
CS 224n: Assignment #4

This assignment is split into two sections: Neural Machine Translation with RNNs and Analyzing NMT
Systems. The first is primarily coding and implementation focused, whereas the second entirely consists
of written, analysis questions. If you get stuck on the first section, you can always work on the second as
the two sections are independent of each other. Note that the NMT system is more complicated than the
neural networks we have previously constructed within this class and takes about 4 hours to train on a
GPU. Thus, we strongly recommend you get started early with this assignment. Finally, the notation and
implementation of the NMT system is a bit tricky, so if you ever get stuck along the way, please come to
Office Hours so that the TAs can support you.

1. Neural Machine Translation with RNNs (45 points)
In Machine Translation, our goal is to convert a sentence from the source language (e.g. Cherokee)
to the target language (e.g. English). In this assignment, we will implement a sequence-to-sequence
(Seq2Seq) network with attention, to build a Neural Machine Translation (NMT) system. In this sec-
tion, we describe the training procedure for the proposed NMT system, which uses a Bidirectional
LSTM Encoder and a Unidirectional LSTM Decoder.

Figure 1: Seq2Seq Model with Multiplicative Attention, shown on the third step of the
decoder. Hidden states henc

i and cell states cenc
i are defined in the next page.

1

CS 224n Assignment 4 Page 2 of 8

Model description (training procedure)

Given a sentence in the source language, we look up the subword embeddings from an embeddings
matrix, yielding x1, . . . , xm (xi ∈ Re×1), where m is the length of the source sentence and e is the
embedding size. We feed these embeddings to the bidirectional encoder, yielding hidden states and cell
states for both the forwards (→) and backwards (←) LSTMs. The forwards and backwards versions are
concatenated to give hidden states henc

i and cell states cenc
i :

henc
i = [

←−−
henc
i ;
−−→
henc
i] where henc

i ∈ R2h×1,
←−−
henc
i ,
−−→
henc
i ∈ Rh×1 1 ≤ i ≤ m (1)

cenc
i = [

←−−
cenc
i ;
−−→
cenc
i] where cenc

i ∈ R2h×1,
←−−
cenc
i ,
−−→
cenc
i ∈ Rh×1 1 ≤ i ≤ m (2)

We then initialize the decoder’s first hidden state hdec
0 and cell state cdec

0 with a linear projection of the
encoder’s final hidden state and final cell state.1

hdec
0 = Wh[

←−−
henc
1 ;
−−→
henc
m] where hdec

0 ∈ Rh×1,Wh ∈ Rh×2h (3)

cdec
0 = Wc[

←−−
cenc
1 ;
−−→
cenc
m] where cdec

0 ∈ Rh×1,Wc ∈ Rh×2h (4)

With the decoder initialized, we must now feed it a target sentence. On the tth step, we look up the
embedding for the tth subword, yt ∈ Re×1. We then concatenate yt with the combined-output vector
ot−1 ∈ Rh×1 from the previous timestep (we will explain what this is later down this page!) to produce
yt ∈ R(e+h)×1. Note that for the first target subword (i.e. the start token) o0 is a zero-vector. We then
feed yt as input to the decoder.

hdec
t , cdec

t = Decoder(yt, hdec
t−1, cdec

t−1) where hdec
t ∈ Rh×1, cdec

t ∈ Rh×1 (5)
(6)

We then use hdec
t to compute multiplicative attention over henc

1 , . . . , henc
m :

et,i = (hdec
t)T WattProjhenc

i where et ∈ Rm×1,WattProj ∈ Rh×2h 1 ≤ i ≤ m (7)
αt = softmax(et) where αt ∈ Rm×1 (8)

at =
m∑
i=1

αt,ihenc
i where at ∈ R2h×1 (9)

et,i is a scalar, the ith element of et ∈ Rm×1, computed using the hidden state of the decoder at the tth
step, hdec

t ∈ Rh×1, the attention projection WattProj ∈ Rh×2h, and the hidden state of the encoder at
the ith step, henc

i ∈ R2h×1.
We now concatenate the attention output at with the decoder hidden state hdec

t and pass this through
a linear layer, tanh, and dropout to attain the combined-output vector ot.

ut = [at; hdec
t] where ut ∈ R3h×1 (10)

vt = Wuut where vt ∈ Rh×1,Wu ∈ Rh×3h (11)
ot = dropout(tanh(vt)) where ot ∈ Rh×1 (12)

1If it’s not obvious, think about why we regard [
←−−henc
1 ,
−−→henc
m] as the ‘final hidden state’ of the Encoder.

CS 224n Assignment 4 Page 3 of 8

Then, we produce a probability distribution Pt over target subwords at the tth timestep:

Pt = softmax(Wvocabot) where Pt ∈ RVt×1,Wvocab ∈ RVt×h (13)

Here, Vt is the size of the target vocabulary. Finally, to train the network we then compute the cross
entropy loss between Pt and gt, where gt is the one-hot vector of the target subword at timestep t:

Jt(θ) = CrossEntropy(Pt, gt) (14)

Here, θ represents all the parameters of the model and Jt(θ) is the loss on step t of the decoder. Now
that we have described the model, let’s try implementing it for Cherokee to English translation!

Setting up your Virtual Machine

Follow the instructions in the CS224n Azure Guide (link also provided on website and Ed) in order
to create your VM instance. This should take you approximately 45 minutes. Though you will need
the GPU to train your model, we strongly advise that you first develop the code locally and ensure
that it runs, before attempting to train it on your VM. GPU time is expensive and limited. It takes
approximately 30 minutes to 1 hour to train the NMT system. We don’t want you to accidentally
use all your GPU time for debugging your model rather than training and evaluating it. Finally, make
sure that your VM is turned off whenever you are not using it.
If your Azure subscription runs out of money, your VM will be temporarily locked and
inaccessible. If that happens, please fill out a request form here.
In order to run the model code on your local machine, please run the following command to create the
proper virtual environment:

conda env create −−file local_env.yml

Note that this virtual environment will not be needed on the VM.

Implementation and written questions

(a) (2 points) (coding) In order to apply tensor operations, we must ensure that the sentences in a
given batch are of the same length. Thus, we must identify the longest sentence in a batch and pad
others to be the same length. Implement the pad_sents function in utils.py, which shall produce
these padded sentences.

(b) (3 points) (coding) Implement the __init__ function in model_embeddings.py to initialize the
necessary source and target embeddings.

(c) (4 points) (coding) Implement the __init__ function in nmt_model.py to initialize the neces-
sary model embeddings (using the ModelEmbeddings class from model_embeddings.py) and layers
(LSTM, projection, and dropout) for the NMT system.

(d) (8 points) (coding) Implement the encode function in nmt_model.py. This function converts the
padded source sentences into the tensor X, generates henc

1 , . . . , henc
m , and computes the initial state

hdec
0 and initial cell cdec

0 for the Decoder. You can run a non-comprehensive sanity check by execut-
ing:

https://docs.google.com/document/d/10rhknu-xJJCHUQx3DPqKuHT35EqftmZ1rEdR1nJoBFo/edit#heading=h.4tqnggp12z76
https://forms.gle/foFi9p5sQW4wNUTq6

CS 224n Assignment 4 Page 4 of 8

python sanity_check.py 1d

(e) (8 points) (coding) Implement the decode function in nmt_model.py. This function constructs ȳ
and runs the step function over every timestep for the input. You can run a non-comprehensive
sanity check by executing:

python sanity_check.py 1e

(f) (10 points) (coding) Implement the step function in nmt_model.py. This function applies the
Decoder’s LSTM cell for a single timestep, computing the encoding of the target subword hdec

t ,
the attention scores et, attention distribution αt, the attention output at, and finally the combined
output ot. You can run a non-comprehensive sanity check by executing:

python sanity_check.py 1f

(g) (3 points) (written) The generate_sent_masks() function in nmt_model.py produces a tensor called
enc_masks. It has shape (batch size, max source sentence length) and contains 1s in positions cor-
responding to ‘pad’ tokens in the input, and 0s for non-pad tokens. Look at how the masks are
used during the attention computation in the step() function (lines 295-296).
First explain (in around three sentences) what effect the masks have on the entire attention com-
putation. Then explain (in one or two sentences) why it is necessary to use the masks in this
way.

Now it’s time to get things running! Execute the following to generate the necessary vocab file:

sh run.sh vocab

Or if you are on Windows, use the following command instead. Make sure you execute this in an
environment that has python in path. For example, you can run this in the terminal of your IDE or
your Anaconda prompt.

run.bat vocab

As noted earlier, we recommend that you develop the code on your personal computer. Confirm that
you are running in the proper conda environment and then execute the following command to train the
model on your local machine:

sh run.sh train_local
(Windows) run.bat train_local

To help with monitoring and debugging, the starter code uses tensorboard to log loss and perplexity
during training using TensorBoard2. TensorBoard provides tools for logging and visualizing training
information from experiments. To open TensorBoard, run the following in your conda environment:

tensorboard −−logdir=runs

You should see a significant decrease in loss during the initial iterations. Once you have ensured that
your code does not crash (i.e. let it run till iter 10 or iter 20), power on your VM from the Azure Web
Portal. Then read the Managing Code Deployment to a VM section of our Practical Guide to VMs (link
also given on website and Ed) for instructions on how to upload your code to the VM.
Next, install necessary packages to your VM by running:

pip install −r gpu_requirements.txt

2https://pytorch.org/docs/stable/tensorboard.html

https://docs.google.com/document/d/1jtANWXbIYXMZO_2X7jupauPxcEbz-TVJkdatg4gzOdk

CS 224n Assignment 4 Page 5 of 8

Finally, turn to the Managing Processes on a VM section of the Practical Guide and follow the instruc-
tions to create a new tmux session. Concretely, run the following command to create tmux session called
nmt.

tmux new −s nmt

Once your VM is configured and you are in a tmux session, execute:

sh run.sh train
(Windows) run.bat train

Once you know your code is running properly, you can detach from session and close your ssh connection
to the server. To detach from the session, run:

tmux detach

You can return to your training model by ssh-ing back into the server and attaching to the tmux session
by running:

tmux a −t nmt

(h) (3 points) (written) Once your model is done training (this should take under 1 hour on the
VM), execute the following command to test the model:

sh run.sh test
(Windows) run.bat test

Please report the model’s corpus BLEU Score. It should be larger than 10.
(i) (4 points) (written) In class, we learned about dot product attention, multiplicative attention, and

additive attention. As a reminder, dot product attention is et,i = sTt hi, multiplicative attention is
et,i = sTt Whi, and additive attention is et,i = vT tanh(W1hi + W2st).

i. (2 points) Explain one advantage and one disadvantage of dot product attention compared to
multiplicative attention.

ii. (2 points) Explain one advantage and one disadvantage of additive attention compared to mul-
tiplicative attention.

2. Analyzing NMT Systems (33 points)
(a) (3 points) In part 1, we modeled our NMT problem at a subword-level. That is, given a sentence in

the source language, we looked up subword components from an embeddings matrix. Alternatively,
we could have modeled the NMT problem at the word-level, by looking up whole words from the
embeddings matrix. Why might it be important to model our Cherokee-to-English NMT problem
at the subword-level vs. the whole word-level? (Hint: Cherokee is a polysynthetic language.)

(b) (3 points) Transliteration is the representation of letters or words in the characters of another
alphabet or script based on phonetic similarity. For example, the transliteration of Ꮳ Ꮕ Ꮤ Ꮝ Ꭺ (which
translates to ”do you know”) from Cherokee letters to Latin script is tsanvtasgo. In the Cherokee
language, ”ts-” is a common prefix in many words, but the Cherokee character Ꮳ is ”tsa”. Using
this example, explain why when modeling our Cherokee-to-English NMT problem at the subword-
level, training on transliterated Cherokee text may improve performance over training on original
Cherokee characters.(Hint: A prefix is a morpheme.)

(c) (3 points) One challenge of training successful NMT models is lack of language data, particularly for
resource-scarce languages like Cherokee. One way of addressing this challenge is with multilingual
training, where we train our NMT on multiple languages (including Cherokee). You can read more

CS 224n Assignment 4 Page 6 of 8

about multilingual training here:
https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html.
How does multilingual training help in improving NMT performance with low-resource languages?

(d) (6 points) Here we present a series of errors we found in the outputs of our NMT model (which
is the same as the one you just trained). For each example of a reference (i.e., ‘gold’) English
translation, and NMT (i.e., ‘model’) English translation, please:

1. Identify the error in the NMT translation.
2. Provide possible reason(s) why the model may have made the error (either due to a specific

linguistic construct or a specific model limitation).
3. Describe one possible way we might alter the NMT system to fix the observed error. There

are more than one possible fixes for an error. For example, it could be tweaking the size of the
hidden layers or changing the attention mechanism.

Below are the translations that you should analyze as described above. Only analyze the underlined
error in each sentence. Rest assured that you don’t need to know Cherokee to answer these questions.
You just need to know English! If, however, you would like additional color on the source sentences,
feel free to use a resource like https://www.cherokeedictionary.net/ to look up words.

i. (2 points) Source Sentence: ᏄᏩᏁᎰᎾ ᏕᎪᏣᎳᎩᏍᎬ, ᎯᎠ ᏄᏍᏕ ᏚᏏᎳᏛ: ᏧᏓᎴᏅᏓ ᏕᎪᏒᏍᎦ ᏧᏏᎳᏛᏙᏗ
ᎠᏍᏓ ᎧᏅᏂᏍᎩ.
Reference Translation: When she was finished ripping things out, her web looked something
like this:
NMT Translation: When it was gone out of the web, he said the web in the web.

ii. (2 points) Source Translation: ᎤᏍᏗ ᎢᏈᎬᎢ, ᎦᏙᏊᎢ? ᎤᏓᏛᏛᏁᎢ ᎤᏍᏗ ᎠᏧᏣ.
Reference Translation: What’s wrong little tree? the boy asked.
NMT Translation: The little little little little little tree? asked him.

iii. (2 points) Source Sentence: “ᎤᏓᎸᏉᏗ ᏂᎨᏒᎾ,” ᎤᏛᏁ ᎰᎻ.
Reference Translation: “ ‘Humble,’ ” said Mr. Zuckerman
NMT Translation: “It’s not a lot,” said Mr. Zuckerman.

(e) (4 points) Now it is time to explore the outputs of the model that you have trained! The test-set
translations your model produced in question 1-i should be located in outputs/test_outputs.txt.

i. (2 points) Find a line where the predicted translation is correct for a long (4 or 5 word) sequence
of words. Check the training target file (English); does the training file contain that string
(almost) verbatim? If so or if not, what does this say about what the MT system learned to
do?

ii. (2 points) Find a line where the predicted translation starts off correct for a long (4 or 5
word) sequence of words, but then diverges (where the latter part of the sentence seems totally
unrelated). What does this say about the model’s decoding behavior?

(f) (14 points) BLEU score is the most commonly used automatic evaluation metric for NMT systems.
It is usually calculated across the entire test set, but here we will consider BLEU defined for a single
example.3 Suppose we have a source sentence s, a set of k reference translations r1, . . . , rk, and a
candidate translation c. To compute the BLEU score of c, we first compute the modified n-gram

3This definition of sentence-level BLEU score matches the sentence_bleu() function in the nltk Python package. Note that
the NLTK function is sensitive to capitalization. In this question, all text is lowercased, so capitalization is irrelevant.
http://www.nltk.org/api/nltk.translate.html#nltk.translate.bleu_score.sentence_bleu

https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html
https://www.cherokeedictionary.net/
http://www.nltk.org/api/nltk.translate.html#nltk.translate.bleu_score.sentence_bleu

CS 224n Assignment 4 Page 7 of 8

precision pn of c, for each of n = 1, 2, 3, 4, where n is the n in n-gram:

pn =

∑
ngram∈c

min
(

max
i=1,...,k

Countri(ngram), Countc(ngram)

)
∑

ngram∈c
Countc(ngram)

(15)

Here, for each of the n-grams that appear in the candidate translation c, we count the maxi-
mum number of times it appears in any one reference translation, capped by the number of times
it appears in c (this is the numerator). We divide this by the number of n-grams in c (denominator).

Next, we compute the brevity penalty BP. Let len(c) be the length of c and let len(r) be the
length of the reference translation that is closest to len(c) (in the case of two equally-close reference
translation lengths, choose len(r) as the shorter one).

BP =

{
1 if len(c) ≥ len(r)

exp
(
1− len(r)

len(c)

)
otherwise

(16)

Lastly, the BLEU score for candidate c with respect to r1, . . . , rk is:

BLEU = BP × exp
(4∑

n=1

λn log pn
)

(17)

where λ1, λ2, λ3, λ4 are weights that sum to 1. The log here is natural log.

i. (5 points) Please consider this example4:
Source Sentence s: ᎠᎴ ᎾᏍᎩ ᎢᎦ-ᎦᏘᏍᏗᏍᎩᎤᎵᏏᎬ ᏚᎸᏌᏕᎢ ᎤᎵᏏᎩᏃ ᎥᏝ ᏱᏚᏓᏂᎸᏤᎢ
Reference Translation r1: the light shines in the darkness and the darkness has not overcome it
Reference Translation r2: and the light shines in the darkness and the darkness did not com-
prehend it
NMT Translation c1: and the light shines in the darkness and the darkness can not comprehend
NMT Translation c2: the light shines the darkness has not in the darkness and the trials
Please compute the BLEU scores for c1 and c2. Let λi = 0.5 for i ∈ {1, 2} and λi = 0 for
i ∈ {3, 4} (this means we ignore 3-grams and 4-grams, i.e., don’t compute p3 or p4).
When computing BLEU scores, show your working (i.e., show your computed values for p1,
p2, len(c), len(r) and BP). Note that the BLEU scores can be expressed between 0 and 1 or
between 0 and 100. The code is using the 0 to 100 scale while in this question we are using the
0 to 1 scale.

Which of the two NMT translations is considered the better translation according to the BLEU
Score? Do you agree that it is the better translation?

ii. (5 points) Our hard drive was corrupted and we lost Reference Translation r2. Please recom-
pute BLEU scores for c1 and c2, this time with respect to r1 only. Which of the two NMT
translations now receives the higher BLEU score? Do you agree that it is the better translation?

iii. (2 points) Due to data availability, NMT systems are often evaluated with respect to only a
single reference translation. Please explain (in a few sentences) why this may be problematic. In
your explanation, discuss how the BLEU score metric assesses the quality of NMT translations
when there are multiple reference transitions versus a single reference translation.

4Due to data availability, many Cherokee sentences with English reference translations are from the Bible. This example is
John 1:5. The two reference translations are from the New International Version and the New King James Version translations
of the Bible.

https://en.wikipedia.org/wiki/N-gram

CS 224n Assignment 4 Page 8 of 8

iv. (2 points) List two advantages and two disadvantages of BLEU, compared to human evaluation,
as an evaluation metric for Machine Translation.

Submission Instructions
You shall submit this assignment on GradeScope as two submissions – one for “Assignment 4 [coding]” and
another for ‘Assignment 4 [written]”:

1. Run the collect_submission.sh script on Azure to produce your assignment4.zip file. You can use scp
to transfer files between Azure and your local computer.

2. Upload your assignment4.zip file to GradeScope to “Assignment 4 [coding]”.

3. Upload your written solutions to GradeScope to “Assignment 4 [written]”. When you submit your
assignment, make sure to tag all the pages for each problem according to Gradescope’s submission
directions. Points will be deducted if the submission is not correctly tagged.

http://www.hypexr.org/linux_scp_help.php

