

  
Question: What title did Henry II take in the Canary Island? 
Context: Bethencourt took the title of King of the Canary Islands, as vassal to Henry III 
of Castile. In 1418, Jean’s nephew Maciot de Bethencourt sold the rights to the islands to 
Enrique Pérez de Guzman, 2nd Count de Niebla. 

Answer: N/A       

Figure 1: An example of an unanswerable question from the SQUAD 2.0 dataset. 

Currently, the field of QA is dominated by the use pre-trained language models (PLMs). PLMs 
such as ALBERT [2] and ELECTRA [3] are used by many of the top entries on the SQUAD 2.0 

leaderboard. However, in this work, we restrict ourselves from using a PLM, with the intent of 

focusing on the model architecture design. Furthermore, recent years have shown a clear trend away 
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from recurrent models and towards attention-based models for natural language processing tasks. 
Hence, we chose to implement a model based on attention as well. 

Among the leaderboard entries that did not use PLMs, QANet [4] was the top performer for version 
1.1 of the SQUAD dataset. This motivated us to implement QANéet for ourselves and explore its 
performance for SQUAD 2.0. The main difference between these two versions of SQUAD is that 

version 2.0 contains unanswerable questions whereas version 1.1 does not. Hence, the model has to 
learn whether it can even infer the answer from the passage. With this in mind, our contributions are 
as follows: 

1. We re-implement the original QANet architecture from scratch. 

2. We explore various modifications and extensions to this architecture. 

3. We evaluate QANet’s performance for SQUAD 2.0 and analyze its limitations. 

To improve on the original architecture, we experiment with different model sizes and architectural 
changes. Interestingly, we find that increasing the size and/or depth of the network does not improve 
performance. Instead, our most significant improvement comes from modifying the output layer such 
that the prediction of the end token is conditioned on the prediction of the start token. 

2 Related Work 

In order to infer an answer, QA systems need to compute interactions between the context and the 
question. Bi-Directional Attention Flow (BiDAF) [5] introduced the idea of bi-directional attention. 

The key idea is that attention should not only flow from the question to the context, but also from 
the context to the question. This allows the model to build question-aware representations of the 
context. The BiDAF model then uses a long short-term memory network (LSTM) [6] to transform 

this representation into a span prediction. 

Then, after the Transformer [7] popularized the use of deep attention-based networks, the QANet 
model attempted to do without recurrence entirely, and proposed to use only self-attention and 
convolution operations. The advantage of this approach is that the output no longer needs to be 
generated sequentially, and so forward computations could be parallelized much more easily. This 
resulted in training speedups of 3x to 13x compared to state-of-the-art recurrent models at the time, 
which allowed the authors to train bigger models and effectively train on more data by using back- 
translation. As a result, the QANet paper surpassed all existing approaches to QA at the time. Since 
the paper does not include an implementation by the authors, we believe that our re-implementation, 
which has a strong performance for SQUAD 2.0, will be a useful resource to researchers that would 
like to build on this work in the future. 

Typically, the start and end tokens are predicted independently. However, it seems reasonable to first 
predict the start token, and only then predict the end token, taking our own start token prediction into 
account. The Match-LSTM with Answer Pointer [8] model does this. It uses an LSTM that attends to 

a question-aware context representation, and runs for exactly two time steps. The attention weights 
for the first time step are used to predict the start token, and the attention weights for the second 
time step are used to predict the end token. We do not make use of this idea directly, but we use it as 
inspiration to design our own output layer. 

3 Approach 

3.1 BiDAF 

Baseline We use the BiDAF model with pre-trained 300-D GloVE word embeddings [9], which is 
provided by CS224N staff, as the baseline for our project. Its architecture is described in the BiDAF 
paper [5]. 

BiDAF with character embeddings We improve on the baseline model by incorporating learnable 
200-D character-level embeddings, which are concatenated with the word vectors and fed through a 
fully-connected layer. Aside from this addition, the model is identical to the baseline BiDAF model.



3.2 QANet 

We built the original QANet model from scratch in PyTorch [10]. We only make use of the provided 
project skeleton’s context-query attention layer and an open-source implementation of standard 
building blocks, namely sinusoidal positional encoding and depth-wise separable convolutions!. We 
implemented everything else using components from the PyTorch standard library. 

Input embedding layer We first process the strings for the question and context into sequences of 
tokens representing the words and characters. Then, we combine a pre-trained GloVe embedding [9] 
for each word with the learnable character embeddings for each character in the word as follows: We 
concatenate the embeddings of the first 16 characters of the word (padded with zeros if the word is 
shorter than 16 characters), resize each embedding to size 128 (the hidden state size) by convolving 
them with 1-D kernels of size 5, and take the max across the characters dimension to get a vector 
representation of each word. We also resize the word embedding to size 128 by convolving them with 
1-D kernels of size 1, then concatenate the result with the character embeddings, and finally resize 
the resulting 256-D output to 128-D via another 1-D convolution layer. Lastly, we apply a two-layer 
highway network [11] on the embedding vector. This computation is performed for every word in the 
context and the question. 

Encoder blocks The core component of QANet is the encoder block, illustrated on the right side of 
Figure 2. It consists of a sinusoidal positional input encoding [7], followed by several convolution 
layers, a self-attention layer with 8 heads, and a feed-forward layer. Each of these layers uses layer 
normalization [12] for its input to stabilize the hidden state dynamics, and a residual connection to 
its input to allow for better gradient flow through the network. The encoder block is used in two 
places throughout QANéet: once to process the input embeddings, and a second time to process the 
bi-directional attention outputs at the core of the model, as shown in Figure 2. To process the input 
embeddings, we use a single embedding encoder block containing 4 convolutions with a kernel size 
of 7, and 8 multi-head attention heads. For the core of the model, we use 3 stacks of 7 model encoder 

blocks each, with 2 convolutions per block and a kernel size of 5. We share weights between the 
input encoder of the question and context, and between each of the 3 encoder block stacks at the 
model core. 

Model One Encoder 

Start Probability End Probability     
ines Qin 

  

Stacked Embedding 
Encoder Blocks, 

    

  

Context Question 

Figure 2: The QANet architecture. Source: [4] 

Context-Query attention QANet uses the same bi-directional context-query attention mechanism 
as BiDAF. For brevity’s sake, we refer you to the BiDAF paper [5] for a detailed description. 

Output layer Let Mo, MM), and M2 denote the outputs of the three model encoder stacks, respectively. 

QANeéet computes the probability of each position in the context being the start and end position of 
the answer span as 

Dstart = softmax(Wo[Mo; Mi]), Pend = softmax(W [Mo; Mo]), (1) 

where Wo and W, are learnable parameters. 
  

‘Implementations of the positional encoding and depth-wise separable convolutions are taken from 

https://github.com/BangLiu/QANet-PyTorch.



Training The model maps from a (query, context) pair to two probabilities distributions: one for the 
predicted start of the answer span and one for the predicted end. Inputs with no answer have the label 
(0, 0). Our loss function is the sum of the negative likelihood of the predicted start and end position 
distributions. That is, given a gold answer span of (i, j) and model parameters 6, we have 

L(8) =~ log Detart (43 9) — log Pena (J3 9). (2) 

Similar to the QANet paper, we use dropout [13] to stochastically thin the width of layers, and 
stochastic depth layer dropout [14] within each encoder layer, where each sublayer / drops out 

with a probability of + (parop)s where L is the last sublayer in the encoder layer and pg;op is a 

hyperparameter. At inference time, we use the full network, but adjust for the larger expected value 
of the activations by scaling them by the survival probabilities. 

Inference At inference time, we first use the model to generate the two probability distributions 
Pstart ANd Peng. Then, we search for the span that maximizes Pgtart(7) - Pena(j) subject toi < 7 and 
j—-t+1 < DLimax, where Lmax controls the maximum length of a predicted answer. In our experiments, 

we use Lax = 15. The idea behind this is that we would generally like to predict reasonably short 
spans, and not just blindly use argmax(pgtart.) and argmax(Petart) aS Our predictions. 

3.3. QANet Extensions 

After implementing and testing the original QANet architecture, we also explore several model 
variations in isolation. 

Parameterized positional encodings Instead of using fixed sinusoidal positional encodings, we 
allow the model to learn the encoding parameters for itself. To do that, we simply initialize a 
parameter matrix of size L x h, where L is the maximum sequence length of a context passage, and 
h is the hidden size of the model. In the forward pass, for an input sequence of length /, we simply 
index the first / rows of the parameter matrix, and add them to the input sequence representation. 

Conditional output layer (1) Instead of computing Dgtar, and Pena independently, we compute Pena 
as a function of psa. We explore two original lightweight implementations of this conditioning, 
which we label as "Conditional output layer (1)" and "Conditional output layer (2)." For the first 
version, we combine the hidden states of the answer span’s starting position distribution with the 
hidden states of the ending position distribution, modifying the output layer computations described 
previously as follows: 

A= Wo[Mo; Mi], (3) 
B= Wi[Mo; Mo], (4) 

Dstart = Softmax(W> A), Pend = softmax(W3[A; B)) , (5) 

where My, M,, M2 € R®*! are the model encoder stack outputs, and Wp, W, € R’*?”", W. € R!*", 
and W3 € R!*? are learnable parameters. The motivation is to make information contained in the 
hidden states of the starting position’s distribution available to the model when predicting the ending 
position’s distribution. 

Conditional output layer (2) In our first version of conditional output, we realized that neither the 
logits distribution W2A nor the final probabilities distribution Psa; after applying the softmax is used 
in the calculation of pena; instead, the only additional information comes from the hidden state A, 

which means that the model does not incorporate information learned from the linear projection via 
W2. We therefore propose our second original implementation of conditional output, which does 
fully incorporate this information. The calculations are as follows: 

L = Wo|Mo; Mi] (6) 
A= W,(L © [Mo; M1)) (7) 

Pstart = softmax(L), Pend = Softmax(W3[A; B]) , (9) 

where Mop, M,, M2 € R®*! are the model encoder stack outputs, and Wo € R!*?", Wy,We € 
IR’ x2" and W3 € R'*?" are learnable parameters. The starting position’s logits distribution L is



used to weight the hidden states representing the span’s starting position distribution, incorporating 
the information learned by the projection via Wp (the use of logits rather than probabilities preserves 
negative values in the hidden states). Positions in the context with high probability of being the start 
of the span will be more highly activated than others, and the model can utilize this information when 
predicting the end of the span. This layer is also illustrated in Figure 3. 

  

Figure 3: Our conditional output layer design. 

Upsized QANets We explore five larger variants of the QANet to observe how model complexity 
affects performance. The first variant, "QANet + Deeper Model Encoder (1)," contains 9 encoder 

blocks instead of 7 for each of the 3 model encoder layers. "QANet + Deeper Model Encoder (2)" 

is the same, except that it contains 11 model encoder blocks per layer instead of 7. "QANet, 1.5x 
Larger (1)" increases the hidden size by 1.5x to 192 instead of 128 and uses 2 encoder blocks instead 
of | in the embedding encoder. "QANet, 1.5x Larger (2)" uses the exact same configuration but with 
increased regularization; we discuss details in the Experiments section. Finally, "QANet, 2x Larger" 
uses a hidden size of 200, 2 embedding encoder blocks, and 11 model encoder blocks per layer. 

Ensemble We assemble a final ensemble of 9 QANet models: 6 copies of QANet with "conditional 

output layer (2)" (each trained with a different random seed), | base QANet model, | QANet with 

"conditional output layer (1)", and 1 QANet with "deeper model encoder (1)." These are the models 

that achieve the highest Fl scores on the SQUAD 2.0 development set, as we will show in the Results 
section. For each question, we choose the answer span with the largest number of votes, where each 
of the 9 models gets 1 vote. We weight each vote to break ties: the model with highest development 
F1 score has a weight of 1.00, the second-best has weight 0.99, the third-best has weight 0.98, and so 

on. 

4 Experiments 

4.1 Data 

We use version 2.0 of the Stanford Question Answering Dataset [15], which contains both answerable 

and unanswerable questions, to train and test our models. The training set consists of the roughly 
130K examples in the official SQUAD 2.0 training set. The development set and test set we use are 
roughly equally sized halves of the official SQUAD 2.0 development set, with about 6K examples 
each, since the official test set is hidden from the public. 

4.2 Evaluation method 

We primarily use the F1 score for evaluation, using this to compare the performance of different 
models. We also note the exact match (EM) and answer vs. no-answer (AvNA) scores. 

4.3 Experimental details 

BiDAF We run our baseline BiDAF model with a hidden state size of 100, batch size of 64, EMA 

decay of 0.999, dropout rate of 0.2, and learning rate of 0.5, as in the original BiDAF paper [5]. We 
run our new BiDAF model with 200-D character embeddings using the same configuration. We train 
the baseline model for about 30 epochs in about 11 hours on a Tesla K80 GPU; we train the model 

with character embeddings in about 5 hours on a Tesla V100 GPU.



QANet We run our implementations of the base QANet, QANet with parameterized position encod- 
ings, and QANéet with a conditional output layer with the hyperparameter configuration discussed in 
the Approach section. For regularization during training, we use a L2 weight decay of 3 x 10~", a 
general dropout rate of 0.1 after every 2 layers, and stochastic depth layer dropout [14] within each 
encoder layer, as discussed previously. This model configuration is used in the original QANet paper 
[4]. We train each QANet model variant until convergence (roughly 25 epochs) in about 35 hours on 

a Tesla K80 GPU, or about 10 hours on a Tesla V100 GPU. 

Upsized QANets For "QANet + Deeper Model Encoder (1)," "QANet + Deeper Model Encoder 
(2)," and "QANet, 1.5x Larger (1)" we use the same hyperparameter setup as the base QANet. We 
realize that "QANet, 1.5x Larger (1)" achieves lower training negative log-likelihood (NLL) but 

higher development NLL than the base QANet, so we run "QANet, 1.5x Larger (2)," which is an 

identical copy except with more regularization: an L2 weight decay of 3 x 10~° instead of 3 x 107", 
and a general dropout rate of 0.2 instead of 0.1 after every 2 layers. After seeing that this increased 
regularization hindered both training and development NLL, we run the final upsized QANet, "QANéet, 
2x Larger (2)," with an L2 weight decay of 6 x 10~” and a general dropout rate of 0.15. 

4.4 Results 

Table 1: Performances of various models on the SQUAD 2.0 development set. 
  

  

  

  

Model Fl EM AvNA 

BiDAF (Baseline) 61.72 58.43 68.53 
BiDAF + Char. Embeddings 64.62 61.12 71.25 

QANet 70.01 66.26 76.27 
QANet + Conditional Output Layer (1) 70.15 66.41 76.52 
QANet + Conditional Output Layer (2) 71.54 67.67 77.63 
QANéet + Deeper Model Encoder (1) 70.03 66.31 76.24 

QANéet + Deeper Model Encoder (2) 69.02 65.23 74.88 
QANet, 1.5x Larger (1) 69.63 65.90 76.00 
QANet, 1.5x Larger (2) 69.80 66.21 75.58 
QANet, 2x Larger 69.28 65.57 75.28 

QANet, Parametric Position Encodings (stopped early) 63.94 60.66 70.16 

QANet Ensemble 74.17 71.03 79.06 
  

The results of all of our individual model experiments on the SQUAD 2.0 development set are 
shown in Table 1. The addition of learnable character embeddings to BiDAF improves performance 
significantly upon the baseline model, as the augmented model can use the finer-grained, character- 
level representations of words and subwords to better learn the meaning of different words and thus 
more accurately predict which words belong in the answer spans. Better yet, our implementation of 
the base QANet model far outperforms even this improved version of BiDAF, achieving 70.01 F1 
and 66.26 EM. 

Among the individual models, the QANet with our second version of conditional output performs 
best, which is sensible since the end of an answer span depends on the beginning, and it is more 
reasonable to condition the end based on the start rather than predicting them entirely independently. 
We see that the first version of conditional output does not improve performance as significantly, 
suggesting that the information contained within the starting position’s logits/probabilities distribution 
is significant when predicting the ending position, which is reasonable since the final linear projection 
that generates this logits distribution is the decision-maker that maps model encoder outputs to 
starting position probabilities. 

Surprisingly, the five upsized QANet variants did not achieve expected performance, suggesting 
that adding more helpful features such as conditional output to the model architecture is much more 
significant than increasing the QANet’s complexity. 

Further, the parametric position encodings perform poorly. The F1 score appears to plateau early at 
around 64, so we decided to discontinue the experiment. Our intuition is that perhaps the context



sequences are too long to learn meaningful positional encodings that generalize well. For the sake of 
time, we did not explore this idea any further. 

Lastly, we see that the final ensemble model of nine QANet models, which we discussed in the 

Approach section, achieves significant gains in development F1, EM, and AvNA scores. The ensemble 
also achieves high performance with an F1 score of 71.87 and EM score of 68.89 on the test set, 
ranking #1 on the test leaderboard. We attribute the difference between the development and test 
performance to possible minor distributional shift, as well as slight overfitting to the development set 
when we assemble the ensemble based on highest F1 scores on the development set. 

5 Analysis 

AvNA Figure 4 below reveals how well our QANet ensemble learns to predict an answer for 
answerable questions and no answer for unanswerable questions. The ensemble predicts an answer 
more often than no answer even though the development set has more unanswerable questions than 
answerable ones, and its true positive rate is higher than its true negative rate. This indicates one 
weakness of the model: it has some difficulty with learning when there is no answer to a question and 
often forces an answer to an unanswerable question. Having a separate head that is trained to predict 
the presence or lack of an answer might help mitigate this issue. 

  

  

  

          

Ground Truths 

Answer | No Answer | Total 

Predictions | Answer 2386 784 3170 

No Answer 462 2319 2781 

Total 2848 3103 5951 

  

TPR TNR FPR FNR 

83.78% 74.73% 25.27% 16.22% 
  

  

Figure 4: Confusion matrix of the ensemble model’s predictions on the SQUAD 2.0 development set, 
followed by rates derived from the matrix (e.g., true positive rate, true negative rate, etc.). 

Performance breakdown Table 2 below shows how the ensemble model performs on different 
types of questions. (The "Other" category includes questions that contain more than one of the six 
question words.) The ensemble performs best for "When" questions, most likely due to the relative 
ease in predicting which numbers/words represent a point in time. It performs worst for "Why" 
questions, which is sensible since these questions are more difficult to answer compared to questions 
such as "Who" and "Where"; proper nouns, for instance, provide significant hints for the latter but not 
the former, which involves the more complex learning of intent rather than rote fetching of entities or 
locations. 

Table 2: Performance of the ensemble model on different types of questions in the development set. 

Question Type Who What When Where Why How Other Overall 
  

  

  

  

  

Count 608 3522 434 251 87 556 493 5951 

Fl 73.76 7447 8149 69.93 68.06 74.92 68.47 74.17 

EM 71.38 71.32 80.87 65.73 58.62 70.86 64.90 71.03 

AvNA 76.97 79.44 85.25 7649 74.71 79.13 75.45 79.06 
  

Exploration of individual questions To get a better sense of where our model is making mistakes, 
we look through individual questions ourselves and try to identify common sources of error. For one, 
we noticed that our model tends to be biased towards giving numeric answers when the question starts 
with "How many [...]" and one or more numbers appear in the context. The model often predicts one 
of those numbers to be the answer, even if the question is unanswerable. Similarly, for a question 
that begins with "What percentage [...]," our model predicted an incorrect answer with a percentage 
sign. This suggests that the model learns to do high level pattern matching for some questions,



without actually understanding the question or context. We also noticed that our model struggles 
with questions that have complicated grammatical structure. For instance, one question asks: "Issues 
dealt with at Westminster are not ones who is able to deal with?" This question uses passive form 
and negation and is thus quite complex. Most likely, the training set does not contain many such 
questions, and thus it is difficult for the model to interpret. 

Conditional output layer Next, we attempt to answer why adding the conditional output layer 
improved the performance of the model. One of our hypotheses is that it helps the model output 
more coherent span predictions than the independent approach, in which Petar and Pena are predicted 
individually. To see whether this is true, we compare our base QANet implementation to our 
model with the conditional output layer. For each, compute the predictions for every sample in the 
development set, look at the highest probability start token and the highest probability end token, and 
see whether these form a "reasonable" span. We define a span to be reasonable if the end token occurs 
no more than 15 tokens away from the start token. If our hypothesis was true, we would expect the 
base model to have more unreasonable predictions, in which the predicted end token comes before 
the start token or the two are far away from each other. It turns out that this is not the case. For the 
base model, about 7.1% of predictions are unreasonable, and for the conditional model, about 7.7% 

are. We believe that the difference between these two results is not significant enough to confirm or 
deny our initial hypothesis. 

Table 3: Performance comparison between base QANet and QANet with conditional output layer on 
different types of questions in the development set. 

Question Type Who What When Where Why How Other Overall 

Base QANet F1 71.56 70.30 76.26 66.62 67.71 68.80 63.93 70.01 

Cond. Out. QANet Fl 70.73) 71.84 «78.23 66.19 68.94 73.81 65.05 71.54 

  

  

  

  

Another hypothesis we investigate is whether the conditional output layer allows the model to learn 
more complex interactions between words within the context. We turn to the relative performance of 
the base QANet and the conditional output QANet on different subsets of the development set, as 
shown in Table 3. For most of the question types, the difference in Fl score between these two models 
is minor and could be attributed to random noise. However, we see that the conditioned QANet 

performs significantly better on "How" questions than the base QANet, with a 5-point increase in 
F1 score in this category. This finding suggests that the conditioned QANet indeed can better learn 
complex interactions among words in the context, that are useful in predicting answers to more 
difficult questions. 

6 Conclusion 

In summary, we present an implementation of QANet that achieves strong results on the SQUAD 2.0 
dataset. We show that increasing the model size and adding parameterized positional encodings does 
not improve the model’s performance. Additionally, we are able to improve the model by adding a 
novel conditional output layer and using an ensemble. So far, we have only explored the viability of 
our output layer for a single dataset. It remains to be seen whether our the performance improvement 
carries over to other tasks, as well. In the future, we are interested to see how QANéet synergizes with 
embeddings from pre-trained language models. Furthermore, we would like to see whether our output 
layer architecture works well for other QA datasets, such as NewsQA [16], as well. Finally, we are 

curious to explore the viability of a different label space and loss function. Instead of predicting a 
distribution for just the start and end token, one could learn a probability for each word in the context, 
that indicates the likelihood that the word is part of the answer span.
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